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Molecular Dynamics Simulations

Thermal molecular dynamics (MD) simulations were performed using the Atomic Simulation Environment 
(ASE)1 package with the HIP-NN-TS2 model, trained on the ANI-1x dataset3, as the calculator. Two systems 
— alanine dipeptide (AD) and azobenzene (AZ) — were studied to evaluate the accuracy of machine 
learning interatomic potentials (MLIPs).

For AD, four independent MD runs were initiated from four known isomers - C5, C7ax, αR and αL - 
sourced from extensive theoretical study.4 Each simulation was conducted with a timestep of 2 fs for 
200,000 steps at 300 K, resulting in trajectories of 400 ps each. Combined, these runs yielded a total 
trajectory length of 1600 ps. As the MD simulations were run near room temperature, neighboring 
snapshots showed minimal differences. To reduce redundancy, every 80th step was selected, resulting in 
a final set of 10,000 random snapshots that broadly sampled the potential energy surface (PES). The 
Ramachandran plot depicting this sampling is shown in Fig S1A.

For AZ, two MD simulations were conducted for the cis and trans isomers using identical 
conditions: T = 300 K, timestep = 2 fs, friction coefficient = 0.1/fs, and 500,000 steps per simulation. Each 
trajectory spanned 1000 ps, amounting to a total trajectory length of 2000 ps across both runs. Every 
100th step was retained to create a test set of 10,000 snapshots. Despite these long trajectories, most 
configurations remained clustered around cis- and trans- isomers, as AZ has high thermal activation 
barriers for isomerization (Fig S1B).
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Figure S1. A. Alanine dipeptide (AD) structure and relevant dihedral angles φ and ψ. Ramachandran plot is based on 
the 10k configurations sampled from thermal MD trajectories of 1600ps. B. Azobenzene (AZ) structure with relevant 
dihedral angle ω highlighted. Histogramm depicts the frequency of visiting different ω values. As expected, thermal 
MD cannot sample rotational isomerization mechanism at 300K even at 2000ps combined trajectory. 

Recalculation 10K MD Snapshots Using Various Methods

The selected snapshots for AD and AZ were recalculated using four methods:

1. Vanilla ANI-1x potential implemented in TorchANI5.

2. Density Functional Theory (DFT) at the ωB97X/6-31G(d) level.

3. Sage2.0.2 potential from OpenFF6,7.

4. Amber14 force field8 through General Amber Force Field (GAFF)9

HIP-NN-TS outperformed all other methods in predicting energies and atomic forces compared to DFT 
references (Figure 1 and Figure S2).



Figure S2. Evaluation of atomic forces (kcal/mol/Å) of 10k conformers taken from  thermal MD trajectories for 
alanine dipeptide at 300K (see Fig S1 for chemical space coverage). Density correlation plots for atomic forces 
predictions by various models (MLIPs and  FFs) against each other. A. MLIPs vs reference DFT. B. FFs vs DFT. C. MLIPs 
and FFs against each other. HIP-NN-TS demonstrates better correlation for atomic forces predictions than ANI-1x in 
line with the lower RMSE and MAE for both energies and forces (Table 2). 



DFT Calculations

All DFT calculations for MD snapshots for both AD and AZ were performed using Gaussian0910at the 
ωB97X/6-31G(d)11,12 level with tight SCF convergence criteria to align with the ANI-1x dataset. For AZ:

● The closed-shell DFT trajectory was computed by manually optimizing the transition state (TS) 
using the Berny algorithm (opt=TS) with suppressed curvature tests (calcfc, noeigentest). A 
smooth reaction coordinate near the TS was constructed via internal reaction coordinate (IRC) 
integration without recorrection steps. Default settings included a step size of 0.1 Bohr and 
recomputation of the Hessian every ten steps for a total trajectory length of up to 300 steps.

● The left and right shoulders of the trajectory—descents to cis and trans isomers—were 
determined by further optimizing final IRC states with Hessian calculations at each step for 
smoothness.

● Open-shell trajectories were built following a similar protocol but employed unrestricted 
broken-symmetry DFT with a default orbital shift (VShift) of 0.1 mHartree and HOMO-LUMO 
mixing. Wavefunction analysis confirmed TS instability (stable=opt). 

● The expectation value of the spin-squared operator ⟨S2⟩ was analyzed along the open-shell 
rotational trajectory. Near the cis and trans isomers, ⟨S2⟩ values were close to zero, consistent 
with a closed-shell singlet ground state. However, at the TS, ⟨S2⟩ increased to 1.0, indicating 
significant spin contamination and an open-shell singlet character due to the biradical nature of 
the system. This behavior aligns with the expected electronic structure changes during 
azobenzene isomerization via the rotational pathway.

Classical Force Fields

Amber14

Many classical force fields (FFs) are primarily parameterized to work with biomolecules and are designed 
to map arbitrary molecules to known residues. To overcome this limitation and apply the Amber14 force 
field to alanine dipeptide (AD) and azobenzene (AZ), we used the Generalized Amber Force Field (GAFF) 
as implemented in the OpenMM13 and OpenFF packages.

Single-point energies for each molecule were computed using the OpenMM package with the 
Amber14-all force field. The workflow began by reading an OpenFF Molecule object from an SDF file, after 
which partial charges were assigned using the MMFF94 charge scheme. To prepare the system, a 
SMIRNOFF template generator was employed to map the molecule’s topology into the Amber14 
parameterization. This setup enabled the calculation of single-point energies and atomic forces for 10,000 
snapshots of isolated molecules generated during MD simulations.

For the rotational trajectory of AZ isomerization, this approach encountered challenges due to 
the presence of radicals near transition states. GAFF, as implemented in OpenFF/OpenMM, requires 
explicit connectivity and does not permit radicals. To address this limitation, we used SDF files generated 



on-the-fly by OpenBabel for each configuration and set the bond order of the N=N bridge to 2 using the 
OpenBabel API along the entire trajectory. This adjustment ensured that bond connectivity remained 
consistent, even when the π-component of the N=N bond was broken.

Sage 2

The OpenFF initiative provides force fields explicitly crafted for small molecules, such as Sage2.0.2, which 
uses a SMIRNOFF template generator to map molecular coordinates and connectivity to known SMIRKS 
patterns14. We employed  the latest Sage2.0.2 force field to calculate energies and atomic forces for 
10,000 snapshots generated during MD simulations of AD and AZ, as well as for AZ isomerization 
processes. The procedure for applying Sage2.0.2 followed the same steps outlined above for Amber14.

Timings for energy + atomic forces evaluations

device evaluations/s parameters

HIP-NN-TS GPU 1316 batch size = 512
HIP-NN-TS CPU 139 batch size = 2048
ANI-1x GPU 2221 batch size = 10000
ANI-1x CPU 746 batch size = 10000
Sage CPU 64 48 threads
Amber CPU 47 48 threads

Table S1. Timings for energy+atomic forces evaluations of employed methods. GPU computations have a green 
background. Amber14 and Sage 2.0.2 calculations in OpenMM/OpenFF were parallelized using a Python 
multiprocessing module with 48 threads. All calculations were performed on a single computational node with 
following specifications: 128 GB RAM, 2x16 cores AMD Rome Epyc 7282 CPU (2.8 Ghz) and Nvidia RTX A6000 GPU 
with 48 GB VRAM. Per user agreement, timings are not provided in the table but could be checked in DFT logs 
uploaded to Zenodo. 
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