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Figure S1: Pairwise Pearson correlations for the 49 RDKit descriptors used in classical models of both 
homopolymer and copolymer solubility. 
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Descriptors Used 

Listed below are the RDKit descriptors used for descriptor-based RDKit models. For each datapoint, both monomer 
and solvent descriptors were calculated to yield 25 monomer + 24 solvent = 49 RDKit descriptors per datapoint.  
For solvents, the NumAtomStereoCenters descriptor was excluded from the solvent descriptor set as this descriptor 
had a value of 0 for almost every solvent in the dataset, meaning it would provide little predictive value. 

Descriptors for the Mordred model will be made available online at the GitHub repository for this work. Fingerprint-
type descriptors are already described in the Main Text (see Methods) and can be reproduced using their genera-
tion algorithm (Morgan/RDKit), bit length (32,768), and radius (3).

- lipinskiHBA 
- NumHBA 
- lipinskiHBD 
- NumHBD 
- NumRotatableBonds 
- NumHeteroatoms 
- NumAmideBonds 
- FractionCSP3 
- NumRings 
- NumAromaticRings 
- NumAliphaticRings 
- NumSaturatedRings 
- NumHeterocycles 
- NumSaturatedHeterocycles 
- NumAliphaticHeterocycles 
- NumAtomStereoCenters (monomers only) 
- tpsa 
- chi0v 
- chi1v 
- chi2v 
- chi3v 
- chi4v 
- kappa1 
- kappa2 
- kappa3 

Table S1: List of Mordred descriptor categories and their dimension, alongside a brief description. 

Name Code Function Dimension Description 

ABCIndex ABC 2D atom-bond connectivity index 

AcidBase nAcid 2D acidic group count 

AdjacencyMatrix SpAbs_A 2D SpAbs of adjacency matrix 

Aromatic nAromAtom 2D aromatic atoms count 

AtomCount nAtom 2D number of all atoms 

Autocorrelation ATS0dv 2D moreau-broto autocorrelation of lag 0 
weighted by valence electrons 

BCUT BCUTc-1h 2D first highest eigenvalue of Burden matrix 
weighted by gasteiger charge 

BalabanJ BalabanJ 2D Balaban’s J index 

BaryszMatrix SpAbs_DzZ 2D graph energy from Barysz matrix 
weighted by atomic number 

BertzCT BertzCT 2D Bertz CT 

BondCount nBonds 2D number of all bonds in non-kekulized 
structure 

CPSA PNSA1 3D partial negative surface area (version 1) 
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CarbonTypes C1SP1 2D SP carbon bound to 1 other carbon 

Chi Xch-3d 2D 3-ordered Chi chain weighted by sigma 
electrons 

Constitutional SZ 2D sum of constitutional weighted by atomic 
number 

DetourMatrix SpAbs_Dt 2D graph energy from detour matrix 

DistanceMatrix SpAbs_D 2D graph energy from distance matrix 

EState NsLi 2D number of sLi 

EccentricConnectivityIndex ECIndex 2D eccentric connectivity index 

ExtendedTopochemicalAtom ETA_alpha 2D ETA core count 

FragmentComplexity fragCpx 2D fragment complexity 

Framework fMF 2D molecular framework ratio 

GeometricalIndex GeomDiameter 3D geometric diameter 

GravitationalIndex GRAV 3D heavy atom gravitational index 

HydrogenBond nHBAcc 2D number of hydrogen bond acceptor 

InformationContent IC0 2D 0-ordered neighborhood information con-
tent 

KappaShapeIndex Kier1 2D kappa shape index 1 

Lipinski Lipinski 2D Lipinski rule of five 

LogS FilterItLogS 2D Filter-it LogS 

McGowanVolume VMcGowan 2D McGowan volume 

MoRSE Mor01 3D 3D-MoRSE (distance = 1) 

MoeType LabuteASA 2D Labute’s Approximate Surface Area 

MolecularDistanceEdge MDEC-11 2D molecular distance edge between pri-
mary C and primary C 

MolecularId MID 2D molecular ID 

MomentOfInertia MOMI-X 3D moment of inertia (axis = X) 

PBF PBF 3D PBF 

PathCount MPC2 2D 2-ordered path count 

Polarizability apol 2D atomic polarizability 

RingCount nRing 2D ring count 

RotatableBond nRot 2D rotatable bonds count 

SLogP SLogP 2D Wildman-Crippen LogP 

TopoPSA TopoPSA(NO) 2D topological polar surface area (use only 
nitrogen and oxygen) 

TopologicalCharge GGI1 2D 1-ordered raw topological charge 

TopologicalIndex Diameter 2D topological diameter 

VdwVolumeABC Vabc 2D ABC Van der Waals volume 

VertexAdjacencyInformation VAdjMat 2D vertex adjacency information 

WalkCount MWC01 2D walk count (leg-1) 

Weight MW 2D exact molecular weight 

WienerIndex WPath 2D Wiener index 

ZagrebIndex Zagreb1 2D Zagreb index (version 1) 
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Database Solvent Distribution 

In Tables S2-S4 below, we describe the most common solvents for each database alongside detailed statistics on 
the average number of datapoints per solvent. All values were calculated using solvent SMILES rather than name, 
as we found that this was a more consistent and reliable counting method due to solvent name collision (more than 
one name mapping to one SMILES). 

Table S2: Value counts for the ten most common solvents in the homopolymer database. 

  Solvent Count 

chloroform 156 

methanol 143 

tetrahydrofuran 120 

benzene 112 

ethanol 95 

acetone 85 

N,N-dimethylformamide 80 

water 74 

toluene 69 

diethyl ether 54 

 

Table S3: Value counts for the ten most common solvents in the copolymer database. 

Solvent Count 

chloroform 31 

tetrahydrofuran 28 

methanol 23 

toluene 16 

N,N-dimethylformamide 15 

benzene 14 

methyl ethyl ketone 13 

acetone 13 

methylene chloride 12 

hexane 12 

 

Table S4: Database solvent statistics for the homopolymer and copolymer databases. 

Model 
Num. 

Unique 
Mean Std. Dev. 

Min. 
Count 

25% 50% 75% 
Max 

Count 

Homopolymer 175 10.4 24.4 1 1 2 5 156 

Copolymer 43 6.3 7.5 1 1 2 9 31 
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Definition of Binary Solubility 

For our in-house experimental validation, we define the threshold between soluble and insoluble as >10% of the 
pre-dissolution mass present in filtrate, or greater than 25 mg dissolved in 10 mL of solvent. For these experiments, 
the temperature was 23 ⁰C and the filter pore size was 2.5 μm. For our homopolymer and copolymer database, we 
use the values reported in the literature and discard any datapoints with uncertain solubility (e.g. partial solubility, 
swelling noted, elevated temperature, etc.) We therefore believe that the solubility values in our database are rea-
sonable and consistent despite being sourced from a wide variety of literature. Due to the broad scope of literature 
and chemical space covered, it is difficult to guarantee that the boundary between soluble and insoluble is the same 
for all data sources. However, to address this issue we validate our model through k-fold cross-validation – which 
should show significant differences in performance across folds if the boundary between soluble/insoluble is chang-
ing significantly across different portions of the database. We do not see large fluctuations in our accuracy and R2 
values across these folds, and thus we indirectly guarantee the quality of the data and its consistency. 

Copolymer Model Input  

All copolymer models used a digital representation of copolymer stoichiometry and sequence to encode this infor-
mation numerically. In Figure S2 below, we describe the transformation of the stoichiometry/sequence into numeric 
form for an example alternating copolymer with a comonomer ratio of 0.6:0.4 (3:2). 

 

Hyperparameter Details 

All classical homopolymer and copolymer models were trained using the hyperparameters listed below in Table 
S5. For computational efficiency, hyperparameter tuning was only performed on the most successful model (RDKit 
with Random Forest) and most diverse database (homopolymer), with the chosen hyperparameters in bold with 
underline.  

 

 

 

 

 

 

Figure S2: Transformation of copolymer stoichiometry and sequence to digital representations used for model 
training. 
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Table S5: Hyperparameters used for all classical models of polymer solubility. 

Architecture SciKit-Learn Function Hyperparameters Used 

AdaBoost 
AdaBoostClassifier 

n_estimators=50 
learning_rate=1.0 

algorithm='SAMME.R' 

Decision Tree 
DecisionTreeClassifier 

criterion='gini' 
splitter='best' 

max_depth=None 
min_samples_split=2 
min_samples_leaf=1 

min_weight_fraction_leaf=0.0 
max_features=None 
random_state=None 

max_leaf_nodes=None 
min_impurity_decrease=0.0 

class_weight=None 
ccp_alpha=0.0 

monotonic_cst=None 

Random Forest RandomForestClassifier 

n_estimators=[10,100] 
criterion='gini' 

max_depth=[None, 5, 4, 3, 2] 
min_samples_split=[2, 4] 

min_samples_leaf=1 
min_weight_fraction_leaf=0.0 

max_features='sqrt' 
max_leaf_nodes=None 

min_impurity_decrease=0.0 
bootstrap=True 

oob_score=False 
n_jobs=None 

random_state=None 
verbose=0 

warm_start=False 
class_weight=None 

ccp_alpha=0.0 
max_samples=None 
monotonic_cst=None 

Naive Bayes GaussianNB priors=None 
var_smoothing=1e-09 

 

 

Classical Model Performance 

Table S6: Full model statistics for the Classical Homopolymer models of polymer solubility, sorted by descending 
accuracy. All values are rounded to 4 decimals. Archi. = model architecture, Acc. = model accuracy, Bal. Acc. = 
class-balanced model accuracy, Prec. = precision. For average K-Fold accuracies, accuracy values were averaged 
across 5 folds. 

Model Label Descriptor Archi. 
Acc. 
(test) 

Acc. 
(Avg., 

K-Fold) 

Bal. 
Acc. 
(test) 

Prec. Recall 
F1 

Score 
Jaccard 

Ind. 
ROC-
AUC 

atom_bd_RF RDKit 
Random 
Forest 

0.8462 0.8232 0.8017 0.8418 0.9431 0.8896 0.8011 0.8017 

atom_mordred_RF 
RDKit + 
Mordred 

Random 
Forest 

0.8396 0.843 0.7921 0.8343 0.9431 0.8854 0.7944 0.7921 

mordred_RF Mordred 
Random 
Forest 

0.8308 0.8503 0.7839 0.8304 0.9331 0.8787 0.7837 0.7839 

atom_morganfp_RF 
RDKit + 

Morgan FP 
Random 
Forest 

0.8242 0.818 0.7681 0.8156 0.9465 0.8762 0.7796 0.7681 
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atom_rdfp_AB 
RDKit + 

RDKit FP 
AdaBoost 0.8088 0.785 0.7656 0.8232 0.903 0.8612 0.7563 0.7656 

atom_rdfp_RF 
RDKit + 

RDKit FP 
Random 
Forest 

0.7934 0.8085 0.7432 0.806 0.903 0.8517 0.7418 0.7432 

mordred_DT Mordred 
Decision 

Tree 
0.7868 0.774 0.7581 0.8301 0.8495 0.8397 0.7236 0.7581 

atom_bd_DT RDKit 
Decision 

Tree 
0.778 0.7557 0.7437 0.8173 0.8528 0.8347 0.7163 0.7437 

atom_mordred_DT 
RDKit + 
Mordred 

Decision 
Tree 

0.778 0.7784 0.7483 0.8235 0.8428 0.8331 0.7139 0.7483 

atom_rdfp_DT 
RDKit + 

RDKit FP 
Decision 

Tree 
0.7714 0.7909 0.7249 0.7982 0.8729 0.8339 0.7151 0.7249 

mfp_DT Morgan FP 
Decision 

Tree 
0.7692 0.7689 0.7370 0.8149 0.8395 0.827 0.7051 0.737 

atom_bd_AB RDKit AdaBoost 0.7692 0.7857 0.7186 0.7922 0.8796 0.8336 0.7147 0.7186 

rdfp_AB RDKit FP AdaBoost 0.7648 0.7549 0.6984 0.7727 0.9097 0.8356 0.7177 0.6984 

atom_morganfp_AB 
RDKit + 

Morgan FP 
AdaBoost 0.7626 0.7931 0.7136 0.7903 0.8696 0.828 0.7065 0.7136 

atom_morganfp_DT 
RDKit + 

Morgan FP 
Decision 

Tree 
0.7626 0.7924 0.7213 0.7994 0.8528 0.8252 0.7025 0.7213 

mordred_AB Mordred AdaBoost 0.7582 0.7857 0.7057 0.7838 0.8729 0.8259 0.7035 0.7057 

atom_mordred_AB 
RDKit + 
Mordred 

AdaBoost 0.7582 0.7887 0.7057 0.7838 0.8729 0.8259 0.7035 0.7057 

mfp_RF Morgan FP 
Random 
Forest 

0.7473 0.7608 0.6881 0.7706 0.8763 0.82 0.695 0.6881 

mfp_AB Morgan FP AdaBoost 0.7473 0.7799 0.6835 0.7659 0.8863 0.8217 0.6974 0.6835 

rdfp_DT RDKit FP 
Decision 

Tree 
0.7429 0.7498 0.7139 0.8033 0.806 0.8047 0.6732 0.7139 

atom_mordred_NB 
RDKit + 
Mordred 

Naive 
Bayes 

0.7297 0.7094 0.6747 0.7651 0.8495 0.8051 0.6737 0.6747 

mordred_NB Mordred 
Naive 
Bayes 

0.7297 0.7124 0.6763 0.7667 0.8462 0.8045 0.6729 0.6763 

rdfp_RF RDKit FP 
Random 
Forest 

0.7209 0.763 0.6773 0.7722 0.8161 0.7935 0.6577 0.6773 

atom_bd_NB RDKit 
Naive 
Bayes 

0.6593 0.6046 0.7009 0.8673 0.5686 0.6869 0.5231 0.7009 

mfp_NB Morgan FP 
Naive 
Bayes 

0.5231 0.5004 0.5927 0.7929 0.3712 0.5057 0.3384 0.5927 

atom_morganfp_NB 
RDKit + 

Morgan FP 
Naive 
Bayes 

0.5231 0.5092 0.5819 0.7662 0.3946 0.521 0.3522 0.5819 

rdfp_NB RDKit FP 
Naive 
Bayes 

0.5033 0.4703 0.5853 0.8017 0.3244 0.4619 0.3003 0.5853 

atom_rdfp_NB 
RDKit + 

RDKit FP 
Naive 
Bayes 

0.5011 0.4762 0.5713 0.7647 0.3478 0.4782 0.3142 0.5713 
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Table S7: Full model statistics for the Classical Copolymer models of polymer solubility, sorted by descending 
accuracy. All values are rounded to 4 decimals. Archi. = model architecture, Acc. = model accuracy, Bal. Acc. = 
class-balanced model accuracy, Prec. = precision. For average K-Fold accuracies, accuracy values were averaged 
across 5 folds. 

Model Label Descriptor Archi. 
Acc. 
(test) 

Acc. 
(avg., 

K-
Fold) 

Bal. 
Acc. 
(test) 

Prec. Recall 
F1 

Score 
Jaccard 

Ind. 
ROC-
AUC 

atom_mordred_RF 
RDKit + 
Mordred 

Random 
Forest 

0.9412 0.931 0.9412 0.9796 0.9412 0.96 0.9231 0.9412 

atom_morganfp_RF 
RDKit + 

Morgan FP 
Random 
Forest 

0.9265 0.8713 0.8725 0.9259 0.9804 0.9524 0.9091 0.8725 

atom_bd_RF RDKit 
Random 
Forest 

0.9265 0.9212 0.8922 0.9423 0.9608 0.9515 0.9074 0.8922 

mordred_RF Mordred 
Random 
Forest 

0.9118 0.931 0.8824 0.9412 0.9412 0.9412 0.8889 0.8824 

mfp_RF Morgan FP 
Random 
Forest 

0.8971 0.8073 0.8137 0.8929 0.9804 0.9346 0.8772 0.8137 

atom_rdfp_RF 
RDKit + 

RDKit FP 
Random 
Forest 

0.8676 0.8172 0.7745 0.875 0.9608 0.9159 0.8448 0.7745 

rdfp_RF RDKit FP 
Random 
Forest 

0.7941 0.768 0.7059 0.8491 0.8824 0.8654 0.7627 0.7059 

 

Table S8: 5-fold cross-validation accuracies and confusion matrices for Homopolymer Classical models. Each 
number in the column “K-Fold Accuracies” represents the accuracy for a given fold of the model training set during 
cross-validation. The diagonal elements of the confusion matrix represent true positives (top left) and true negatives 
(bottom right), whereas the off-diagonals elements represent false negatives (top right) and false positives (bottom 
left). 

Model Label Descriptor Archi. K-Fold Accuracies 
Confusion 

Matrix 

at_NOPE_nr_atom_bd_RF RDKit 
Random 
Forest 

[0.8242 0.8755 0.7875 0.8272 
0.8015] 

[[103  53] 
 [ 17 282]] 

at_NOPE_nr_atom_mordred_RF RDKit + Mordred 
Random 
Forest 

[0.8645 0.8864 0.8095 0.8346 
0.8199] 

[[100  56] 
 [ 17 282]] 

at_NOPE_nr_mordred_RF Mordred 
Random 
Forest 

[0.8681 0.8901 0.8205 0.8456 
0.8272] 

[[ 99  57] 
 [ 20 279]] 

at_NOPE_nr_atom_morganfp_RF RDKit + Morgan FP 
Random 
Forest 

[0.8388 0.8535 0.7839 0.8088 
0.8051] 

[[ 92  64] 
 [ 16 283]] 

at_NOPE_nr_atom_rdfp_AB RDKit + RDKit FP AdaBoost 
[0.8095 0.8059 0.7949 0.7574 

0.7574] 
[[ 98  58] 

 [ 29 270]] 

at_NOPE_nr_atom_rdfp_RF RDKit + RDKit FP 
Random 
Forest 

[0.8498 0.8242 0.7839 0.7868 
0.7978] 

[[ 91  65] 
 [ 29 270]] 

at_NOPE_nr_mordred_DT Mordred 
Decision 

Tree 
[0.7802 0.8095 0.7546 0.7904 

0.7353] 
[[104  52] 
 [ 45 254]] 

at_NOPE_nr_atom_bd_DT RDKit 
Decision 

Tree 
[0.7473 0.7802 0.7399 0.7574 

0.7537] 
[[ 99  57] 

 [ 44 255]] 

at_NOPE_nr_atom_mordred_DT RDKit + Mordred 
Decision 

Tree 
[0.7802 0.8022 0.7509 0.7941 

0.7647] 
[[102  54] 
 [ 47 252]] 

at_NOPE_nr_atom_rdfp_DT RDKit + RDKit FP 
Decision 

Tree 
[0.7949 0.8498 0.7839 0.761  

0.7647] 
[[ 90  66] 

 [ 38 261]] 

at_NOPE_nr_mfp_DT Morgan FP 
Decision 

Tree 
[0.7766 0.7729 0.7509 0.7794 

0.7647] 
[[ 99  57] 

 [ 48 251]] 
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at_NOPE_nr_atom_bd_AB RDKit AdaBoost 
[0.7802 0.8388 0.7619 0.7794 

0.7684] 
[[ 87  69] 

 [ 36 263]] 

at_NOPE_nr_rdfp_AB RDKit FP AdaBoost 
[0.7729 0.7509 0.7619 0.7353 

0.7537] 
[[ 76  80] 

 [ 27 272]] 

at_NOPE_nr_atom_morganfp_AB RDKit + Morgan FP AdaBoost 
[0.8095 0.8242 0.7729 0.7684 

0.7904] 
[[ 87  69] 

 [ 39 260]] 

at_NOPE_nr_atom_morganfp_DT RDKit + Morgan FP 
Decision 

Tree 
[0.7949 0.8132 0.7656 0.8051 

0.7831] 
[[ 92  64] 

 [ 44 255]] 

at_NOPE_nr_mordred_AB Mordred AdaBoost 
[0.7949 0.8168 0.7949 0.7426 

0.7794] 
[[ 84  72] 

 [ 38 261]] 

at_NOPE_nr_atom_mordred_AB RDKit + Mordred AdaBoost 
[0.7985 0.8168 0.7912 0.7426 

0.7941] 
[[ 84  72] 

 [ 38 261]] 

at_NOPE_nr_mfp_RF Morgan FP 
Random 
Forest 

[0.7546 0.7766 0.7289 0.7647 
0.7794] 

[[ 78  78] 
 [ 37 262]] 

at_NOPE_nr_mfp_AB Morgan FP AdaBoost 
[0.7692 0.8022 0.7656 0.7684 

0.7941] 
[[ 75  81] 

 [ 34 265]] 

at_NOPE_nr_rdfp_DT RDKit FP 
Decision 

Tree 
[0.7436 0.7399 0.7436 0.7684 

0.7537] 
[[ 97  59] 

 [ 58 241]] 

at_NOPE_nr_atom_mordred_NB RDKit + Mordred 
Naive 
Bayes 

[0.7289 0.7436 0.685  0.7096 
0.6801] 

[[ 78  78] 
 [ 45 254]] 

at_NOPE_nr_mordred_NB Mordred 
Naive 
Bayes 

[0.7289 0.7509 0.6886 0.7132 
0.6801] 

[[ 79  77] 
 [ 46 253]] 

at_NOPE_nr_rdfp_RF RDKit FP 
Random 
Forest 

[0.7766 0.7692 0.7106 0.761  
0.7978] 

[[ 84  72] 
 [ 55 244]] 

at_NOPE_nr_atom_bd_NB RDKit 
Naive 
Bayes 

[0.5128 0.619  0.6154 0.6324 
0.6434] 

[[130  26] 
 [129 170]] 

at_NOPE_nr_mfp_NB Morgan FP 
Naive 
Bayes 

[0.5165 0.4982 0.4469 0.511  
0.5294] 

[[127  29] 
 [188 111]] 

at_NOPE_nr_atom_morganfp_NB RDKit + Morgan FP 
Naive 
Bayes 

[0.5165 0.5128 0.4505 0.5147 
0.5515] 

[[120  36] 
 [181 118]] 

at_NOPE_nr_rdfp_NB RDKit FP 
Naive 
Bayes 

[0.5092 0.4652 0.4322 0.4816 
0.4632] 

[[132  24] 
 [202  97]] 

at_NOPE_nr_atom_rdfp_NB RDKit + RDKit FP 
Naive 
Bayes 

[0.5092 0.4762 0.4432 0.4816 
0.4706] 

[[124  32] 
 [195 104]] 

 

Table S9: 5-fold cross-validation accuracies and confusion matrices for Copolymer Classical models. Each number 
in the column “K-Fold Accuracies” represents the accuracy for a given fold of the model training set during cross-
validation. The diagonal elements of the confusion matrix represent true positives (top left) and true negatives 
(bottom right), whereas the off-diagonals elements represent false negatives (top right) and false positives (bottom 
left). 

Model Label Descriptor Archi. K-Fold Accuracies 
Confusion 

Matrix 

co_di_atom_mordred_RF RDKit + Mordred 
Random 
Forest 

[0.878  0.9268 0.925  0.975  
0.95  ] 

[[16  1] 
 [ 3 48]] 

co_di_atom_morganfp_RF RDKit + Morgan FP 
Random 
Forest 

[0.8293 0.9024 0.8    0.9    
0.925 ] 

[[13  4] 
 [ 1 50]] 

co_di_atom_bd_RF RDKit 
Random 
Forest 

[0.8293 0.9268 0.925  0.975  
0.95  ] 

[[14  3] 
 [ 2 49]] 

co_di_mordred_RF Mordred 
Random 
Forest 

[0.878  0.9268 0.925  0.975  
0.95  ] 

[[14  3] 
 [ 3 48]] 

co_di_mfp_RF Morgan FP 
Random 
Forest 

[0.7317 0.8049 0.775  0.85   
0.875 ] 

[[11  6] 
 [ 1 50]] 
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co_di_atom_rdfp_RF RDKit + RDKit FP 
Random 
Forest 

[0.7561 0.8049 0.725  0.875  
0.925 ] 

[[10  7] 
 [ 2 49]] 

co_di_rdfp_RF RDKit FP 
Random 
Forest 

[0.7073 0.6829 0.675  0.875  
0.9   ] 

[[ 9  8] 
 [ 6 45]] 

 

Small Molecule Random Forest Performance 

In order to predict additive solubility, a random forest model was trained on a pre-existing database of small mole-
cule solubility with a train/test split ratio of 75/25. This model was trained to predict ΔGsolvation for small molecules, 
but was used to predict binary solubility (soluble/insoluble) for additives by mapping negative ΔGsolvation values to 

soluble and positive ΔGsolvation values to insoluble. For the additives studied, this appeared successful as only a few 
cases resulted in misassignment of the soluble label to insoluble datapoints (see Table 2 in the main text). This 
occurred because the model incorrectly predicted a negative ΔGsolvation. As stated in the main text (Methods – Ad-
ditive Removal) we believe that these prediction errors are not reflective of our model’s predictive ability for soluble 
compounds, but rather are due to the structures of these molecules (azodicarbonamide, melamine, and decabro-
modiphenyl ether). To provide further evidence of our model’s performance on positive ΔGsolvation values, in Table 
S10 we provide performance metrics for the train/test splits and any positive ΔGsolvation values within those splits. 
Additionally, in Figure S3 we show the kernel density estimate (KDE) of the predicted ΔGsolvation values versus the 
actual ΔGsolvation values for both train and test. We find that for positive ΔGsolvation values the small molecule RF model 
achieves a low MAE and high R2 in both train and test, and that the predicted distribution of ΔGsolvation values is 
similar but not identical to the input data. For these reasons, we believe that our small molecule RF model is able 
to effectively predict ΔGsolvation values.  

Table S10: Performance metrics for the small molecule random forest model used in additive solubility predic-
tions. 

Metric 
Mean Absolute Error 

(MAE) (kcal/mol) 
Mean Squared Error 

(MSE) (kcal/mol) 
R2 

All Train 0.14 0.08 1.00 

All Test 0.36 0.52 0.97 

Positive ΔG (Train) 0.18 0.11 0.95 

Positive ΔG (Test) 0.13 0.04 0.93 

Figure S3: Kernel density estimate (KDE) plot for the predicted (orange) vs actual (blue) ΔGsolvation values in 
the small molecule dataset used to train the small molecule RF model. Only positive ΔGsolvation

 were considered 
to demonstrate our model’s ability to predict ΔGsolvation > 0. All E values are given in kcal/mol. 



 

 

12 

Fingerprint Dimensionality Studies 

To verify the validity of the chosen fingerprint (FP) bit length, we examined the number of bits in use by the 
RDKit/Morgan FPs as their bit length was increased from 128 to 65,536 (Figure S4). Bit lengths 128, 256, 512, 
1024, 2048, 4096, 8192, 16,384, 32,768, and 65,536 were all evaluated with radius 3 on the homopolymer database 
due to its greater size and chemical diversity. As can be seen in Figure S4, for both monomer and solvent the 
number of unique bits in the Morgan FP plateaus quickly – implying that the fingerprint has covered all of the 
chemical space that it can. However, this is not true for the RDKit FP which does not appear to plateau for the 
monomer case and only begins to plateau at 32,768 for the solvent. We chose the bit length of 32,768 in our 
manuscript to maximize the amount of chemical space described by the FPs, as this bit length is sufficient to 
describe most monomer moieties and almost all solvent moieties. Higher bit lengths than 32,768 were not used 
due to the large storage space and processing costs larger fingerprints require, alongside the marginal gains in 
chemical space coverage for solvent seen by increasing bit length. As part of the motivation for this study was a 
thorough investigation into descriptor performance for polymer property prediction, we did not wish to reduce the 
required bit length used by omitting the RDKit FP from our calculations. Lastly, we chose to solely consider our 
homopolymer database for bit length determination as it was more extensive than our copolymer database, and 
we chose to use the same bit length for our copolymer studies for consistency and easy of comparison. 

SHAP Outlier Analysis 

To evaluate the reliability of our SHAP analysis, we examined datapoints which appeared as red datapoints within 
blue clusters or as blue datapoints within red clusters. Specifically, we examined exceptions to the observed trend 
for three features: ‘chi1vsolvent’, ‘kappa3solvent’, and ‘tpsa_mono’. For each feature, we identified these excep-
tions by examining the 10 largest or smallest SHAP values and looking for datapoints within the 25/75% quartiles 
of the feature values. High feature values were within the 75-100% quartile range, while low feature values were 
within the 0-25% quartile range. By looking for high feature values (red) in clusters of low feature values (blue) and 
vice versa, we were able to identify exceptions to the observed trend. From this analysis, we found that these 
datapoints with anomalous SHAP values did not show clear trends in monomer/solvent chemical identity or in their 
solubility label, but our homopolymer RF model accurately predicted the solubility of all the datapoints examined. 
Given that there were no clear trends seen in the exceptions studied, we cannot conclusively identify the source of 
these clusters, but we speculate that this is due to a combination of model and SHAP algorithm inaccuracies. As 
the true SHAP values are typically only estimated, it is possible that the dataset provided to the SHAP algorithm for 
background sampling is insufficient to provide reasonable explanations for all datapoints. Despite this possibility, 
the majority of datapoints appear to obey similar trends in SHAP vs feature values and so we believe our analysis 
remains valid. 

 

 

Figure S4: Fingerprint (FP) bits in use as a function of FP bit length for monomer (left) and solvent (right). All values 
were calculated using our homopolymer database. 
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2. Experimental 

Table S11: Overview of single homopolymer solubility results. The best model for homopolymer solubility (RF with 
RDKit descriptors) was used for all predictions. SWDatapoint removed due to swelling. *Polypropylene datapoints, 
which were used to demonstrate challenges with tacticity in model prediction but were not included in accuracy 
calculations. 

 

Polymer Solvent 
% Original Mass 

in Filtrate 
Soluble 

Predicted 
Solubility 

Agreement 

PLA Cyclohexane 0.0 No Yes No 

PLA DCM 84.4 Yes Yes Yes 

PLA THF 82.6 Yes Yes Yes 

PLA Toluene - Nosw - - 

PMMA Cyclohexane 0.0 No Yes No 

PMMA DCM 85.0 Yes Yes Yes 

PMMA THF 69.7 Yes Yes Yes 

PMMA Toluene - Nosw - - 

PS Cyclohexane 33.2 Yes Yes Yes 

PS DCM 82.7 Yes Yes Yes 

PS THF 75.9 Yes Yes Yes 

PS Toluene 91.1 Yes Yes Yes 

PP Toluene 8.0 No* Yes* No* 

PP Cyclohexane - No*SW - - 

PP DCM 8.0 No* Yes* No* 

PP THF 7.5 No* Yes* No* 

PAA Cyclohexane 0.0 No No Yes 

PAA DCM 1.2 No No Yes 

PAA THF 2.7 No No Yes 

PAA Toluene 0.4 No No Yes 


