Supplementary Information for

Decoding substrate specificity determining factors in glycosyltransferase-B enzymes – Insights from machine learning models

Samantha G. Hennen¹, Yannick J. Bomble¹, Breanna R. Urbanowicz^{3,4}, Vivek S. Bharadwaj^{2*}

¹Biosciences Center, National Renewable Energy Laboratory, Golden, CO, ² Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO,³ Complex Carbohydrate Research Center, University of Georgia, Athens, GA, ⁴ Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA.

SI Figure 2. Number of sequences (and their family identity) in the training and test datasets with known activity for each nucleotide sugar donor substrate. Each bar denotes the number of sequences from a family with the color denoting its nucleotide-sugar activity.

Sequences	Family	Donor Substrates	
148	GT1	UDP-Glucua, UDP-Glu, UDP-Xyl, UDP-	
		Gal, UDP-Rha, Other	
66	GT4	UDP-Glu, GDP-Man, UDP-Gal, Other	
65	GT20	UDP-Glu, Other	
44	GT28	UDP-Glu, UDP-Gal, Other	
28	GT10	GDP-Fuc	
15	GT3	UDP-Glu	
9	GT33	GDP-Man	
9	GT23	GDP-Fuc	
5	GT47	UDP-Xyl, UDP-Gal	
4	GT41	UDP-Glu, Other	
4	GT61	UDP-Xyl, Other	
4	GT65	GDP-Fuc	
3	GT5	UDP-Glu, Other	
2	GT30	Other	
2	GT56	Other	
2	GT70	UDP-Glucua	
1	GT9	Other	
1	GT19	Other	
1	GT37	GDP-Fuc	

SI Table 1: The number of sequences per family in the training dataset is shown below.

Model Type	Hyperparameter Ranges			
Gaussian Naïve Bayes	Variance Smoothing			
	100 points in logspace (0,-9)			
K-Nearest Neighbors	Number of Neighbors	Power Parameter	Weights	
	1-10	1, 2	Uniform, Distance	
Random Forest	Number of Trees	Maximum Features per Split	Criterion	Class Weight
	20-200, in multiples of 20	0.1 ,0.3, 0.5	Gini, Entropy	Balanced, Balanced Subsample
Support Vector	Regularization Parameter	Maximum Iterations	Kernel	Gamma
	0.1, 1, 10	10, 50, 100	Radial Basis Function, Linear, Polynomial	1, 0.1, 0.01

SI Table 2: All model hyperparameters used in the training grid search.

SI Table 3. The mean cross-validation and test set score for each best performing model is shown. The standard deviations are high to only one substrate predicted for each sample, thus making the predictions binary.

Model Type	Cross-Validation F1 Score	Test F1 Score
KNN	$94.2\% \pm 23.4\%$	85.0% ± 35.7%
RF	89.8% ± 30.2%	$44.0\% \pm 49.6\%$
SVC	91.5% ± 27.9%	$59.0\% \pm 49.2\%$
GNB	84.5% ± 32.8%	$42.7\% \pm 48.6\%$

SI Table 4: Optimal hyperparameters and feature lengths of all models found in the training grid search.

Model Type		Hyperparan	neter Ranges		
Gaussian Naïve Bayes	Variance Smoothing				Feature Length
	1.519911082 952933e-09				100
K-Nearest Neighbors	Number of Neighbors	Power Parameter	Weights		Feature Length
	1	1	Uniform		550
Random Forest	Number of Trees	Maximum Features per Split	Criterion	Class Weight	Feature Length
	100	0.1	Entropy	Balanced	500
Support Vector	Regularization Parameter	Maximum Iterations	Kernel	Gamma	Feature Length
	0.1	100	Linear	1	950

SI Figure 3. F1 cross-validation (A) and test scores (B) from all models trained on only the family number are shown. (C) The Matthews Correlation Coefficient scores of the best performing KNN model for each test set substrate are also shown. As expected, the cross-validation scores of all family-based models are lower than their counterpart models generated with additional features. The best CV set score of $63\% \pm 48.4\%$ for the KNN model (test score $46\% \pm 49.8\%$), is lower than the best test set score of $94.1\% \pm 23.4\%$) for the KNN model (Figure 3B) built with the complete feature set (Figure 3) (with test score $85\% \pm 35.7\%$)).

The individual substrate MCC scores are also lower than in the more complex model, showing similar or lower scores on all substrates except UDP- β -L-xylose. The high performance on this single substrate is notable, as it has higher accuracy than in the more complex model. Nonetheless, the poor performance on the additional substrates shows this family-based model's inability to predict nucleotide sugar donor substrates.

SI Figure 4. (A-C) UDP- α -D-glucose was docked to the truncated representative structures A2WYE7, Q9LRA7, and P54166 from families GT4, GT20, and GT28, respectively. A top pose for each structure is shown, along with residues found to be highly conserved (by residue type) within these families.

	Genera				
Family	Populus	Spirodela	Eucalyptus	Chlamydomonas	
GT1	91	73	3	324	
GT4	0	2	4	0	
GT5	1	0	3	0	
GT10	0	0	1	0	
GT28	13	2	7	7	
GT37	28	13	1	3	
GT41	12	3	1	2	
GT47	147	49	139	35	
GT61	2	0	0	0	
GT92	14	4	3	4	

SI Table 5: The family distribution of uncharacterized sequences from distinct plant genera datasets.

SI Figure 5. F1 cross-validation (A) and test scores (B) from all models trained without solvent accessible surface area and secondary structure values are shown. (C-D) The Matthews Correlation Coefficient scores and confusion matrix of the best performing KNN model for each test set substrate are also shown.

SI Figure 6. Additional models were trained removing the 70% AF2 confidence score minimum to be assigned secondary structure and SASA values. F1 cross-validation (A) and test scores (B) are shown. (C) The Matthews Correlation Coefficient scores of the best performing KNN model for each test set substrate are also shown. These scores are very similar to the KNN model with the restriction.