
Supplementary Information for “A Framework for Reviewing

the Results of Automated Conversion of Structured Organic

Synthesis Procedures from the Literature”

Kojiro Machi1, Seiji Akiyama2, Yuuya Nagata2, and Masaharu Yoshioka1,2,3

1Graduate School of Information Science and Technology, Hokkaido University, Kita
14 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan

2Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido
University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan

3Faculty of Information Science and Technology, Hokkaido University, Kita 14 Nishi 9,
Kita-ku, Sapporo, Hokkaido, 060-0814, Japan

1 How to run our framework

Our framework was validated in an environment with Python 3.8 on Ubuntu 24.04.

1.1 Installation

Our framework is available at https://github.com/mlmachi/OSPAR_XDL with a detailed installation
guide.

1.2 Configuration and execution

Before starting the user interface, the user need to set config.json. The description of the arguments
are shown in Table S1.

Table S1: Description of the arguments in config.json

argument description
brat dir Where to save generated OSPAR annotation from text.
brat url URL of brat server.
brat working dir URL of brat server with the name of working directory
chembert config file Configs of ChemBERT models.
use clairify Whether to use CLAIRify.
GPT model The model name of GPT.
OpenAI API KEY API key for OpenAI API
clairify interval sec The interval for accessing the OpenAI API (second)

2 Details of user interface

The proposed user interface was implemented using Flask,1 a Python-based web framework. We used
brat2 for visualization and annotation. While the original version was implemented with Python 2,
we used the Python 3 version available at https://github.com/nlplab/brat.git. The text editor
is implemented using CodeMirror.3

1

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2024

https://github.com/mlmachi/OSPAR_XDL
https://github.com/nlplab/brat.git

Figure S1: A screen shot of brat. When the user moves a cursor over REACTION STEP, a roleset for
the action is displayed.

3 OSPAR2χDL

This section describes the details of OSPAR2χDL that are not covered in the original paper.

3.1 χDL actions

There are two types of χDL actions that can be generated by OSPAR2χDL: corresponding to each role-
set and the arguments of rolesets. Table S2 shows χDL actions that can be generated by OSPAR2χDL,
along with the corresponding part of the OSPAR rolesets.

Table S2: χDL actions that can be generated by our system, along with the corresponding part of the
OSPAR rolesets

χDL action generated from
Add roleset, ARG1, ARG2
Transfer ARG1, ARG2
HeatChill roleset
HeatChillToTemp roleset, ARGM (TEMPERATURE)
Stir roleset, ARGM (MODIFIER)
StartStir roleset, ARGM (MODIFIER)
StopStir ARGM (MODIFIER)
EvacuateAndRefill rolset, ARGM (MODIFIER)
Purge roleset

ARG1 and ARG2 In cases where an argument ARG1 or ARG2 is a mixture, a single argument
may be converted into multiple χDL actions. When multiple chemical names are identified by Chem-
icalTagger, the argument is considered as a mixture. For example, in the argument a solution of

sodium iodide (15.0 g, 100 mmol) in acetonitrile (100 mL), sodium iodide is identified as
a reagent, and acetonitrile is identified as a solvent by ChemicalTagger. In this case, Add actions
for each component into a temporary vessel for mixing are created. Then, when the argument is added
to a reactor, a Transfer action from the temporary vessel to the reactor is created.

ARGM ARGM arguments such as TEMPERATURE, TIME and MODIFIER are generally used as
the parameter of χDL actions. However, ARGM arguments labeled with TEMPERATURE and MODIFIER

may create χDL actions other than main χDL actions that created by a roleset. Figure S2 shows
the rules for converting ARGM into χDL action(s). MODIFIER and TEMPERATURE If ARGM is TEM-
PERETURE and the rolset does not have a HeatChill action among its candidate χDL actions, the
ARGM generates a HeatChillToTemp action before the χDL actions by the roleset. If a MODIFIER
is included in the predefined gas-related words, EvaluateAndRefill is created before the main χDL

2

EvacuateAndRefill

Roleset's
XDL actions

StartStir

StopStir

HeatChillToTemp

True

True

True

False

gas-related words = ['nitrogen', 'oxygen', 'air', 'argon']
stirring-related words = ['stirred', 'stirring']

False

False

False

False

No XDL aciton

ARGM

Roleset has
HeatChill action

True

is MODIFIER

is TEMPERATURE

is gas word

is stir word

True

Figure S2: Rules for the converting ARGM into χDL action(s).

actions related to a roleset. If a MODIFIER is included in the predefined stirring-related words, the
ARGM generates a StartStir action before the main χDL actions and a StopStir action after the
main actions.

3.2 Rules for detecting amounts, masses and volumes

To perform a reaction, one of amount, masses and volume is required at least. In general, we aim to
extract as much information as possible from the text. Therefore, in the current version of our system,
parameters in the text are detected by ChemicalTagger, and all detected parameters are mapped to
the parameters of χDL actions by classifying them into χDL’s parameters by the following rules:

• Molecular amounts such as mol and mmol are mapped to “amount” in χDL actions by using a
<NN-AMOUNT> tag in ChemicalTagger.

• Masses such as g and mg are mapped to “mass” in χDL actions by using a <NN-MASS> tag in
ChemicalTagger.

• Volumes such as mL are mapped to “volume” in χDL actions by using a <NN-VOLUME> tag in
ChemicalTagger.

3.3 Dictionary for interpreting parameters

We created a dictionary to interpret words that represent parameters for TEMPERATURE, TIME,
and stirring rates in MODIFIER.

TEMPERATURE = {

’room temperature’: ’25°C’,
’rt’: ’25° C’,

’ambient temperature’: 25° C’

}

TIME = {

’overnight’: ’16 h’

}

MODIFIER_STIR_RATE = {

3

’vigorous’: ’500 rpm’,

’vigorously’: ’500 rpm’

}

3.4 Effect of modifying the annotation

Figure S3 shows the effect of modifying the annotation. In the annotation by ChemBERT, PPh3 and
N,N-dimethylformamide were not annotated. This led to a lack of corresponding χDL actions. An-
other error occurred due to an incorrect boundary in Pd(OAc)2 (180 mg, 0.80 mmol, 0.01 equiv).
Because the closing parenthesis at the end of Pd(OAc)2 (180 mg, 0.80 mmol, 0.01 equiv) was
missed by ChemBERT, the proposed rules failed to extract mass and amount. As a consequence, these
parameters were missed in a χDL action by the pipeline system. Both types of errors may be addressed
by increasing the training data in future.

Table S3: χDL actions that used in this work and their categories. The actions enclosed in parentheses
did not appear in the evaluation data.

Liquid handling Stirring Temperature control Inert gas Special
Add StartStir HeatChill EvacuateAndRefill Wait
Separate Stir heatChillToTemp Purge (Repeat)
Transfer StopStir StartHeatChill (StartPurge)

StopHeatChill (StopPurge)

Table S4: Result of explicit actions for each category. The numbers indicate (#found action)/(#all
actions). SR is SynthReader, Pipe is Pipeline, O2X is OSPAR2χDL and CLAIR is CLAIRify

Liquid handling
SR Pipe O2X CLAIR SR+CLAIR Pipe+CLAIR O2X+CLAIR

exact recall 14/42 18/42 21/42 26/42 31/42 33/42 33/42
action recall 23/42 28/42 36/42 40/42 40/42 40/42 40/42

Stirring
SR Pipe O2X CLAIR SR+CLAIR Pipe+CLAIR O2X+CLAIR

exact recall 3/7 5/7 5/7 4/7 4/7 5/7 5/7
action recall 4/7 5/7 5/7 6/7 6/7 6/7 6/7

Temperature control
SR Pipe O2X CLAIR SR+CLAIR Pipe+CLAIR O2X+CLAIR

exact recall 4/8 5/8 5/8 2/8 4/8 5/8 5/8
action recall 6/8 6/8 6/8 8/8 8/8 8/8 8/8

Inert gas
SR Pipe O2X CLAIR SR+CLAIR Pipe+CLAIR O2X+CLAIR

exact recall 0/7 0/7 0/7 5/7 5/7 5/7 5/7
action recall 0/7 2/7 3/7 5/7 5/7 5/7 5/7

Special
SR Pipe O2X CLAIR SR+CLAIR Pipe+CLAIR O2X+CLAIR

exact recall 1/1 0/1 0/1 1/1 1/1 1/1 1/1
action recall 1/1 0/1 0/1 1/1 1/1 1/1 1/1

References

[1] Flask, https://flask.palletsprojects.com/en/3.0.x/, (accessed June 21, 2024).

[2] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou and J. Tsujii, Proceedings of the Demon-
strations at the 13th Conference of the European Chapter of the Association for Computational
Linguistics, Avignon, France, 2012, pp. 102–107.

4

https://flask.palletsprojects.com/en/3.0.x/

[3] CodeMirror 5, https://codemirror.net/5, (accessed June 21, 2024).

[4] S. Okaya, K. Okuyama, K. Okano and H. Tokuyama*, Organic Syntheses, 2003, 93, 63–74.

5

https://codemirror.net/5

<Add vessel="reactor"
reagent="2-iodobenzamide"
mass="19.8 g"
amount="80 mmol" />

<Add vessel="reactor"
reagent="PPh3"
mass="0.419 g"
amount="1.60 mmol" />

<Add vessel="reactor"
reagent="CuI"
mass="0.152 g"
amount="0.80 mmol" />

<Add vessel="reactor"
reagent="Pd(OAc)2"
mass="0.18 g"
amount="0.80 mmol" />

<Add vessel="reactor"
reagent="N,N-dimethylformamide DMF"
volume="40 mL" />

<Add vessel="reactor"
reagent="Et3N"
volume="120 mL" />

<Add vessel="reactor"
reagent="1-hexyne"
volume="12 mL"
amount="104 mmol" />

Annotation by ChemBERT

Annotation by experts (OSPAR corpus)

𝜒DL from the annotation by experts

Figure S3: Effect of modifying the annotation. Here, red-colored texts in χDL were not generated
from the annotation by ChemBERT. The procedure text is based on Okaya et al.,4 with revisions
made through pre-processing in the OSPAR corpus.

6

	How to run our framework
	Installation
	Configuration and execution

	Details of user interface
	OSPAR2DL
	DL actions
	Rules for detecting amounts, masses and volumes
	Dictionary for interpreting parameters
	Effect of modifying the annotation

