
Journal Name

Visualizing High Entropy Alloy Spaces: Methods and
Best Practices

Brent Vela,a Trevor Hastings,a† Marshall Allen,a,b and Raymundo Arróyavea

1 tSNE and UMAP Algorithms
t-distributed Stochastic Neighbor Embedding (tSNE) is an un-
supervised machine learning dimensionality reduction technique
that has gained notoriety in the machine learning community
for its ability to preserve both the global and local structure of
the data. Since Van der Maaten and Hinton introduced tSNE in
20081, it has been used in various fields such as genetics2, as-
tronomy3, and of particular importance to this work, materials
science4,5. tSNE seeks to map the location of a data point i in
high-dimensional space, xi, to a location in lower dimensional
space, yi. This mapping must preserve the local structure of the
high-dimensional data and thus must be aware of points neigh-
boring point i in high-dimensional space, x j, such that yi and y j

are near each other in the embedding if xi and x j are near each
other in high-dimensional space. Likewise, if xi and x j are far
from each other in high-dimensional space, their corresponding
embedded locations, yi and y j, are to be far from each other. To
achieve this, the algorithm converts high-dimensional Euclidean
distances between each pair of data points xi and x j into condi-
tional probabilities Pj|i via mapping them onto a Gaussian distri-
bution. This Gaussian distribution is centered at xi with a stan-
dard deviation σi. These conditional probabilities represent how
similar two data points are to each other. This Gaussian distribu-
tion is used to calculate the conditional probability that xi would
be neighbors with x j, Pj|i. However, this conditional probability
Pj|i must be normalized to account for imbalanced cluster popu-
lations. This normalization is achieved by dividing the Gaussian
distribution by the sum of all conditional probabilities associated
Pk|i with the Gaussian centered at xi.

Pj|i =
exp
(
−
∣∣∣∣xi − x j

∣∣∣∣2 /2σi
2
)

∑k ̸=i exp
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The next step in the algorithm requires randomly project-
ing the high-dimensional space to 2-dimensions. Analogous to
the high-dimensional case, the algorithm determines the Eu-
clidean distance between every pair of points yi and y j in the
low-dimensional embedding of the dataset and maps these to a
Cauchy distribution centered at yi. The use of the Cauchy distri-
bution as opposed to the normal distribution is deliberate as using
the Cauchy distribution solves the crowding problem1 which was
common in SNE, the predecessor to tSNE. The cost function for
this minimization is C.

qi j =

(
1+
∣∣∣∣yi − y j

∣∣∣∣2)−1

∑k ̸=l exp
(

1+ ||xk − xl ||2
)−1 (3)

Points in the 2D embedding are then incrementally rear-
ranged such that the Kullback-Leiber divergence between the
joint probability distribution of the 2D-dimensional embedding
approaches the joint probability distribution of the high dimen-
sional representation of the data. This is achieved by minimiz-
ing the Kullback-Leibler divergence of the two distributions. The
Kullback-Leibler divergence of the joint probabilities in the origi-
nal space and the embedded space will be minimized by gradient
descent.

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|i log

(
p j|i
q j|i

)
(4)

Similar to t-SNE, UMAP6 is a non-linear dimensionality re-
duction technique. The UMAP algorithm has its foundations in
Riemannian geometry. The Uniform Manifold Approximation
and Projection (UMAP) algorithm and t-SNE both create a high-
dimensional representation of the data, a 2-dimensional repre-
sentation of the data, and then optimize the 2-dimensional em-
bedding to be as similar to the high-dimensional representation
as possible. In t-SNE this similarity-representation is the Kullback-
Leibler divergence, while in UMAP this representation is a fuzzy
simplicial complex; this fuzzy simplicial complex is used to learn
the manifold structure of the high-dimensional data to be pro-
jected. This fuzzy simplicial complex can be understood as a
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weighted graph where edge weights represent the likelihood that
two points are connected. The simplicial complex is defined by
spheres of radius r extending from each point. In this graph,
points with overlapping spheres are considered connected. How-
ever, the selection of this radius is not arbitrary. If the radius is too
small there will be few connections in the graph representation of
the data, resulting in small isolated clusters in the 2-dimensional
embedding of the data. If the radius r is too large, unrelated data
points will have connections between them and a meaningful em-
bedding cannot be created. An appropriate radius r can easily be
found in the ideal case when the data is uniformly distributed on
the high-dimensional manifold, however, this is the ideal case.
It is often the case that data is undersampled in some regions,
and oversampled in other regions. Furthermore, this data is of-
ten noisy. The UMAP algorithm overcomes this issue by assuming
that the data is uniform distribution on the manifold and assum-
ing that the space expands or contracts where data is sparse or
dense, respectively. To realize this change in the local metric of
distance in practice, the radius r extending from each point is
set individually, thus approximating a local metric of distance per
point. As mentioned, the local notion of distance is defined by
the density or sparsity of data in a particular area of the mani-
fold. The radius is set as the distance between a point and its
nth nearest neighbor. This technique results in an approximation
of the manifold structure of the high dimensional data that pre-
serves global structure in the data. Regarding the “fuzziness” of
the simplicial complex and the weight of these connections, the
UMAP algorithm decreases the likelihood of connection as the
radius is extended. Finally, to ensure the local structure is pre-
served the algorithm requires that each point must be connected
to at least its 1st nearest neighbor.

For both t-SNE and UMAP, once a polygonal embedding of a
barycentric design space is generated for a system with a specific
dimensionality and resolution, it can be reused for other design
spaces of the same dimensionality and resolution. For instance,
an embedding created for the Co-Cr-Fe-Ni-Mn system sampled at
5 at.% could be applied to the W-Re-Ta-Nb-Hf system also sam-
pled at 5 at.%. However, if one wishes to project an alloy space
sampled at 2 at.% and only has an embedding at 5 at.% (of the
same dimensionality), a machine learning model could be trained
to interpolate the x and y coordinates of the existing projection for
the new resolution. However, in light of affine projections, these
points are moot as the affine projection method is able to project
design spaces sampled at non-uniform intervals to 2D.

2 Comparison of DRAs
To create an embedding that encompasses the entire alloy space,
we use a similar method for both tSNE and UMAP. We grid
sample compositions from the MPEA space to generate a hyper-
tetrahedron of compositions. This means that the n-dimensional
MPEA composition space is sampled at uniform increments, in-
cluding unary, binary, up to and including (n + 1)-nary. This
hyper-tetrahedron of compositions is then processed by the tSNE
and/or UMAP algorithm, projecting the high dimensional com-
position space to 2D. For a 2D composition space (ternary), an
ideal 2D embedding is an equilateral triangle. A 3D composition
space (quaternary) should have a square 2D reference embed-

ding, and a 4-dimensional embedding (quinary) should resemble
a pentagon, and so forth.

tSNE DRA can also embed a hypercube similarly to UMAP, as
shown in Figure 1. In the case of tSNE, the resultant projections
also result in polygonal compositional embeddings. Depending
on the perplexity and n_iter parameters chosen (analogous
to UMAP’s nearest neighbors and number of epochs), it embeds
high dimensional composition spaces into regular polygons of n
sides or concave polygons with 2n sides. These tSNE projections
can be interpreted in the same way as UMAPs, i.e. alloys mapped
near vertices are rich in a particular element, alloys on the edge
connecting two vertices are rich in those 2 elements, and alloys
in the central regions are chemically complex.

However, tSNE has a significant shortcoming. tSNE tends to
skew compositions with a majority constituent element towards
the edges, resulting in overcrowding, as shown in Figure 1. While
UMAP also skews compositions with a majority constituent ele-
ment towards the edges, it better preserves both local and global
structures. This allows chemically complex alloys rich in a par-
ticular element to be plotted closer to central regions resulting
in less overcrowding. UMAP’s resistance to overcrowding is well-
documented and is attributed to its superior preservation of struc-
ture7.

Barycentric design spaces for alloy compositions form sim-
plices. For example, in the case of binary alloys, this corresponds
to a Gibbs triangle, while for ternary alloys, it corresponds to a
Gibbs tetrahedron, which is a 3D simplex. Importantly, the en-
tire n-simplex, including its interior, constitutes a well-defined
manifold. For instance, a 2D simplex (triangle) is a 2-manifold
embedded in 3D space, and a 3D simplex (tetrahedron) is a 3-
manifold embedded in 4D space8–10. In higher dimensions, the
simplex similarly spans an n-dimensional manifold embedded in
an (n+1)-dimensional Euclidean space.

Because simplex are concave polytopes and concave polytopes
can be decomposed using simplicial complexes (a mesh of smaller
simplexes) by definition11, they are particularly ammenable to
projection with UMAP. The UMAP algorithm6 employs simpli-
cial complexes to approximate the structure of high-dimensional
data. Specifically, UMAP constructs a fuzzy topological represen-
tation by building a simplicial complex, first forming local neigh-
borhoods and then connecting them via shared simplices to cap-
ture the global data manifold. In our case, UMAP is applied to the
high-dimensional simplex of alloy compositions, which allows the
algorithm to preserve both local and global structures during the
dimension reduction process. Importantly, UMAP leverages the
inherent manifold structure of simplices (n-dimensional objects
embedded in (n+1)-dimensional Euclidean space), embedding
the n-dimensional compositional data into a lower-dimensional
space while retaining topological relationships.

When applying UMAP to the high-dimensional simplex of al-
loy compositions, the algorithm works by preserving the local dis-
tances and relationships between neighboring points while pro-
jecting the n-dimensional manifold onto a 2D plane. UMAP ex-
ploits the inherent manifold structure of simplices, as they are
n-dimensional manifolds embedded in (n+1)-dimensional Eu-
clidean space6.

When hyperparameters are tuned correctly, in the 2D projec-
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tion produced by UMAP, the vertices of the simplex, which cor-
respond to pure elementals, are mapped such that the distances
between them are maximized, often resulting in a regular polyg-
onal shape. Although the original high-dimensional space is fully
n-dimensional, UMAP "flattens" this manifold into a 2D represen-
tation while preserving the relative distances between composi-
tions. This enables a clearer visual interpretation of the relation-
ships between different compositions and their correlations with
material properties.

Linear DRA techniques, such as PCA, do not project barycen-
tric design spaces in a symmetric, geometric manner that resem-
bles a polygonal embedding. As shown in Figure 1, while PCA
has some clustering ability, it does not intuitively embed compo-
sitions in a polygonal embedding like tSNE and UMAP and affine
projections. Specifically, PCA fails to capture global structure in
the data. By global structure, we mean how clusters or groups
of data points that are far apart in high-dimensional space are ar-
ranged relative to each other in the lower-dimensional projection.
The global structure in a barycentric design space is well repre-
sented by a polygon, as unaries should be separated as much as
possible, and higher entropy alloys can be represented in central
regions.

PCA cannot represent this nonlinear global structure. In con-
trast, UMAP preserves both local structure (i.e., relationships be-
tween neighboring points) and global structure (i.e., the spatial
arrangement of clusters relative to one another). UMAP, for in-
stance, embeds chemically complex alloys in the center of the
projection while alloys with a majority element are positioned to-
ward the corners, creating a geometrically intuitive 2D map that
is particularly useful for alloy design spaces.

These points about DRAs are moot however, as upon review
we have found that affine projections, as described in the main
manuscript, accomplish a more regular polygonal embedding at
a significantly lower computational cost. However, we reiterate,
the method of projecting the high-dimensional barycentric alloy
spaces is just a means to an end. The contribution of this work
lies in how these projections are used for alloy design.

3 Information Loss and Overcrowding in DRAs
No projection is without some information loss, wether it be
tSNE, UMAP, or affine projection. Therefore there will always
be some degree of overcrowding present in a 2D projection of a
high dimensional compositions space. DRAs are only approppri-
ate for plotting major alloying constituents i.e. alloying agents
that are present in the alloy at concentrations near 5 at.%. When
considering the effect of minor alloying agents such as Boron, Sil-
icon and Carbon that generally appear in alloys at concentrations
below 1 at.% these projection techniques are not appropriate as
the effect of the major alloying components will over shadow the
effect of any minor alloying component. To better visualize the
effect of minor alloying compositions we recommend using mul-
tiple projections as shown in Figure 2. In this Figure 2a all points
represent an alloy, but all points have 0.5% carbon added. In Fig-
ure 2b all points represent an alloy but all points have 1 % carbon
added.

4 Topology of Alloy Design Spaces
Topologically, an n-simplex is homeomorphic to an n-dimensional
ball10. While this may not appear topologically interesting on its
own, the topology can become more complex when constraints
are applied. For example, consider applying a constraint that re-
stricts the design space shown in Figure 3. Any alloy that does not
have a single BCC phase at 2000◦C is considered infeasible. Ad-
ditionally, applying a solidification range constraint, where only
alloys with a solidification range narrower than 100 K are consid-
ered feasible, further restricts the design space. These properties
were predicted using Thermo-Calc’s TCHEA6 database.

As a result, multiple feasible regions emerge that are not topo-
logically connected within the design space—there is no path to
incrementally move from one feasible region (or ‘island’) to an-
other via small composition changes (e.g., 5 at.% increments,
which is the resolution of this design space). This discontinu-
ous topology has important implications for functionally graded
material design12, which is a topic of ongoing research.

For instance, the diagram highlights that 13 V-rich alloys form
a connected set that can be compositionally graded to one an-
other. Similarly, a larger set of feasible alloys can be composition-
ally graded within their region, though they remain isolated from
other parts of the design space.

Therefore, while the topology of the entire barycentric space
is homeomorphic to an n-ball, the feasible space within it can ex-
hibit more complex, disconnected topologies. Representing these
topologies on an interpretable 2D projection helps us intuitively
understand the connectivity within the design space and its de-
pendence on alloy chemistry.

5 Visualizing Databases
High entropy alloys are perhaps the material class most amenable
to UMAP construction as their definition of disorder naturally
lends them to a visual capable of integrating several elements.
The HEA space is so large that any materials discovery project
needs to apply judicious constraints to the design space for prac-
ticality. A sensible starting point is to identify a crystal structure of
interest, as that will dictate the possible constituents, mechanical
procedures like grinding and polishing, and reasonable properties
of interest. Unique to HEAs is its definition based on atomic frac-
tions. A HEA design project almost certainly carries atomic frac-
tion maximums at its onset. UMAP embeddings are well suited
for overlaying several sets of data points, each of which that are
subsets of the previous, based on some project constraint.

Using the database curated by Borg et al.14, a selection of BCC
HEAs was identified for a UMAP embedding of the 8-element Al-
Ti-V-Zr-Nb-Mo-Hf-Ta HEA space. In addition, a list of example el-
emental maximums was applied to the composition space. For ex-
ample, candidate alloys in Figure 4 cannot have Zr present above
40 at.%. Alloys that pass these compositional constraints are
shown in light grey whereas alloys that fail these constraints are
shown in dark grey. In Figure 4, experimental compressive yield
strength data is plotted on top of an AS-UMAP. The color-axis
represents the measured yield strength. This case study show-
cases a single objective problem: the maximization of ultimate
strength under compression. With multiple objectives, an array
of materials becomes relevant as they dominate all others, the
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Fig. 1 Alternative embeddings: Two PCA examples with different seeds; two tSNE examples with varying perplexity and iterations. Each dot in these
projections represent a unique composition. If a dot is colored it signifies the concentration of a particular eleement is ≥ 50 at.%.

Fig. 2 In order to view the effect of minor alloying agents or other factors such as temperature, multiple projections can be used. a) The FeCrCoNi
alloy space sampled at 5 at.% with 1 at.% C additions in each alloy. b) The FeCrCoNi alloy space sampled at 5 at.% with 0.1 at.% C additions in
each alloy.

Fig. 3 A affine projection of the WNbTaMoVHf alloy space with 2
constraints applied to it: 1) Alloys must have a single BCC phase at
2000◦C and 2) Alloys must have a solidification range narrower than
100K. These constraints are derived from Ref 13.

Fig. 4 BCC HEAs adapted from the Borg et al. dataset, plotted on
a UMAP embedding for the Al-Ti-V-Zr-Nb-Mo-Hf-Ta elemental space.
The constrained dataset has maximum atomic fractions according to
the annotations near each element vertex. Experimental data is sorted
by color according to ultimate strength (MPa) from room temperature
compression tests.
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Pareto front of the dataset. Using UMAPs similar to Figure 4, one
can showcase where the Pareto points are over multiple iterations
of experiments. Figure 4 also provides a visual for the degree to
which literature data violates the self-imposed constraints for a
project, such as a maximum atomic fraction for an element that
would easily oxidize.

In Figure 4, a database is used to provide information for an
existing project. It provides a literature reference in its chosen ob-
jective manifold that the project may or may not intersect. What
if we want to inform a project at the design level based on ex-
isting databases? This is already a common strategy amongst
physics disciplines: cataloging existing experiments across multi-
ple teams to determine which regions can be of scientific interest
merely by virtue of being unexplored. UMAPs can be an excellent
tool for these works - one such example is in the field of shape
memory alloys.

Shape memory alloys (SMAs) have seen a large movement
towards phase engineering studies, ever since a link was derived
between their hysteresis and their crystallographic parameters;
by utilizing a formal approach to SMAs with a basis in linear al-
gebra, authors have been able to craft SMAs with abnormally long
fatigue lives15. However, current approaches to find new ‘near-
zero hysteresis’ SMAs are dependent on existing literature16. The
large number of compositions and possible tertiary elements can
make it difficult to determine which regions of SMA research are
lacking in experimental data. Furthermore, a notable roadblock
in high-temperature SMA (HTSMA) research has been the lack
of experimental data in certain alloy systems, due to the difficult
nature of some of the tests. Both of these systems could be sup-
plemented with UMAP visualizations, to gauge a formal literature
assessment of the field (beyond what is typically limited to long
review papers or supplemental tables of compositions).

In Figure 5, high-temperature SMAs (HTSMAs) are plotted as
an example subset of SMA research. Nine commonly seen ele-
ments in HTSMA research were applied to a UMAP embedding
based on reported transformation temperatures from a compre-
hensive HTSMA review17. Figure 5 (top) includes two databases
of reported HTSMAs. A select number of SMAs have been anno-
tated with their elemental subset, a note of the author, and the
year of publication. Following the tutorial for UMAPs in Methods,
a reader can recognize probable regions for compositions on the
graph despite not possessing a database of direct compositions.
Ti-Ni-X alloys are in a cluster, a binary Ti-Pd example is directly
between the Pd and Ti vertices, an HTSMA primarily consisting
of uranium is directly by its vertex, and an HTSMA with 5 con-
stituents is closer to the center of the AS-UMAP than any of the
other data points.

Note that the positions of components around the vertices are
completely arbitrary and selected by the author. UMAP generation
provides a random solution to the embedding problem built on a
specific seed. For typical asymmetric embeddings, this arrange-
ment would have to be changed at the embedding level (e.g. an
author would have to run the script multiple times with differ-
ent seeds to obtain one they desire aesthetically). However, in
these types of case studies involving atomic fractions, it makes
more sense to plot the entire phase space of possibilities (given
a maximum atomic resolution). This results in every column of

Fig. 5 High-temperature shape memory alloys embedded in a UMAP,
adapted with data from Karaman et al. and Canadinc et al. (top) The
space of Ti-Ni-Zr-Nb-Ru-Pd-Hf-Ta-U HTSMAs with highlighted authors.
(bottom) Regions of compositions similar to known alloys in literature
are highlighted, and author data points are color-coded according to their
three regimes of austenite-martensite transformation temperatures.

data being symmetric i.e. every composition from 0% to 100%
is somewhere on the graph. After the UMAP embedding has fin-
ished, if an author would rather change vertices, they can simply
rename and rearrange the columns to their liking. A study specif-
ically focusing on Ni-Ti, for example, might intentionally choose
to separate those vertices to better visualize small changes away
from a Ti50Ni50 composition.

In Figure 5 (bottom), the HTSMAs have been categorized by
their austenite-martensite transformation temperatures. In addi-
tion, data points within the UMAP embedding have been lightly
colored within a certain distance of known experimental data, to
accentuate compositional regions that are lacking in experiments.
Note that this distance is Euclidean in the UMAP embedding, using
only x and y coordinates and not an Euclidean distance calculated
from the dimensionality of the compositions themselves. This vi-
sualization has the large advantage of revealing unexplored re-
gions even accounting for additional elements that may not be
part of the original dataset.

Figure 5 illustrates several unexplored regions in the SMA
design space that authors could pursue. A sufficiently large
database of HTSMAs over the past 25 years could be split up
into 3 temperature regions across the same UMAP embedding
(removing the color bar and using 3 graphs). This would pro-
vide a multidimensional view of composition, status in literature,
transformation temperature, and a property of choice such as hys-
teresis width in (°C)—like that shown in Figure 4—a very efficient
conflagration of information at a glance.
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Fig. 6 Shape memory alloys embedded in a UMAP including a predictive
model for middle transformation eigenvalues, adapted from Zadeh et
al. (left) The SMA space with experimental data points overlayed on
top of model predictions. (right) Values of Hysteresis widths for those
experimentally reported SMAs.

Figure 6 (left) uses a 7-element UMAP representation of NiTi
SMAs with several common tertiary additions. In this example
the elements’ vertices were intentionally separated. Experimen-
tal data points (the stars) have been plotted against a background
of model approximations of austenite-martensite transformation
matrix eigenvalues (the technical indicator for low hysteresis),
taken from a database of Shape Memory Alloys18. Like before,
it is readily apparent which regions of the embedding are lacking
in experimental data. In this example, a UMAP provides a novel
view of the model’s predictions in conjunction with experimental
data. Each of the modeled regions in this case overlap, due to
the nature of the embedding. Figure 6 (right) is a similar UMAP
with reported hysteresis values of the same experimental SMAs.
The strategy in the UMAPs in Figure 6 for SMAs could equally
be applied to copper-based SMAs, iron-based SMAs, manganese-
nickel-based magnetic SMAs, or simply reduced portions of the
extensive NiTi-based SMA literature, focusing on tertiary addi-
tions of interest.

6 Visualizing Combinatorics: Polymers
Determining the shape or conformation of polymers has been piv-
otal to their development for applications; this is typically com-
bined with molecular weight measurements from chromatogra-
phy and radii of gyration from light scattering experiments19 20.
As shown in Methods, the vertices of a UMAP are inherently unre-
lated to their materials science concept. They are simply fractions
of a whole: this makes the visualization readily accessible to dis-
tributions of data, like that of particle sizes, grain sizes, or in this
case, molecular weight spreads.

A simple expression for the radius of gyration based on the
freely jointed chain model for linear polymers is as follows:

< Rg >=

√
1
6

Nb2 (5)

One can then express this as a root mean square of the radius
of gyration for a distribution of polymer chains in solution by
summing over their fractional occurrences. As an example, frac-
tionated polyethylene, composed of 6 monodisperse fractions,
makes up a solution with molecular weights of 10,000 through
60,000 (g/mol). The vertices on a UMAP would then corre-
spond to a completely monodisperse solution, utilizing the equa-
tion above, with increasing values of Rg with increasing molec-

ular weight. What isn’t as obvious at a glance is how this value
would change as the distribution does. Using these 6 molecular
weights and a resolution of 5% fractions, Figure 7 shows how the
root mean square radius of gyration changes with modifications
to the distribution. For the purposes of this model, the persistence
length is equal to the length of the monomeric unit (0.154 nm,
28 g/mol).

Fig. 7 A polyethylene polymer composed of 6 monodisperse fractions,
with root mean square radii of gyration calculated across its distribution
of molecular weights. The data points at the vertices are equivalent to
the calculation of Rg for a single chain using that molecular weight.

In cases like these where the visual of a distribution is all
that’s desired, the ability to precisely label the vertices becomes
less pivotal, making this an amenable application for UMAPs of a
hypercube with a large number of dimensions, approaching the
shape of a circle. Rather than label the monodisperse fractions
explicitly, a gradient of molecular weights with radial tick marks
could describe many types of polymers. Furthermore, soft matter
authors could express properties in terms of other models that
better represent polymers with cross-linking or other conformal
geometries, via common modifications to the freely jointed chain
model21. Otherwise identical distributions could be plotted side-
by-side, with varying chain models, providing insight into how
the choice of model affects predictions of a property over various
molecular weight distributions.
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