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SI Figure 1. Distribution of sequences in the training dataset amongst plant and animal species.



SI Figure 2. Number of sequences (and their family identity) in the training and test datasets with 

known activity for each nucleotide sugar donor substrate. Each bar denotes the number of 

sequences from a family with the color denoting its nucleotide-sugar activity.  



SI Table 1: The number of sequences per family in the training dataset is shown below. 

Sequences Family Donor Substrates
148 GT1 UDP-Glucua, UDP-Glu, UDP-Xyl, UDP-

Gal, UDP-Rha, Other
66 GT4 UDP-Glu, GDP-Man, UDP-Gal, Other
65 GT20 UDP-Glu, Other
44 GT28 UDP-Glu, UDP-Gal, Other
28 GT10 GDP-Fuc
15 GT3 UDP-Glu
9 GT33 GDP-Man
9 GT23 GDP-Fuc
5 GT47 UDP-Xyl, UDP-Gal
4 GT41 UDP-Glu, Other
4 GT61 UDP-Xyl, Other
4 GT65 GDP-Fuc
3 GT5 UDP-Glu, Other
2 GT30 Other
2 GT56 Other
2 GT70 UDP-Glucua
1 GT9 Other
1 GT19 Other
1 GT37 GDP-Fuc



SI Table 2: All model hyperparameters used in the training grid search.

Model Type Hyperparameter Ranges

Gaussian Naïve 
Bayes

Variance 
Smoothing

100 points in 
logspace (0,-9)

K-Nearest 
Neighbors

Number of 
Neighbors Power Parameter Weights

1-10 1, 2 Uniform, Distance

Random Forest Number of Trees Maximum 
Features per Split Criterion Class Weight

20-200, in 
multiples of 20 0.1 ,0.3, 0.5 Gini, Entropy

Balanced, 
Balanced 

Subsample

Support Vector Regularization 
Parameter

Maximum 
Iterations Kernel Gamma

0.1, 1, 10 10, 50, 100
Radial Basis 

Function, Linear, 
Polynomial

1, 0.1, 0.01



SI Table 3. The mean cross-validation and test set score for each best performing model is shown. 
The standard deviations are high to only one substrate predicted for each sample, thus making the 
predictions binary.

Model Type Cross-Validation F1 Score Test F1 Score

KNN 94.2% ± 23.4% 85.0% ± 35.7%

RF 89.8% ± 30.2% 44.0% ± 49.6%

SVC 91.5% ± 27.9% 59.0% ± 49.2%

GNB 84.5% ± 32.8% 42.7% ± 48.6%



SI Table 4: Optimal hyperparameters and feature lengths of all models found in the training grid 
search.

Model Type Hyperparameter Ranges

Gaussian 
Naïve Bayes

Variance 
Smoothing

Feature Length

1.519911082
952933e-09

100

K-Nearest 
Neighbors

Number of 
Neighbors

Power 
Parameter

Weights Feature Length

1 1 Uniform 550

Random 
Forest

Number of 
Trees

Maximum 
Features per 

Split

Criterion Class Weight Feature Length

100 0.1 Entropy Balanced 500

Support 
Vector

Regularization 
Parameter

Maximum 
Iterations

Kernel Gamma Feature Length

0.1 100 Linear 1 950



SI Figure 3. F1 cross-validation (A) and test scores (B) from all models trained on only the family 

number are shown. (C) The Matthews Correlation Coefficient scores of the best performing KNN 

model for each test set substrate are also shown. As expected, the cross-validation scores of all 

family-based models are lower than their counterpart models generated with additional features. 

The best CV set score of 63% ± 48.4%  for the KNN model (test score 46% ± 49.8%), is lower 

than the best test set score of 94.1% ± 23.4%)  for the KNN model (Figure 3B) built with the 

complete feature set (Figure 3) (with test score 85% ± 35.7%)). 

The individual substrate MCC scores are also lower than in the more complex model, showing 

similar or lower scores on all substrates except UDP--L-xylose. The high performance on this 

single substrate is notable, as it has higher accuracy than in the more complex model. Nonetheless, 

the poor performance on the additional substrates shows this family-based model’s inability to 

predict nucleotide sugar donor substrates. 



SI Figure 4. (A-C) UDP--D-glucose was docked to the truncated representative structures 

A2WYE7, Q9LRA7, and P54166 from families GT4, GT20, and GT28, respectively. A top pose 

for each structure is shown, along with residues found to be highly conserved (by residue type) 

within these families.



SI Table 5: The family distribution of uncharacterized sequences from distinct plant genera 
datasets.

Genera

Family Populus Spirodela Eucalyptus Chlamydomonas

GT1 91 73 3 324

GT4 0 2 4 0

GT5 1 0 3 0

GT10 0 0 1 0

GT28 13 2 7 7

GT37 28 13 1 3

GT41 12 3 1 2

GT47 147 49 139 35

GT61 2 0 0 0

GT92 14 4 3 4



SI Figure 5. F1 cross-validation (A) and test scores (B) from all models trained without solvent 

accessible surface area and secondary structure values are shown. (C-D) The Matthews Correlation 

Coefficient scores and confusion matrix of the best performing KNN model for each test set 

substrate are also shown. 



SI Figure 6. Additional models were trained removing the 70% AF2 confidence score minimum 

to be assigned secondary structure and SASA values. F1 cross-validation (A) and test scores (B) 

are shown.  (C) The Matthews Correlation Coefficient scores of the best performing KNN model 

for each test set substrate are also shown. These scores are very similar to the KNN model with 

the restriction.


