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Supplementary Note 1. Optimization process in MD simulation 13 

In the optimization process, the polymer systems were initially simulated with 14 

deactivated electrostatic interactions, while a 0.300 nm cutoff was implemented for Lennard-15 

Jones interactions. The system was first subjected to a simulation under the NPT (constant 16 

number of atoms, pressure, and temperature) ensemble at 100 K for 2 ps, with a 0.1 fs timestep 17 

applied. The system was then gradually heated from 100 K to 1000 K over 1 ns under the NVT 18 

ensemble, followed by a simulation under the NPT ensemble for 50 ps at 0.1 atm and 1000 K. 19 

This stage was intended to further relax the structure and ensure the complete eradication of 20 

close contacts. Subsequently, the system underwent further simulation under NPT at 1000 K 21 

for 1 ns, during which the pressure was permitted to rise from 0.1 atm to 500 atm, with a 1 fs 22 

timestep and SHAKE constraints 1 implemented. The SHAKE constraint facilitates the usage 23 

of a larger 1 fs timestep in the presence of lightweight hydrogen atoms within the system. 24 

Throughout these stages, the deactivation of electrostatic interactions and the use of a range of 25 

ad-hoc simulation procedures were adopted to eliminate close atomic contacts, a vital measure 26 

to prevent system disruption in subsequent simulation steps.  27 

These simulation procedures are collectively referred to as the initialization process. 28 

The obtained polymer system was then annealed with activated electrostatic interactions, using 29 

the PPPM (Particle–Particle–Particle–Mesh)-based Ewald sum method for computation. A 30 

0.800 nm cutoff was used for the Lennard-Jones interactions. In this annealing phase, the 31 

system was first run in an NPT ensemble at 1 atm and 1000 K for 2 ps using a 0.1 fs timestep. 32 

Subsequently, it was cooled from 1000 K to 300 K at a rate of 140 K/ns, under an NPT 33 
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ensemble at 1 atm. This was followed by another NPT run at 300 K and 1 atm for 8 ns, utilizing 34 

a 1 fs timestep and SHAKE constraints to achieve the final amorphous state. Such a procedure 35 

has been shown to yield converged thermal conductivity (TC) results with NEMD 2.  36 

 37 

Supplementary Note 2. Gaussian process regression model 38 

A GPR model is a nonparametric Bayesian method that models the distribution over functions. 39 

In a GPR framework, we assume the observed data y consists of a latent function 40 

𝑓(𝒙)	 corrupted by independent and identically normally distributed noise ϵ , where ϵ ∼41 

𝑁(0, σ2). The function f is modeled as a Gaussian process, meaning that any finite set of 42 

function values follows a multivariate normal distribution with a specified mean function m(𝒙) 43 

and a kernel (covariance) function 𝑘(𝒙, 𝒙!) . The kernel encodes the similarity between 44 

different input points. Given a dataset D, the joint distribution over the observed outputs y and 45 

the function values at a new point 𝒙∗ is: 46 

.
	
	
	
𝑦

𝑓(𝐱∗)

	
	
	
1 ∼ 𝒩 3

	
	
	
.
	
	
	
𝑚(𝐗)
𝑚(𝐱∗)

	
	
	
1 , .
	
	
	
𝐾(𝐗, 𝐗) + 𝜎#𝐼 𝑘(𝐗, 𝐱∗)
𝑘(𝐱∗, 𝐗) 𝑘(𝐱∗, 𝐱∗)

	
	
	
1
	
	
	
: 47 

Here, 𝐾(𝑿, 𝑿)  is the covariance matrix between the training points, and 𝑘(𝑿, 𝒙∗)  is the 48 

covariance vector between the training points and the new point. Using Bayes' rule, we can 49 

derive the posterior distribution for the predicted mean 𝝁∗(𝒙∗) and the variance 𝝈∗𝟐(𝒙∗), given 50 

by: 51 

𝜇∗(𝐱∗) = 𝑚(𝐱∗) + 𝑘(𝐱∗, 𝐗)%[𝐾(𝐗, 𝐗) + 𝜎#𝐼]&'(𝑦 − 𝑚(𝐗)) 52 

𝜎∗#(𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝑘(𝐱∗, 𝐗)%[𝐾(𝐗, 𝐗) + 𝜎#𝐼]&'𝑘(𝐗, 𝐱∗) 53 
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For the kernel function 𝑘(𝒙, 𝒙!), we use a Rational Quadratic kernel combined with a White 54 

kernel to account for noise in the observations. The Rational Quadratic Kernel is chosen 55 

because of it can model both small- and large-scale variations in the data, and the White Kernel 56 

is chosen to account for observational noise, ensuring that the model is robust to noisy data and 57 

does not overfit small fluctuations due to measurement errors. The combined kernel function 58 

is defined as: 59 

𝑘(𝒙, 𝒙!) = (1 +
‖𝒙 − 𝒙!‖#

2𝛼 ⋅ 𝑙#
)&( + 𝜎# ⋅ 𝛿(𝒙 − 𝒙!) 60 

where, ‖𝒙 − 𝒙!‖ is the squared Euclidean distance between input points 𝒙 and 𝒙!, α controls 61 

the relative weighting of large and small-scale variations in the data, l is the characteristic 62 

length scale, determining how quickly the function varies with the input. 𝜎# represents the 63 

noise variance, and 𝛿(𝒙 − 𝒙!) is the Kronecker delta function, which ensures that noise only 64 

affects the diagonal of the covariance matrix. 65 

 66 

Supplementary Note 3. Bayesian optimization process 67 

Fig. S1 shows the parity plots of each iteration and GPR prediction & uncertainty on the 68 

PoLyInfo database after iteration 2. For each iteration, the newly incorporated data are marked 69 

by red circles. The predictive accuracy, estimated by the R2, is above 0.8 in all iterations. The 70 

upper-bound GPR-predicted TC increases overall and reaches 1.1358 W/m·K in iteration 8. 71 

The amount of polymers that have GPR-predicted TC over 1.0 W/m·K increases from 0 in 72 

iteration 2 to 485 in iteration 8. Table S1 provides detailed information, including PID, MD-73 

labeled TC and SMILES, of the 35 BO-recommended polymers.  74 
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Fig. S1 | GPR model performances from iteration 3 to iteration 8. Parity plot between GPR-76 

predicted TC versus MD-labeled TC and GPR-predicted TC mean and uncertainty of each 77 

polymer in the PoLyInfo database in a iteration 3, b iteration 4, c iteration 5, d iteration 6, e 78 

iteration 7, f iteration 8, with the five new BO-guided data marked by red circles.  79 

Table S1. MD-labeled TC of 35 BO-guided polymers and their SMILES 80 

 81 

SmilesTC (W/m·K)PIDIteration
*c1ccc(Oc2ccc(-c3nc4ccc(Oc5ccc(N6C(=O)c7ccc(C(c8ccc9c(c8)C(=O)N(c8ccc(Oc%10ccc%11nc(*)c(-
c%12ccccc%12)nc%11c%10)cc8)C9=O)(C(F)(F)F)C(F)(F)F)cc7C6=O)cc5)cc4nc3-c3ccccc3)cc2)cc10.348P432586

Random
*/C(=N\c1ccccc1)N(*)c1ccccc10.2P460108

*C1CCC1*0.223P010100
*CC(*)(CC(=O)OCCCCCC)C(=O)OCCCCCC0.238P040310

*CCCCNC(=O)CCCCCCCC(=O)NCCCCNC(=O)C(=O)N*0.521P100773
*CCCCCCCCCCCCNC(=O)NCCCCCCCCCCNC(=O)N*0.801P120025

Iter_2
*CCCCCCCCCCCCNC(=O)CCCCCCCCC(=O)NCCCCCCCCCCCCNC(=O)C(=O)N*0.726P400028

*CC(*)(C)C(=O)NCCCCCCCCCCC(=O)NCCCCCCCCCCC(=O)OC0.525P340177
*CC(*)(C)C(=O)NCCCCCCCCCCC(=O)NCCCCCCCCCCC(=O)O0.527P340179

*CCCCCCNC(=O)C(CCCCCCCCCCCCCCCCC)C(=O)N*0.605P100719
*CCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCC(=O)N*0.926P100029

Iter_3
*CCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCCCCCC(=O)N*0.741P100235
*CCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCCCCCC(=O)N*0.726P100238

*CCCCCCCCCCCCCCCCCCCCC(*)COCCOCCOCCOCCOCCCCCCCCCCCCCC0.743P332306
*CCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCCCC(=O)N*1.086P402128
*CCCCCC(=O)NCCCCCCNC(=O)CCCCCOC(=O)CCCCC(=O)O*0.517P090293

Iter_4
*CCCCCCCCOC(=O)CCCCCNC(=O)CCCCC(=O)NCCCCCC(=O)O*0.454P090368

*CCCCCCCCCNC(=O)CCCCCCCCC(=O)NCCCCCCCCCNC(=O)C(=O)N*0.709P100747
*CCCCCCCNC(=O)CCCCCCCCC(=O)NCCCCCCCNC(=O)C(=O)N*0.651P100809
*CCCCCCCCNC(=O)CCCCCCCCC(=O)NCCCCCCCCNC(=O)C(=O)N*0.693P400027

*CCCCCCCCCCCCCCCCCCCCOC(=O)CCCCCCCC(=O)O*0.888P090253

Iter_5
*CCCCCCCCCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCC(=O)N*1.136P100030

*CCCCCCCCCCCCCCCCCCCCCC(=O)N*0.919P100696
*/C=C(/*)CCCCCCCCCCCCCCCCCCCCC(=O)O0.741P332076

*CCOCCOCCOCCOCc1cc(CO*)cc(OCCCCCCCCCCCCCCCCCC)c10.593P372661
*/C=C(/*)C#CCCCCCCCCCCCCCCCCCCCCC(=O)O0.728P332081

Iter_6
*CCCCCCCCC(=O)NCCc1ccc(CCNC(=O)CCCCCCCCS*)cc10.689P080116
*CCCCCCCCCCCCCCCCCCNC(=O)CCc1ccc(CCC(=O)N*)cc10.717P100124
*CCc1ccc(CCNC(=O)CCCCCCCCCCCCCCCCC(=O)N*)cc10.658P100063
*CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCC(=O)O*0.948P390132

*CCCNC(=O)CNC(=O)C(NC(=O)C(Cc1ccccc1)NC(=O)CCCCCCCCC(=O)NC(Cc1ccccc1)C(=O)NC(C(=
O)NCC(=O)NCCCOCCOCCO*)C(C)C)C(C)C0.429P372375

Iter_7
*CCCCCCCCCCCCNC(=O)CCCCCCCCCCCCC(=O)N*1.036P402222

*CCCCCCCCCCCNC(=O)CCCCCCCCCCCCCCCCCCC(=O)N*1.09P402250
*CCCCCCCCCCCCCNC(=O)CCCCCCCCCCCC(=O)N*0.839P110210
*CCCCCCCCCCCCCCCCCCCCCCOC(=O)CCC(=O)O*0.824P392523

*CC(OC(=O)OC1CCC2(C)C(=CCC3C2CCC2(C)C(C(C)CCCC(C)C)CCC32)C1)C(COC(=O)O*)OC(=O)O
C1CCC2(C)C(=CCC3C2CCC2(C)C(C(C)CCCC(C)C)CCC32)C10.263P450068

Iter_8
*CCCCCCCCNC(=O)CCCCCCCCCCCCCCC(=O)N*0.884P402218
*CCCCCNC(=O)CCCCCCCCCCCCCCCCC(=O)N*0.878P100754

*CC(*)(F)C(=O)OCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F0.135P522013
*c1nc(CCCCCCCC)c(-c2sc(-c3sc(-c4cc(CCCCCCCC)c(*)s4)cc3CCCCCCCC)nc2CCCCCCCC)s10.468P382405
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Supplementary Note 4. Comparative analysis of other ML models   82 

To compare the performance of the GPR model, we test two other popular ML models: random 83 

forest (RF) and gradient boosting regressor (GBR), both of which are insensitive to 84 

dimensionality, so no dimensionality reduction process is performed on both models. Fig. 85 

S2a&d show the parity plot between RF-predicted TC and MD-labeled TC in iteration 1 and 86 

iteration 8. Fig. S2b&e show the parity plot between GPR-predicted TC and RF-predicted TC 87 

in iteration 1 and iteration 8, where R2 are 0.72 and 0.53, respectively. Since neither the RF 88 

model nor the GBR model provides the uncertainty, we only have the predicted value of TC, 89 

as shown in Fig. S2c&f. Similarly, Fig. S2g&j show the parity plot between GBR-predicted 90 

TC and MD-labeled TC in iteration 1 and iteration 8. Fig. S2h&k show the parity plot between 91 

GPR-predicted TC and GBR-predicted TC in iteration 1 and iteration 8, where R2 are 0.64 and 92 

0.52, respectively. The predicted value of TC in iteration 1 and iteration 8 are shown in Fig. 93 

S2i&l. It is noteworthy that with the initial 36 training data, the distributions of the RF and 94 

GBR models in iteration 1 are more similar to the GPR model, where the agreement is more 95 

reasonable than that in iteration 8. With more data incorporated, the R2 of RF-GPR and GBR-96 

GPR decreased instead. It has been validated that the GPR model has accurate predicted TC 97 

values that match the MD simulation, especially for high TC polymers. However, the 98 

boundaries of RF and GBR models are both around 1, which means both RF and GBR models 99 

underestimate the strained polymers TC to some extent (more datapoints are above the gray 100 

dashed line). 101 
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 102 

Fig. S2 | Comparative analysis of RF and GBR models. a Parity plot between RF-predicted 103 

TC and MD-labeled TC in iteration 1. b Parity plot between GPR-predicted TC and RF-104 

predicted TC in iteration 1. c RF-predicted TC of each polymer in the PoLyInfo database in 105 

iteration 1. d Parity plot between RF-predicted TC and MD-labeled TC in iteration 8. e Parity 106 

plot between GPR-predicted TC and RF-predicted TC in iteration 8. f RF-predicted TC of each 107 

polymer in the PoLyInfo database in iteration 8. g Parity plot between GBR-predicted TC and 108 

MD-labeled TC in iteration 1. h Parity plot between GPR-predicted TC and GBR-predicted 109 

TC in iteration 1. i GBR-predicted TC of each polymer in the PoLyInfo database in iteration 1. 110 

a) b) c)

d) e) f)

g) h) i)

j) k) l)
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j Parity plot between GBR-predicted TC and MD-labeled TC in iteration 8. k Parity plot 111 

between GPR-predicted TC and GBR-predicted TC in iteration 8. l GBR-predicted TC of each 112 

polymer in the PoLyInfo database in iteration 8.  113 
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Supplementary Note 5. Summary of the 30 high-TC (>0.8 W/m·K) polymers’ categories 114 

Fig. S3 shows the classes of the 30 MD-labeled high-TC (>0.8 W/m·K) polymers. Polyamides 115 

is the majority (~ 50%) since it contains amide bonds (-CONH-) linking monomers, which can 116 

be formed by the condensation reaction between an amine group (–NH2) and a carboxylic acid 117 

group (–COOH). The formation of amide linkages during polymerization facilitates the 118 

establishment of strong hydrogen bonds between the polymer chains, enhancing the material’s 119 

thermal transport properties.  120 

 121 

 122 

Fig. S3 | Summary of the 30 MD-labeled high TC (>0.8 W/m·K) polymers’ categories.   123 
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Supplementary Note 6. Herman’s orientation factor 124 

Herman’s orientation factor (𝑓) 3,4 is used to characterize the segment alignment along different 125 

directions: 𝑓 = 1.5 < 𝑐𝑜𝑠#𝜃 > −0.5, where 𝜃 is the angle between a carbon-carbon bond and 126 

the reference direction. A value of 𝑓 = -0.5 means that the orientation is perpendicular to the 127 

selected direction, and 𝑓 = 1 means that the orientation is parallel to the selected direction. A 128 

value of 0 indicates a completely random orientation. We select polymer P110210 to simulate 129 

its 𝑓 and TC in the oriented and perpendicular directions at different draw ratio. Fig. S4a shows 130 

𝑓  increases with larger draw ratio along the draw direction, while decreasing in the 131 

perpendicular direction. Fig. S4b, respectively, indicates the changes of TC in the oriented and 132 

perpendicular direction at different draw ratio, which is consistent with Fig. S4a. Fig. S4c 133 

visualizes the structures of this polymer under different strain ratios. The main chain carbon 134 

atoms, indicated in yellow, are more aligned with the draw ratio increasing. 135 
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 136 

Fig. S4 | Herman’s orientation factor simulation for polymer P110210 at different draw 137 

ratio. a Averaged Herman’s orientation factor and b TC in oriented and perpendicular 138 

directions at different draw ratios of polymer P110210. c Structures visualization of polymer 139 

P110210 at different draw ratios.  140 

Un-strianed

4 × 8 ×

2 ×

a) b

c)

b)



 13 

Supplementary Note 7. Structural comparison of high TC and low TC polymers  141 

Fig. S5 shows the polymers that have linear chain structures (right) and non-linear chain 142 

structures (left). For linear chain polymers, they have much higher TC and f than non-linear 143 

chain polymers due to the higher orientation factor and chain alignments.  144 

 145 

Fig. S5 | Structural comparison of high TC polymers (right) and low TC polymers (left).  146 
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