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S1. ENHANCED SAMPLING METHODS

In this section, we provide detailed information about the enhanced sampling methods used in this work along with the
parameters adopted.

A. Well-Tempered Metadynamics

We first test the quality of our learned graph-based SPIB (GNN-SPIB)latent representations by biasing them in well-tempered
metadynamics (WTmetaD) [1] and evaluating the accuracy of thermodynamic property estimations. In the next section, we
introduce a second evaluation metric. The performance of WTmetaD simulations using these GNN-SPIB variables is assessed
by computing the free energy difference between well-studied metastable states of the selected model systems. These values
are then benchmarked against those obtained from standard long molecular dynamics simulations and WTmetaD simulations
using a priori known expert-based CVs.

While standard metadynamics helps the system escape different free energy minima by depositing Gaussian bias potentials
onto low-dimensional CVs, it often leads to oscillating rather than converging free energy surfaces [2]. Well-tempered meta-
dynamics (WTmetaD) improves this by scaling the initial bias potential based on the system’s history, leading to better free
energy convergence. In our work, we limit the biased latent variables, z, to two dimensions for efficient sampling, though the
models can theoretically learn higher-dimensional representations from atomic Cartesian coordinates which could then be used
in other biasing methods which in principle can handle more than two biasing variables. [3]

If our latent representations learned through GNN-SPIB have indeed captured the relevant slow modes, then WTmetaD
should estimate thermodynamic properties without hysteresis, i.e., the trajectory should no longer get trapped in metastable
states. To evaluate the quality of GNN-SPIB CVs, we first performed WTmetaD simulations to check if GNN-SPIB variables
enable robust state-to-state transitions without hysteresis. For all systems, we quantify the hysteresis by visualizing the time
series of biasing variable and the corresponding time-dependent free energy surface for state-to-state transitions.

The parameters for WTmetaD simulations for all systems using GNN-SPIB are provided in Tab. S1, where ω is the initial
height of the Gaussian, σ is the width of the Gaussian, γ is the biasfactor, T is the temperature at which the simulation
was carried out, and pace indicates the number of MD integration steps between two bias deposition events. For reference
WTmetaD simulation biasing expert-based CVs, we adopted setups from Refs. 4, 5, and ? , for Lennard-Jones 7 cluster,
alanine dipeptide, and alanine tetrapeptide, respectively. All metadynamics simulations were performed using PLUMED[6, 7]
package with MD engine GROMACS[8–10].The specific versions of these packages are provided in the SI.

B. Infrequent Metadynamics

We now subject our GNN-SPIB latent variables to an even more demanding test, namely the ability to obtain accurate
rare event kinetics through the infrequent metadynamics approach.[11] Although the well-tempered variant of metadynamics
(WTmetaD) can converge to accurate free energies[12] , frequent biasing along non-optimal coordinates that overlook relevant
slow degrees of freedom corrupts the mechanism and kinetics. To address this, a variant called infrequent metadynamics
(imetaD)[11] was developed to provide reliable measurements of transition times (or first passage times) within the metady-
namics framework. As the name suggests, imetaD uses a much slower bias deposition rate than conventional WTmetaD, and
needs pre-optimized biasing coordinates that approximate the reaction coordinate. If the transition state is assumed to be
uncontaminated in a biased simulation, the biased timescale can be properly reweighted by α(t)t =

∫ t

0
dt′ exp(βV (s, t′)) for

an estimation of the unbiased timescale, where β is the inverse temperature, and V (s, t′) is the instantaneous bias at t′. The
characteristic transition time, in short, is estimated by fitting to the empirical cumulative distribution function of a Poisson
process.

The reliability of transition time estimation can be assessed using the Kolmogorov–Smirnov (K-S) test as described in
Ref. 5. The p-value from the K-S test indicates the accuracy of the transition times measured from multiple individual imetaD
simulations. A p-value greater than 0.05 supports the null hypothesis that the transition times from imetaD simulations and
random data points from a Poisson distribution are from the same distribution. To examine the GNN-SPIB latent variables,

TABLE S1: Well-Tempered Metadynamics Parameters.

System ω(kBT ) γ σ1 σ2 T (K) pace
LJ7∗ 0.5 5 0.5 0.5 0.1 500

alanine depeptide 0.5 5 0.4 0.4 300 500
alanine tetrapeptide 0.5 5 0.2 0.2 350 500

∗LJ7 system is in reduced Lennard-Jones units.
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TABLE S2: Infrequent Metadynamics Parameters.

System Transition σ T (K) pace (steps) First-passage criterion
LJ7∗ c0 −→ c3 0.1 0.1 2000 10000 50000 −0.2 < µ3

3 < 0.1
alanine depeptide {C5, C7eq} −→ C7ax 0.4 300 2000 10000 50000 0.5 < ϕ < 1.5

−0.6π < ϕ1 < −0.2π
alanine tetrapeptide s1 −→ s7 0.2 400 200 1000 5000 0.2π < ϕ2 < 0.4π

0.5π < ϕ3 < 1.5π
∗LJ7 system is in reduced Lennard-Jones units.

we highlight one slow mode from each model system and perform 100 independent imetaD simulations. The first-passage times
(i.e., transition times) are estimated from simulations using (i) long, unbiased MD, (ii) imetaD with expert-designed CVs, and
(iii) imetaD with SPIB-GNN CVs. These are collected under the same stop criterion, with various bias deposition frequencies,
and fitted to estimate the characteristic transition time. We then compare the robustness of these biasing coordinates, providing
qualitative evaluations at the CV level.

The parameters for performing imetaD simulations are provided in Tab. S2. where the σ is the width of the Gaussian, T is
the temperature at which the simulation was carried out, and pace indicates the number of MD integration steps between two
bias deposition events. Bias height ω and biasfactor γ were kept the same as in WTmetaD simulations (see Tab. S1 for their
values). For the imetaD parameters, we consulted simulations in Refs. 4,13, and 14 for LJ7, alanine depeptide, and alanine
tetrapeptide, respectively.

S2. PHYSICALLY INSPIRED EXPERT-BASED COLLECTIVE VARIABLES

We start by introducing the known expert-based collective variables used while studying the model systems in this work.
All of these CVs are hand-crafted and to some extent require physical knowledge and intuitions a priori about the systems of
interest.

A. Lennard-Jones 7 Cluster

In the 2-dimensional Lennard-Jones 7 cluster cluster, the expert-based CVs which are usually considered as reaction coordi-
nates are the second moment of coordination number c,

µ2
2 =

1

N

N∑
i=1

(ci − c̄)2, (1)

and third moment of coordination number,

µ3
3 =

1

N

N∑
i=1

(ci − c̄)3, (2)

where c̄ is the mean of c and N is the number of particles. With these definitions, one may see the key to classifying metastable
states in LJ7 system is the fluctuation and distribution of coordination numbers of individual LJ particles, rather than the
ensemble average, which the latter could be a typical candidate collective variable to consider in colloidal systems.

B. Alanine Dipeptide and Alanine Tetrapeptide

Physics-informed CVs in biomolecules like alanine dipeptide and alanine tetrapeptide are representations in higher order
(than distances). Explicitly, they are dihedrals ϕ and ψ. ϕ is defined by the angle between displacement vectors C1-N1 and
Cα-C2 projected onto the plane orthogonal to the axis N1-Cα and ψ is defined by quadruplet torsion angle of vectors N1-Cα
and C2-N2 for alanine dipeptide (see main text for atomic labels and graphic definitions). To alanine tetrapeptide, multiple ϕ
and ψ torsion angles exist and they are all defined in main text.

S3. GRAPH CONVOLUTION LAYERS

While we provided basic concepts about graph neural nets, here we introduce individual graph convolution layers adopted
in the model systems.
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A. LJ7:Equivariant Graph Neural Net

As presented in Fig. 2, the geometric operator consists of three graph convolution layers (denoted as EGCL) developed in
Ref. [15]. Here we modified the layer slightly by removing the coordinate input and we directly fed pairwise distances as edge
features into these EGCL layers. The message passing function m for node i at layer l is defined by,

mi =
∑

j∈Ni∪{i}

Θe(h
l
i ⊕ hl

j ⊕ Lij) (3)

where Θe is trainable neural net (i.e., MLP), h is the embedding (h0 = X), Lij is the edge feature of edge of nodes i and j,
and ⊕ denotes concatenation. Θ refers to a trainable neural net with arbitrary subscripts differentiating such operations unless
otherwise specified. By introducing node embeddings hi into the message passing function can be helpful when learning deeper
networks. [16] The message is then updated through the function:

hl+1
i = hl

i +Θn(h
l
i ⊕mi) (4)

where Θn is a trainable neural network, and Ni is the neighborhood of node i. Note that a residual connection[17] is added to
the update function for better convergence while training. In particular, the hidden EGCL layers in geometric module have 16
neurons and the output embedding is 8-dimensional. This leads to a total of 16-dimensional graph embedding (a concatenation
of 8 from mean pooling and 8 from max pooling) to the SPIB module.

B. Alanine Depeptide:Graph Attention Net

Our second model is composed of two graph attention convolution layers (GAT) from Ref. [18, 19]. Notably, the information
from edges are evaluated by a scoring function before updating. The overall process can be expressed as:

hl+1
i =

∑
j∈Ni

αijΘth
l
j (5)

where αij is the attention coefficient normalized a softmax operation over the neighborhood Ni, which indicates the importance
of node and edge features of neighboring node j to node i and it is defined as,

αij =
exp (a⊺LeakyReLU(Θth

l
i ⊕Θth

l
j ⊕ΘeLij))∑

j′∈Ni
exp (a⊺LeakyReLU(Θthl

i ⊕Θthl
j′ ⊕ΘeLij′))

(6)

where the alignment model a⊺ is a trainable feedforward network referred as self-attention. [18, 20] The model in this work,
we have 16 neurons in the hidden GAT layer and 8 in the output layer. The number of heads is set to be 1. Self-loop is added
to the input graph meaning individual nodes are connected to itself and the corresponding edge feature is set to be 0 under
Gaussian basis function (see Sec. S4 for details). The negative slope of nonlinearity is 0.2.

C. Alanine Tetrapeptide:Gaussian Mixture Model

In our last model system, the graph module is constructed with gaussian mixture model convolution layers (GMM) introduced
in Ref. [21]. Again, the graph module consists of 2 GMM layers. The embedding at layer l + 1 is defined as:

hl+1
i =

∑
j∈Ni

1

K

K∑
k=1

wk(Lij) ·Θkh
l
j (7)

where · denotes matrix multiplication and w is parameteric Gaussian kernels with learnable parameters whose expression is,

wk(L) = (−1

2
(L− µk)

⊺Σ−1
k (L− µk)) (8)

where µk and Σ−1
k are learnable mean vector and covariance matrix of Gaussian kernels, respectively, and k is the total number

of kernel functions. Given geometric data in this work only contains pair-wise distances as edge feature, the value of k in this
architecture is the dimensionality of edge feature via message passing. The hidden GMM layer has 64 channels and the output
GMM layer has 16 channels. The kernel size k is 20. In addition, we apply a jumping knowledge skip connection [22] to the
hidden GMM layer, which means the hidden embedding is concatenated to the output embedding before global pooling layers.
This operation in general is beneficial while training deeper neural nets but we also find this improves the performance to our
model.
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S4. GEOMETRIC DATA PREPARATION AND SIMULATION SETUPS

The pipeline involves graph module and SPIB module, which suggests the input data should not only be continuous at least
in a time interval, but in its geometric representation. In the following section, we show how we construct our training data
from MD trajectories.

A. Lennard-Jones 7 cluster

To LJ7 system, we performed the simulation at a temperature kBT = 0.2ϵ using Langevin thermostat for 1 × 107 steps.
The simulation was performed at a higher temperature for efficient sampling in the configuration space. The coupling time
of the thermostat is 0.1

√
ϵ/mσ2. The equation of motion is integrated with a time step 0.005

√
ϵ/mσ2. The simulation

was performed in PLUMED-2.8.1 with PYTORCH module. The 2-d coordinates of all particles were saved every 10 steps,
leading to 1× 106 snapshots in total. We then computed all pair-wise distances in each frame and constructed their geometric
representations. All graphs were set to be fully-connected.

Besides graph representations to the simulation cell, SPIB model require a psudo state label for individual time frame, here
we assigned 8 initial labels using K-means clustering algorithm [23] in {µ2

2, µ
3
3} space.

B. Alanine Dipeptide

The alaine dipeptide in vacuum simulation for generating training data was performed at 450 K using stochastic velocity
rescaling thermostat. The force field was selected to be AMBER99SB and the integration time step was 2 fs. The simulation
was performed in GROMACS-2019.6 package and the atomic coordinates were saved every 50 steps for 200 ns. 2 ×106
configurations were converted into their graph representations. Complete (fully-connected) graphs are construct when training
and biasing the machine learning models.

As introduced in the main text, conformational changes in alanine dipeptide can easily be characterized by high-order torsion
angles but they are non-trivial when using pure distances. Following the definition of dihedral, the two intersecting planes
in computation of a dihedral angle rely on the displacement vectors between the four atoms (points) in atomic simulations.
However, this piece of information is lost in graph construction to enforce the invariance to translations and rotations in the
embeddings in GNNs. Under this consideration, we defined our neighboring metric to a large radius cutoff, rcut = 1.0 nm,
as mentioned earlier and this again let the graph objects be fully connected. The 8 initial state labels were generated with
k-means clustering in {ϕ, ψ} space.

C. Alanine Tetrapeptide

Alaine tetrapeptide in vacuum simulations were performed at 400 K for 1.0 µs with a time step of 2 fs and AMBER99SB
forcefield. Atom coordinates were saved every 500 steps. The thermostat was selected to be stochastic velocity rescaling
thermostat with a relaxation time of 0.1 ps.

Similar to alanine depeptide, the constructed graphs in alanine tetrapeptide should remain fully-connected, which leads to
high dimensional input feature, C(20, 2) = 190-d, which original SPIB model may have difficulty handling. However, we did
realize an advantage of GNNs or data in their geometric form is the focus of neighboring nodes and making a fully-connected
graph does not make GNN any special to standard MLPs when permutation invariant property is not strictly needed (like
in alanine depeptide and alanine tetrapeptide). However, it seems critical to take more features into account if only type-0
representations are involved. Therefore, We will leave this objective of constructing smaller graphs using narrower radius cutoff
for future researches. The 24 initial state labels to alanine tetrapeptide were generated with k-means clustering in {ϕ1, ϕ2, ϕ3}
space.

S5. MODEL TRAINING AND ANALYSIS

Before presenting all parametering while training our model, we briefly introduce some of our parameters. They are mainly
from the original SPIB method, and detailed description can be found in the original work. [24] Since SPIB model is optimizing
predictions to the future, a lagtime parameter, ∆t, which control how far in time the model should look into is defined and
this timescale should smaller (or faster) than the fastest transitions of interest. A β term is assigned to the KL divergence
term and it is used to balance the two losses in the objective function. To optimization, three parameters, tolerance to loss
change Ltol, patience P and number of refinements Nref need to be specified, and they define when the optimization should be
terminated and the training is converged. Smaller Ltol leads to more metastable states, and longer training/convergence time.
Larger patience or number of refinements, results in better-defined state boundary.
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FIG. S1: Analyses to trained models of LJ7 (left panel; a-b), alanine depeptide (middle panel; c-d), and alanine
tetrapeptide (right panel; e-f) systems. The first row (a, c, and e) traces the loss change which subplots are
indicators of converged trains. On the second row (b, d, and f), the implied timescales plots for our trained model.
The dashed lines correspond to the lag time defined when training models in this work.

A. Pseudocode for GNN-SPIB

A pseudocode of the algorithm in this work, which is analogous to the flowchart in the main text.

Algorithm 1: GNN-SPIB

Input: Unbiased trajectory(s) with back-and-forth transitions Gn = (V,E), input node features Xn, adjacency
matrices An, input edge features Ln ,corresponding sets of initial state labels {Sn}, RC dimensionality d, time
delay ∆t, tolerance to loss Ltol, patience P , number of refinements Nref

Output: Updated RC, state-transition density, and state labels {Sn}
repeat

for i← 0 to m− 1 do
Sample a minibatch {Gn} and {Sn};
Calculate the objective function L;
Update the neural network parameters θ, pseudo-inputs {uk}Kk=1, and pseudo-weights {ωk}Kk=1;

Update the state labels {Sn} with S̃n = Di(µ(G
n);∆t, θ);

until convergence of RC, state-transition density, and state labels;

B. Lennard-Jones 7 cluster

The time delay ∆t was set to be 40
√
ϵ/mσ2. The GCL layers in the model had 8 channels, and both the encoder and the

decoder had 16 channels. Ltol, P , and Nref were set to be 5×10−4, 3, and 12, respectively. The ratio of train and test datasets
is 80 : 20. The model was optimized with Adam optimizer[25] with a learning rate of 1 × 10−3. The value of β was set to be
1× 10−2. The batch size of the graph objects was 128. To graphs, batching results in a much larger graph in which nodes from
different graphs are not connected.

In FigS1 left panel, we summarize the result of training, in subplot a, the loss gradually drops until plateau within 2.5× 105

epochs. In FigS1d), we plot the implied timescales with our trained model. The three slowest transitions were plotted and the
selected time delay was less than these transition times. In particular, the corresponding slow modes can be identified by their
eigenvectors. Referring to Fig. S2a), the first eigenvector corresponds to the stationary distribution. The second eigenvector
is the transition between c0 and c3. The third eigenvector is the transition between c1 and c3 and the last eigenvector is the
transition between c2 to c3 and c1.
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(b)

<latexit sha1_base64="Hbxp+3vjMJ+2z6kJHdsoUBM1AsY=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGMA9IQpid9CZDZmfXmVkhLPkJLx4U8ervePNvnCR70MSChqKqm+4uPxZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESq5VONgkusG24EtmKFNPQFNv3R7dRvPqHSPJIPZhxjN6QDyQPOqLFSq9zxg5RNTnvFkltxZyDLxMtICTLUesWvTj9iSYjSMEG1bntubLopVYYzgZNCJ9EYUzaiA2xbKmmIupvO7p2QE6v0SRApW9KQmfp7IqWh1uPQt50hNUO96E3F/7x2YoLrbsplnBiUbL4oSAQxEZk+T/pcITNibAllittbCRtSRZmxERVsCN7iy8ukcVbxLisX9+el6k0WRx6O4BjK4MEVVOEOalAHBgKe4RXenEfnxXl3PuatOSebOYQ/cD5/AIMAj6Q=</latexit>

(c)

FIG. S2: Eigenvectors of (a) LJ7, (b) alanine depeptide, and (c) alanine tetrapeptide. The first eigenvector of each
system corresponds to the stationary probability distribution, and the rest of the eigenvectors present the slow
transitions with the trained models in ascending order, which means the second eigenvector is the transition with
the longest timescale to the system.

C. Alanine Dipeptide

The lag time ∆t was set to be 0.2 ps. We had 8 channels for the GAT layers and 16 neurons for all other linear layers. All
GAT layers had 1 head and the slope of the leaky ReLU was set to be 0.1. Ltol, P , and Nref were set to be 5× 10−4, 3, and
12, respectively. The value of batch size was 2560 and hyperparameter β was set to be 1× 10−3. When training on the model,
Adam optimizer was used with a learning rate of 1× 10−3. 80% of the input dataset was used for training, and the remaining
20% was the test dataset.

As shown in Fig. S1 middle panel subplot c), loss converges after around 3.5×104 training steps. The implied timescales plot
(subplot d) shows the timescale of two transitions. As suggested by Fig. S2b, the slowest transition (i.e., the second eigenvector)
is between C7ax and {C5,C7eq}. The second transition (the 3rd eigenvector) is between C5 and C7eq.

D. Alanine Tetrapeptide

The lag time ∆t for alanine tetrapeptide was set to be 10 ps. We had 16 channels for the GMM layers with 20 kernels.
The encoder had 64 hidden channels and the decoder had 16 channels. Ltol, P , and Nref were set to be 1× 10−3, 3, and 12,
respectively. The dataset was batched to a batch size of 512 and β was set to be 1 × 10−2. The model was trained using the
Adam optimizer with a learning rate of 1× 10−3. The dataset was split into 80% vs. 20% for train and test sets. The number
of states, as suggested by Fig. S1e), loss is converged after 1× 105 steps. In subplot f, the 6 transition timescales are identified
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TABLE S3: Well-tempered Metadynamics Results

System Unit Transition MD WTmetaD (expert-based) WTmetad (GNN-SPIB)

LJ7 ϵ
c0 → c1 0.644 ± 0.013 0.642 ± 0.007 0.631 ± 0.010
c0 → c2 0.643 ± 0.013 0.641 ± 0.008 0.631 ± 0.010
c0 → c3 0.795 ± 0.031 0.765 ± 0.023 0.759 ± 0.016

Alanine depeptide kJ/mol
C7eq → C5 -0.040 ± 0.002 -0.023 ± 0.049 -0.083 ± 0.064
C7eq → C7ax 7.59 ± 0.92 7.60 ± 0.13 7.48 ± 0.21

Alanine tetrapeptide kJ/mol

s1 → s2 14.19 ± 0.75 14.01 ± 0.42 14.06 ± 0.94
s1 → s3 1.57 ± 0.33 1.42 ± 0.22 1.50 ± 0.35
s1 → s4 -1.01 ± 0.07 -0.97 ± 0.05 -0.79 ± 0.11
s1 → s5 13.53 ± 1.34 13.46 ± 0.68 13.25 ± 0.48
s1 → s6 21.13 ± 2.74 20.90 ± 1.37 21.47 ± 0.98
s1 → s7 12.88 ± 3.41 11.99 ± 0.90 12.38 ± 0.55
s1 → s8 9.54 ± 1.10 9.36 ± 0.53 9.30 ± 0.44

and they are relatively slow to the selected time lag, ∆t. The slowest transition (see Fig. S2c) second eigenvector in orange) is
the transition between S6/7 and {S1, S2, S3, S4}. The second slowest transition corresponds to the interplay between S6/7 and
{S8, S5}. After this, the rest slow transitions are S6/7 ←→ {S3, S5, S8}, S2 ←→ S4, S5 ←→ S8, and S5 ←→ S2.

S6. SUMMARY FOR THE PERFORMED WELL-TEMPERED METADYNAMICS AND INFREQUENT
METADYNAMCIS SIMULATIONS

In this section, we provided numerical values to the box plots of free energy differences using WTmetaD’s and scatter plots
of the kinetic measurements using imetaD’s. Definition of these terms can be found in main text with detailed explanation. In
particular, the free energy difference is computed as:

∆Ga→b = Gb −Ga = kBT log
Pa

Pb
(9)

where Pa, Pb denote the Boltzmann probabilities of states a, b obtained from reweighted WTmetaD simulations [26]. The
definitions of metastable states are provided in Tab. S5.

S7. ATTENTION COEFFICIENTS IN ALANINE DEPEPTIDE SYSTEM

In graph attention networks, attention coefficients are computed during message passing. These coefficients indicate the
importance of individual edges within individual graphs (see Sec. S3B). We therefore post-process one production run by
computing the coefficient matrices every time frame. The Boltzmann-weighted time-averaged attention coefficient matrix of
the two GAT layers were plotted in Fig. S3. It is clear that, the two layers capture different physical information — the first
layer (subplot a) emphasizes on the nodes with are far away from each other, while the second layer (subplot b) focuses on the
local orientation of neighboring nodes.

S8. CORRELATION BETWEEN MACHINE-LEARNED AND EXPERT-BASED VARIABLES

Here we present the correlation between ML variables and EB variables among all model systems. Indeed, the machine
learning models seem to learn some important features (Fig. S4S5,S6) to some level among these systems and evidences can be
found in the corresponding Pearson correlation coefficients. [27] However, moving toward complicated systems, it may becomes
difficult for models to capture key physics. [28]

S9. ALANINE DIPEPTIDE AND ALANINE TETRAPEPTIDE ON GRAPH CONVOLUTION LAYER

Our choices on graph layers are at some level arbitrary. In general, more informative graph layers tend to be more compu-
tationally demanding and vice versa. Here, we present results on alanine dipeptide and alanine tetrapeptide using the graph
convolution layers and exact same architecture in LJ7 system. (see Sec. S3 for details) In alanine dipepide, all three metastable
states are successfully identified by the GNN-SPIB with graph convolution layers.(Fig. S7) Similarly, with graph convolution,
GNN-SPIB shows no difficulty in capture 7 out 8 states in alanine tetrapeptide. State s6 is missing due to lack of samples.
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TABLE S4: Infrequent Metadynamics Results

System Unit Transition Pace Biasing variable(s)
Characteristic

95% Confidence Interval p-value
transition time

LJ7
√
ϵ/(m ∗ σ2) c0 → c3

2000

µ2
2 662144 [848945, 1598062] 0.0067
µ3
3 46700 [39969, 58738] 0.5278
z1 48007 [46669,81944] 0.4579
z2 69850 [59995,93118] 0.9185

10000

µ2
2 288189 [355139, 621122] 0.0382
µ3
3 47955 [39000, 55565] 0.7389
z1 53829 [46282,73303] 0.9845
z2 64504 [52986,77703] 0.9492

50000

µ2
2 190080 [167219, 262661] 0.9354
µ3
3 59990 [384000, 55565] 0.8549
z1 66216 [55114,80000] 0.9633
z2 50246 [42775,63531] 0.9088

- - 60630 [46945, 66598] 0.4637

Alanine depeptide ns C7eq → C7ax

2000
ϕ 4164 [4091, 7390] 0.4272
ψ 70295 [3551058, 14685901] 0.0000

z1, z2 4839 [4821,7862] 0.3414

10000
ϕ 3942 [3347, 4964] 0.7214
ψ 24031 [92489, 546832] 0.0001

z1, z2 4424 [3662, 5384] 0.7488

50000
ϕ 1826 [3347, 4475] 0.9006
ψ 11555 [12445, 21610] 0.0956

z1, z2 4226 [3798, 6030] 0.8285
- - 3340 [2857, 4259] 0.8849

Alanine tetrapeptide ns s1 → s7

200
ϕ1, ϕ2, ϕ3 288 [244, 377] 0.9369
ψ1, ψ2, ψ3 3553 [34790, 163661] 0.0000
z1, z2 643 [615,1028] 0.8605

1000
ϕ1, ϕ2, ϕ3 398 [340, 509] 0.7799
ψ1, ψ2, ψ3 3635 [7797, 20400] 0.0025
z1, z2 460 [378, 618] 0.7879

5000
ϕ1, ϕ2, ϕ3 412 [311, 471] 0.6821
ψ1, ψ2, ψ3 1293 [2268, 4881] 0.0004
z1, z2 394 [343, 527] 0.6937

- - 489 [409, 612] 0.9728

“−” suggests the MD simulations were conducted instead of imetaD simulations.

TABLE S5: State Definition

System Metastable state Definition

LJ7

c0 0.65 < µ2
2 < 0.78, 0.8 < µ3

3 < 1.35
c1 0.88 < µ2

2 < 1.0, 0.1 < µ3
3 < 0.45

c2 0.68 < µ2
2 < 0.82, 0.1 < µ3

3 < 0.58
c3 0.50 < µ2

2 < 0.68, -0.25 < µ3
3 < 0.0

Alanine depeptide
C7eq -0.56π < ϕ < −0.33π, 0.06π < ψ < 0.56π
C5 -0.97π < ϕ < −0.64π, 0.69π < ψ < 1.0π
C7ax 0.17π < ϕ < 0.5π,−0.61π < ψ < 0.0π

Alanine tetrapeptide

s1 0.2π < ϕ1 < 0.4π,−0.6π < ϕ2 < -0.2π,−1.0π < ϕ3 < -0.32π
s2 0.2π < ϕ1 < 0.4π, 0.2π < ϕ2 < 0.4π,−1.0π < ϕ3 < -0.32π
s3 -0.6π < ϕ1 < -0.2π, 0.2π < ϕ2 < 0.4π,−1.0π < ϕ3 < -0.32π
s4 -0.6π < ϕ1 < -0.2π,−0.6π < ϕ2 < -0.2π,−1.0π < ϕ3 < -0.32π
s5 0.2π < ϕ1 < 0.4π,−0.6π < ϕ2 < -0.2π, 0.16π < ϕ3 < -0.48π
s6 0.2π < ϕ1 < 0.4π, 0.2π < ϕ2 < 0.4π, 0.16π < ϕ3 < -0.48π
s7 -0.6π < ϕ1 < -0.2π, 0.2π < ϕ2 < 0.4π, 0.16π < ϕ3 < -0.48π
s8 -0.6π < ϕ1 < -0.2π,−0.6π < ϕ2 < -0.2π, 0.16π < ϕ3 < -0.48π
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FIG. S3: Attention coefficients for the first (a) and the second (b) GAT layer from one production run. The value
of coefficient was computed from by weighted average from the entire simulation.

FIG. S4: Scatter plot of machine-learnt variables vs. expert-based variable in LJ7 system with Pearson correlation
coefficient.

S10



FIG. S5: Scatter plot of ML variables vs. EB variable in alanine dipeptide system with computed Pearson
correlation coefficient.
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FIG. S6: Scatter plot of ML variables vs. EB variable in alanine tetrapeptide system with Pearson correlation
coefficient in legend.
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FIG. S7: Results of GNN-SPIB with graph convolution layer on alanine depeptide. a) State labels in conventional
variable space and b) labels in latent space.

FIG. S8: Results of GNN-SPIB with graph convolution layer on alanine tetrapeptide. a) State labels in
conventional variable space and b-c) labels in latent space.
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