
 S1

Electronic Supplementary Information

General Data Management Workflow to Process Tabular Data in
Automated and High-throughput Heterogeneous Catalysis
Research

Erwin Lama,c,*, Tanguy Maurya,c, Sebastian Preissa,c, Yuhui Houa, Hannes Freya, Caterina
Barillarib, Paco Laveillea,*

aETH Zurich, Swiss Cat+ East, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland
bETH Zurich, ID SIS, Klingelbergstrasse 48, 4056 Basel, Switzerland
cThese authors contributed equally

*Corresponding author. E-mail: elam@ethz.ch; plaveille@ethz.ch

Supplementary Information (SI) for Digital Discovery.
This journal is © The Royal Society of Chemistry 2025

 S2

Supplementary Note 1: OpenBIS “Dropbox Function”

Automatic data upload to openBIS can be performed with its integrated “Dropbox function”. Upon

implementation, the openBIS network drive “eln-lims-dropbox” of the corresponding openBIS

platform can be mounted. Within this network drive, the folder name, following a naming convention,

provides information about location, data type and data name. With this information, files are

automatically uploaded to openBIS (Figure S1).

Therefore, a Python script can be implemented, tailored to the output of individual instruments to

automate data upload, where upon creation of the experiment’s final output file, all relevant data to

the experiment is directly uploaded to openBIS. Currently at ETHZ SwissCAT+, two Python scripts

have been implemented to perform data upload on instruments from Chemspeed (Swing XL) and

Avantium (XR/XD fixed-bed reactors) (See Supplementary Note 2).

Figure S1. Workflow to automated data upload of raw output files to openBIS.

 S3

Supplementary Note 2: Automatic file upload of Avantium XR/XD fixed-bed reactors &

Chemspeed Swing XL

A watcher script (See Avantium_Watcher.py) has been implemented to automatically upload

Avantium fixed-bed testing related data. More precisely, the output Excel files containing set and

process values of the instrument (gas flow rates, temperature, pressure, valve position etc.), and the

GC concentration data is uploaded as “RAW_DATA” to openBIS. Since this data file is generally

manually post-processed, the instruction to use the script is to save the final processed output file in

a destination folder locally. The watcher script detects that a new file has been created and checks

if the filename fulfills certain conditions. At ETHZ SwissCAT+, experiments are grouped into projects

(labelled AXXX), experiments (labelled TASKXX) and runs (labelled RUNXX). Therefore, the

filename should contain the following strings in the order: AXXX_TASKXX_RUNXX (X = integers).

This information is required for the script to know where to store the data in openBIS which follows

a similar project/experiment structure (See Supplementary Note 1). In addition, all the raw data from

the GC analysis of an experiment will also be uploaded as “GC_DATA”. The folder containing all the

GC related data that should have the same naming pattern (AXXX_TASKXXX_RUNXX), will be

zipped and uploaded to openBIS.

The watcher script (Chemspeed_Watcher.py) has been implemented to upload automatically the

logfile and output CSV files after a run. The script monitors the folder where the logfiles are created

during a Chemspeed Swing XL experiment. Two types of logfiles are created from the log file folder

either from a simulation run or an actual experimental run. Logfiles of simulation runs always have

the tag “(simulated)” and those files are ignored by the Python script. The logfile of an actual

experiment is continuously updated while the Chemspeed Executor software is running. The Python

script therefore monitors the logfile for updates and uploads the logfile as “LOG_DATA” through the

“openBIS Dropbox” function once the logfile stops updating. At the same time, the Python script

monitors the folder with the CSV output file of the Chemspeed run that contains information about

liquid dispense, solid dispense, heating temperature, shaking rate and reaction time that gets

uploaded as “RAW_DATA”. Since the CSV output file gets updated once the experimental run is

finished, the Python script uploads the file only when the modification time of the CSV output file is

newer than the modification time of the logfile. Within ETHZ SwissCAT+, to ensure the right files are

copied, further controls have been implemented following the project/experiment structure (See

Supplementary Note 1) at ETHZ SwissCAT+. Logfiles should have the naming convention:

AXXX_TASKXX_RUNXX. Output CSV files should have the naming convention:

AXXX_TASKXXX_RUNXX_OUTPUT.csv and stored in specific folder structures (e.g.

AXXX/TASKXXX/AXXX_TASKXXX_RUNXX_OUTPUT.csv).

 S4

Supplementary Note 3: Jupyter Notebook for the data processing example.

With the data files uploaded to openBIS and the configuration file, the data processing workflow can

be performed on a Jupyter Notebook requiring few lines of inputs. The directory needs to be changed

to where the data should be stored locally, and all the python libraries are loaded.

#Change directory to the source code directory

%cd "DIRECTORY_PATH" #Input directory path

#Load all the required library for openBIS data download, reading the data, merging #the data and processing the data

from src.data.openBIS_queryV3 import openbis_query

from src.data.Read_Data import read_data

from src.data.Merge import merge

from src.data.Process_FixedBed import process_fixedbed

The data management tasks require the location of the configuration file and one line for each

individual step (i. download data from openBIS, ii. read the data onto a dictionary, iii. merge the data,

iv. process the data). The final merged and processed data will be stored in the local folder and

uploaded to openBIS (if save_to_openbis=TRUE).

#Path of the instruction/configuration file

config_file_name = "CONFIG_FILE_PATH "

#Function to run the data management workflow

obq = openbis_query(data_source="OPENBUS_URL/SPACE/PROJECT/",config_file_name= config_file_name)

obq = read_data(data_source="DATAFOLDER",config_file_name= config_file_name, tasks_to_process = ["TASKS"])

obm = merge(data_sets=obq.data,config_file_name= config_file_name, save_to_openbis=True)

obp = process_fixedbed(config_file_name= config_file_name,data_sets= obm.data_processed)

openbis_query(data_source,config_file_name)

 data_source: str, path of the data on openBIS

 config_file_name: str, path of the instruction/configuration file

read_data(data_source,config_file_name, tasks_to_process)

 data_source: str, path of the local data folder

 config_file_name: str, path of the instruction/configuration file

 tasks_to_process: list, list of tasks to process

merge(data_sets,config_file_name, save_to_openbis)

 data_sets: dict, dictionary of data

 config_file_name: str, path of the instruction/configuration file

 save_to_openbis: bool, if True: upload merged data to openBIS

process_fixedbed(data_sets, config_file_name)

 data_sets: dict, dictionary of data

 config_file_name: str, path of the instruction/configuration file

 S5

Supplementary Note 4: Multiple files

During the read data process (Read.py), multiple files that are stored in the dictionary with the same

FILE_ID are first concatenated during the merging process (Mergy.py) before merging with other

FILE_ID’s data (Figure S2).

Figure S2. Concatenation of multiple files within a dictionary’s FILE_ID prior to merging.

 S6

Supplementary Note 5: Identical file structure of different Tasks:

For different tasks with identical file and merging procedure, the configuration files with information

about the files do not need to be repeated. For example, for the first TASKS (TASK01), the

information can be collected with “&A001_STANDARD_1” and the instruction can be reused for

subsequent tasks with “*A001_STANDARD_1”

TASKS:

 TASK01: &A001_STANDARD_1 #Collect file information into “A001_STANDARD_1”

 METAL_DISPENSE:

 NAME: METAL_DISPENSE

 FILE_ID: !!str CombVialPrep

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 TARGET_ID: !!str Combinational Vial Number

 SOLID_DISPENSE:

 NAME: SOLID_DISPENSE

 FILE_ID: !!str SolidDispense

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 SOURCE_ID: !!str Impregnation Vial Number

 IMPREGNATION:

 NAME: IMPREGNATION

 FILE_ID: !!str Impregnation

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 SOURCE_ID: !!str Combinational Vial Number

 TARGET_ID: !!str Impregnation Vial Number

 TASK02: *A001_STANDARD_1 #Use same file information as TASK01 “A001_STANDARD_1”

 TASK03: *A001_STANDARD_1

 TASK04: *A001_STANDARD_1

 TASK05: *A001_STANDARD_1

 S7

Supplementary Note 6: MERGING_ORDER section and sequence of combining files

The example below illustrates how the configuration file should be set up to merge four files within

a set sequence from an experimental workflow. The four files have the “NAME” METAL_DISPENSE,

SOLID_DISPENSE, IMPREGNATION and IMPREGNATION_TO_BARCODE. The

MERGING_ORDER section indicates on how the map should be structured to perform the following

merging sequence:

METAL_DISPENSE and SOLID_DISPENSE files are first merged using the column names indicated

in the TARGET_ID and SOURCE_ID. The IMPREGNATION file is then merged with the combined

file of METAL_DISPENSE and SOLID_DISPENSE. Lastly, the IMPREGNATION_TO_BARCODE

file is merged into the combined file to have all four individual files merged into one file.

TASKS:

 TASK01:

 METAL_DISPENSE:

 NAME: METAL_DISPENSE

 FILE_ID: !!str CombVialPrep

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 TARGET_ID: !!str Combinational Vial Number

 SOLID_DISPENSE:

 NAME: SOLID_DISPENSE

 FILE_ID: !!str SolidDispense

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 SOURCE_ID: !!str Impregnation Vial Number

 IMPREGNATION:

 NAME: IMPREGNATION

 FILE_ID: !!str Impregnation

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 SOURCE_ID: !!str Combinational Vial Number

 TARGET_ID: !!str Impregnation Vial Number

 IMPREGNATION_TO_BARCODE:

 NAME: IMPREGNATION_TO_BARCODE

 FILE_ID: !!str ImpregnationBarcode

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 SOURCE_ID: !!str Impregnation Vial Number

 S8

MERGING_ORDER:

 TASK01: !!map {

 left: {

 left: {

 left: [METAL_DISPENSE, FILE_ID],

 left_id: [METAL_DISPENSE, TARGET_ID],

 right: [SOLID_DISPENSE, FILE_ID],

 right_id: [SOLID_DISPENSE, SOURCE_ID]

 },

 left_id: [SOLID_DISPENSE, SOURCE_ID],

 right: [IMPREGNATION, FILE_ID],

 right_id: [IMPREGNATION, TARGET_ID]

 },

 left_id: [IMPREGNATION, TARGET_ID],

 right: [IMPREGNATION_TO_BARCODE, FILE_ID],

 right_id: [IMPREGNATION_TO_BARCODE, SOURCE_ID]

 }

 S9

Supplementary Note 7: Merging on multiple columns and filename

In the example below, the REACTOR DATA section will consist of 3 individual files from fixed-bed

testing ran on 3 different Avantium fixed-bed unit (XR and XD). From the output file content, it would

not be straightforward to know which files corresponds to which Avantium fixed-bed unit. To have

an interpretable and logical process to merge such data files, further features were implemented into

the Mergy.py function to take strings of the output filename to allow data merging.

For example, in the following case three files are generated:

A001_TASKXX_CATALYSIS_XR_RUN01

A001_TASKXX_CATALYSIS_XDB_RUN01

A001_TASKXX_CATALYSIS_XDC_RUN01

The relevant data are stored in the data sheet with the name “Run Data” (DATA_SHEET: !!str Run

Data). The instruction file takes the fourth entry of the filename separated by “_” and adds this

information as a new column entry. The fourth entry would be XR, XDB or XDC and corresponds to

the name of the fixed-bed units. The name of the new column entry (UNIT) is provided in the

configuration file.

Project: !!str A001

TASKS:

 TASK01: &A001_STANDARD_1

 REACTOR_LOADING:

 NAME: REACTOR_LOADING

 FILE_ID: !!str ReactorLoading

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 SOURCE_ID: !!str Catalysis Vial Number Barcode

 TARGET_ID: !!str Reactor

 TARGET_UNIT: !!str Unit

 RUN_NUMBER: !!str Run

 REACTOR_DATA:

 NAME: REACTOR_DATA

 FILE_ID: !!str CATALYSIS

 CSV_SEPARATOR: !!str ","

 DATA_SHEET: !!str Run Data

 SOURCE_ID: !!str Reactor # generated via special case

 COLUMN_TO_ADD:

 UNIT:

 ONLY_PARTS: !!int 0

 LENGTH_IGNORE: None

 NAME: !!str Unit

 IS_INT: !!bool False

 POSITION: 4

 S10

For the merging process, multiple column names are provided to merge data. In the example below,

the merging occurs on the REACTOR_LOADING file from the TARGET_ID and TARGET_UNIT that

corresponds to column names of Reactor and Unit. This is matched with the column entries of the

REACTOR_DATA file column names provided by the SOURCE_ID (Reactor) and the newly

generated column ([COLUMN_TO_ADD, UNIT, NAME]) that corresponds to the string in the

filename (XR, XDB or XDC)

MERGING_ORDER:

 TASK01: &A001_MERGE_STANDARD_1 !!map {

 left: {

 left: [REACTOR_LOADING, FILE_ID],

 left_id: [REACTOR_LOADING, [TARGET_ID, TARGET_UNIT]],

 right: [REACTOR_DATA, FILE_ID],

 right_id: [REACTOR_DATA, [SOURCE_ID, [COLUMN_TO_ADD, UNIT, NAME]]],

 }

 S11

Supplementary Note 8: Running the demonstration data management workflow.

A demonstration Jupyter notebook with the data already downloaded locally is included. It allows to

demonstrate the data processing tasks of project A001 without the need of an openBIS platform.

• The Jupyter notebook first changes to the correct directory and loads the required libraries.

(Note: the directory change is set to go two directories backwards with respect to the Jupyter

notebook. Therefore, this command would continue to move two directories backwards if

executed multiple times without restarting the kernel).

import os

os.chdir(os.path.join(os.getcwd(), "..", ".."))

from src.data.Read_Data import read_data

from src.data.Merge import merge

from src.data.Process_FixedBed import process_fixedbed

• The configuration file path ./src/config/config_a001.yml is assigned to the variable

config_file_name.

config_file_name = "./src/config/config_A001.yml"

• The data are loaded into the dictionary by running the read_data function which requires:

o Path of the data: data_source = “./data/A001”

o Path of the configuration file: config_file_name = config_file_name

o TASKS to process: tasks_to_process = [“TASK01”, “TASK02”, “TASK03”, “TASK04”,

“TASK05”, “TASK06”].

• With this information, the data are loaded into the dictionary:

obr = read_data(data_source="./data/A001",config_file_name= config_file_name,

 tasks_to_process =

["TASK01","TASK02","TASK03","TASK04","TASK05","TASK06"])

• Each of the tasks are loaded in subdictionaries: TASK0X_dict (X = 1, 2, 3, 4, 5, 6)

for key in obr.data.keys():

 print(key)

OUTPUT:

TASK02_dict

TASK01_dict

TASK05_dict

TASK06_dict

TASK03_dict

TASK04_dict

• All the data are located in obr.data and individual loaded files can be displayed by indicating

the path of the files:

obr.data["TASK01_dict"]["METAL_DISPENSE"]["A001_TASK01_CombVialPrep.csv"]

 S12

• TASK01_dict being the subdictionary, METAL_DISPENSE the FILE_ID from the

configuration file and A001_TASK01_CombVialPrep.csv the filename.

• Using the data from obr (obr.data) and the configuration file, data are merged.

o Data set dictionary: data_sets = obr.data

o Path of the configuration file: config_file_name = config_file_name

o Upload to openBIS: save_to_openbis = FALSE (no openBIS upload in this example)

obm = merge(data_sets= obr.data,config_file_name= config_file_name,

save_to_openbis=False)

• Each of the merged files are stored in subdictionaries: TASK0X (X = 1, 2, 3, 4, 5, 6)

for key in obm.data.keys():

 print(key)

OUTPUT:

TASK03

TASK02

TASK04

TASK05

TASK06

TASK01

• The merged dataframes for each TASK can be accessed by:

obm.data["TASK01"]

• Using the data from obm (obm.data) and the configuration file, data are processed.

o Data set dictionary: data_sets= obm.data

o Path of the configuration file: config_file_name = config_file_name

obp = process_fixedbed(config_file_name= config_file_name,data_sets=

obm.data_processed)

• Each of the processed files are stored in subdictionaries: TASK0X (X = 1, 2, 3, 4, 5, 6)

for key in obp.full_data.keys():

 print(key)

OUTPUT:

TASK03

TASK02

TASK04

TASK05

TASK06

TASK01

• The dataframes in the subdictionaries are concatenated into one full dataframe and can be

accessed by:

obp.full_dataframe

 S13

• In the presented case study, four data points per condition were collected which are

averaged. The dataframe of the mean values can be accessed by:

obp.full_dataframe_mean

• Exported CSV files can be found in the ./A001 folder consisting of:

o TASK0X/TASK0X_Data.csv: Merged data for TASK0X

o TASK0X/TASK0X_rename.csv: Merged and renamed data for TASK0X (See

Supplementary Note 10)

o TASK0X/TASK0X_processed.csv: Processed data for TASK0X

o A001_Full_Data.csv: Data from all TASKS collected in one file

o A001_Full_Data_Mean.csv: Data from all TASKS with the datapoints of four

measurements averaged

 S14

Supplementary Note 9: Instruction for catalyst performance calculation.

A custom script is implemented to allow calculating reaction metrics for Avantium fixed-bed reactors.

The script is tailored to process carbon conversion reactions (e.g. CO2 hydrogenation, propane

dehydrogenation). In the REACTOR_UNIT section, information about the different units is provided.

The first subsection indicates the name of the unit (e.g. FLOWRENCE_T2101B). Required

information are the identifier of the unit (e.g. XDB) and its setup under SETUP. The SETUP section

contains information about the inlet values such as temperature (TEMPERATURE), pressure

(PRESSURE) and gas flows (GAS_FLOW). For each section the NAME is given which corresponds

to the description of the section, the unit, and the column name of the set point (SET_POINT) and

process value (PROCESS_VALUE). Within the GAS_FLOW section, each subsection corresponds

to individual mass flow controllers (e.g. FIC_110), including the name of the gas (NAME), unit (UNIT),

gas composition, set point and process value. Having the gas composition allows to obtain the

overall flowrate of a specific gas e.g. N2 is present in FIC_130 and FIC_140. These provided

information are unique for individual fixed-bed reactors and should generally remain the same within

the same unit.

REACTOR_UNIT:

#--#

 FLOWRENCE_T2101B:

 NAME: !!str XDB

 FILE_ID: !!str T2101B

 SETUP: &XD_SETUP

 INLET:

 TEMPERATURE:

 NAME: !!str Reactor Temperature

 UNITS: !!str "[C]"

 SET_POINT: !!str Reactor_Temperature_SP

 PROCESS_VALUE: !!str Reactor_Temperature_PV

 PRESSURE:

 NAME: !!str Reactor Pressure

 UNITS: !!str "[Barg]"

 SET_POINT: ReactorPressure_SP

 PROCESS_VALUE: !!str Reactor_Inlet_Pressure

 GAS_FLOW:

 FIC_110:

 NAME: !!str H2

 UNITS: !!str "[mL Min-1]"

 COMPOSITION: !!map {"H2": 1}

 SET_POINT: !!str FIC_110_SP

 PROCESS_VALUE: !!str FIC_110_PV

 CONTROL_VALVE: !!str KCV_115_SP

 FIC_130:

 NAME: !!str N2

 S15

 UNITS: !!str "[mL Min-1]"

 COMPOSITION: !!map {"N2": 1}

 SET_POINT: !!str FIC_130_SP

 PROCESS_VALUE: !!str FIC_130_PV

 FIC_140:

 NAME: !!str 40_CO2_in_N2

 UNITS: !!str "[mL Min-1]"

 COMPOSITION: !!map {"CO2": 0.4, "N2": 0.6}

 SET_POINT: !!str FIC_140_SP

 PROCESS_VALUE: !!str FIC_140_PV

The configuration file contains a “Reaction” section where reactants (REACTANTS) and products

(PRODUCTS) are provided. The script will use the NAME provided in the configuration file and match

it with the gas chromatogram concentration columns (e.g. FID_F_CH4_conc) in the output file and

use this column entry to perform calculation of reactant conversion, product selectivity and formation

rate. The number of carbon atoms are provided in the COMPOSITION section in order to normalize

the gas concentration by carbon number for conversion and selectivity calculation.

#--#

Reaction #

#--#

REACTION:

 REACTANTS:

 REACTANT_A:

 NAME: !!str "CO2"

 COMPOSITION: !!map {"C": 1, "H": 0}

 PRODUCTS:

 PRODUCT_A:

 NAME: !!str "MeOH"

 COMPOSITION: !!map {"C": 1, "H": 4}

 PRODUCT_B:

 NAME: !!str "CO"

 COMPOSITION: !!map {"C": 1, "O": 1}

 PRODUCT_C:

 NAME: !!str "CH4"

 COMPOSITION: !!map {"C": 1, "H": 4}

 S16

Supplementary Note 10: Renaming of columns on multiple Avantium fixed-bed reactors.

Since the Avantium fixed-bed reactors may have identical column names with different values, a

renaming process with the instructions located in the configuration file was implemented. For

example, the mass flow controller assigned to FIC_110 may correspond to H2 in one unit and to N2

in another unit. The instructions to rename the files are provided in the configuration file.

In the REACTOR_UNIT section, each individual fixed-bed reactor is described. In the example

below, an Avantium Flowrence XD unit is presented and illustrates the renaming of temperature,

pressure and flowrates. For the TEMPERATURE section, the column name of the set and process

value of the temperature are given and how it should be renamed. The script will take the

SET_POINT (e.g. Reactor_Temperature_SP) and PROCESS_VALUE (e.g.

Reactor_Temperature_PV) column names and rename them with the NAME + SET_POINT_LABEL

+ UNIT (e.g. “Reactor Temperature_SP_[C]” for the set point). In case of the flowrates, the set point

value FIC_110_SP will be converted to H2_SP_[mL Min-1].

REACTOR_UNIT:

#--#

 FLOWRENCE_T2101B:

 NAME: !!str XDB

 FILE_ID: !!str T2101B

 SETUP: &XD_SETUP

 INLET:

 TEMPERATURE:

 NAME: !!str Reactor Temperature

 UNITS: !!str "[C]"

 SET_POINT: !!str Reactor_Temperature_SP

 PROCESS_VALUE: !!str Reactor_Temperature_PV

 PRESSURE:

 NAME: !!str Reactor Pressure

 UNITS: !!str "[Barg]"

 SET_POINT: ReactorPressure_SP

 PROCESS_VALUE: !!str Reactor_Inlet_Pressure

 GAS_FLOW:

 FIC_110:

 NAME: !!str H2

 UNITS: !!str "[mL Min-1]"

 COMPOSITION: !!map {"H2": 1}

 SET_POINT: !!str FIC_110_SP

 PROCESS_VALUE: !!str FIC_110_PV

 CONTROL_VALVE: !!str KCV_115_SP

DATA_PROCESSING:

 PROCESS_VALUE_LABEL: !!str "_PV"

 SET_POINT_LABEL: !!str "_SP"

 S17

Supplementary Note 11: Tableau to visualize large data sets in interactive dashboards.

Data visualization allows to have a quick and powerful assessment of the data quality (Figure S3-

S5). In the context of large data sets, their efficient visualization is key to obtain an assessment of

their quality and message. However, plotting large amounts of datapoints in one plot may make it

difficult to understand the data. To overcome this challenge, interactive visualization

tools/dashboards allow to navigate easily through data and perform filtration and highlighting steps.

To achieve this goal, ETHZ SwissCAT+ uses Tableau to create dashboards for data visualization.

Data such as conversion vs. selectivity plots can be created and the plot can be dynamically modified

by filtering by temperature or tasks (Figure S3). The catalyst composition can be visualized in

stacked bar plots and filtered by the metal loading of individual metals (Figure S4). To obtain

information about the performance of a whole batch/task, the average performance such as

selectivity can be visualized (Figure S5).

Figure S3. Example of interactive visualization dashboard to create conversion vs. selectivity scatter

plot and filter plot by temperature and tasks.

 S18

Figure S4. Example of interactive visualization dashboard to create metal composition bar plots and

filter plots by tasks and metal loading.

Figure S5. Example of interactive visualization dashboard to create average MeOH selectivity bar

plots and filter by temperature and task.

 S19

Additional Information

Description of the configuration file inputs for openBIS data download, data reading and data

merging.

#--#

Comments #

#--#

#"""

Args:

COMMENTS (str): Comments on the data

#"""

COMMENTS: !!str No comments

#--#

OpenBIS Config #

#--#

#"""

Args:

URL (str): Url to the openBIS

DEFAULT_USER (str): openBIS username (prompt if null)

SAVE_TOKEN (bool): Save login token

PATH_STRUCTURE (seq): openBIS path structure

MAX_LOGIN_ATTEMPS (int): Number of login attempts before exit

DOWNLOAD_WORKERS (int): Number of parallel data downloads

DOWNLOAD_FILE_SOFT_LIMIT (int): Limit of file numbers before prompt to continue

DOWNLOAD_SIZE_SOFT_LIMIT (float): Limit of file size before prompt to continue

#"""

OPENBIS:

 URL_BASE: !!str openBIS_URL

 DEFAULT_USER: !!null

 SAVE_TOKEN: !!bool True

 PATH_STRUCTURE: !!seq ["space", "project", "experiment", "object", "dataset"]

 MAX_LOGIN_ATTEMPTS: !!int 3

 DOWNLOAD_WORKERS: !!int 10

 DOWNLOAD_FILE_SOFT_LIMIT: !!int 15

 DOWNLOAD_SIZE_SOFT_LIMIT: !!float 10e+6

#--#

Folder Structure #

#--#

#"""

Args:

Project (str): Name of the main folder

TASKS (str): Dictionary for subfolders and their information

SUBFOLDER (str): Name of subfolders e.g. TASK01, TASK02

FILES (str): Name of files to be expected e.g. REACTOR_LOADING

NAME (str): Name of the file within the instruction

FILE_ID (str): String in the file title for identification

DATA_SHEET (int or str): Title of excel datasheet if required

 S20

CSV_SEPARATOR (int or str): separator of the columns

TARGET_ID (str): Column title for merging

SOURCE_ID (str): Column title for merging

#"""

Project: !!str A001

TASKS:

 TASK01:

 REACTOR_LOADING:

 NAME: REACTOR_LOADING

 FILE_ID: !!str ReactorLoading

 DATA_SHEET: !!int 0

 CSV_SEPARATOR: !!str ","

 TARGET_ID: !!str Reactor

 REACTOR_DATA:

 NAME: REACTOR_DATA

 FILE_ID: !!str CATALYSIS

 CSV_SEPARATOR: !!str ","

 DATA_SHEET: !!str Run Data

 SOURCE_ID: !!str Reactor

#--#

Merging Information #

#--#

#"""

Args:

Project (str): Name of the main folder

MERGING_ORDER (str): Dictionary for subfolders and their information

SUBFOLDER (str): Name of subfolders e.g. TASK01, TASK02. Corresponding map

with instructions on which files and column names to be

merged (file 1 corresponds to left and file 2 corresponds

to right)

left (str): Name of file title (e.g. REACTOR_LOADING) and file id

(FILE_ID) to use as identifier

left_id (str): Name of file title (e.g. REACTOR_LOADING) and column name

(TARGED_ID) to be expected

right (str): Name of file title (e.g. REACTOR_DATA) and file id

(FILE_ID) to use as identifier

right_id (str): Name of file title (e.g. REACTOR_DATA) and column name

(SOURCE_ID) to be expected

#"""

MERGING_ORDER:

 TASK01: !!map {

 left: [REACTOR_LOADING, FILE_ID],

 left_id: [REACTOR_LOADING, TARGET_ID],

 right: [REACTOR_DATA, FILE_ID],

 right_id: [REACTOR_DATA, SOURCE_ID]

 }

 S21

#--#

Avantium Reactor Configuration for Renaming #

#--#

#"""

Args:

REACTOR_UNIT (str): Dictionary for reactor units and their information

SUBFOLDER (str): Name of the unit (e.g. FLOWRENCE_T2101B)

NAME (str): Name of the file within the instruction

FILE_ID (str): String in the file title for identification

SETUP: Information about the reactor setup

INLET: Information about the inlet parameters

TEMPERATURE: Information about the temperature columns

NAME (str): Column name to be renamed

UNITS (str): Unit string for the renaming

SET_POINT (str): Column name for temperature setpoint

PROCESS_VALUE (str): Column name for temperature process value

PRESSURE: Information about the pressure columns

NAME (str): Column name to be renamed

UNITS (str): Unit string for the renaming

SET_POINT (str): Column name for pressure setpoint

PROCESS_VALUE (str): Column name for pressure process value

GAS_FLOW: Information about the MFC columns

MFC_NAME (str): Name of the MFC (e.g. FIC_110)

NAME (str): Column name to be renamed

UNITS (str): Unit string for the renaming

COMPOSITION (map): Gas composition

SET_POINT (str): Column name for gas flow setpoint

PROCESS_VALUE (str): Column name for gas flow process value

#"""

#--#

REACTOR_UNIT:

 FLOWRENCE_T2101B:

 NAME: !!str XDB

 FILE_ID: !!str T2101B

 SETUP: &XD_SETUP

 INLET:

 TEMPERATURE:

 NAME: !!str Reactor Temperature

 UNITS: !!str "[C]"

 SET_POINT: !!str Reactor_Temperature_SP

 PROCESS_VALUE: !!str Reactor_Temperature_PV

 PRESSURE:

 NAME: !!str Reactor Pressure

 UNITS: !!str "[Barg]"

 SET_POINT: ReactorPressure_SP

 PROCESS_VALUE: !!str Reactor_Inlet_Pressure

 GAS_FLOW:

 FIC_110:

 S22

 NAME: !!str H2

 UNITS: !!str "[mL Min-1]"

 COMPOSITION: !!map {"H2": 1}

 SET_POINT: !!str FIC_110_SP

 PROCESS_VALUE: !!str FIC_110_PV

#--#

Data Processing

#--#

#"""

Args:

PROCESS_VALUE (str): Name of the main folder

COLUMNS_TO_COPY (seq): Dictionary for subfolders and their information

PROCESS_VALUE_LABEL (str): Name of subfolders e.g. TASK01, TASK02

SET_POINT_LABEL (str): Name of files to be expected e.g. REACTOR_LOADING

NAME (str): Name of the file within the instruction

FILE_ID (str): String in the file title for identification

DATA_SHEET (int or str): Title of excel datasheet if required

CSV_SEPARATOR (int or str): separator of the columns

TARGET_ID (str): Column title for merging

SOURCE_ID (str): Column title for merging

#"""

#--#

DATA_PROCESSING:

 PROCESS_VALUE: "Target Weight (mg)"

 COLUMNS_TO_COPY: !!seq ["RunName", "Unit", "Reactor", "Block", "Reactor

Temperature_SP_[C]", "Reactor Pressure_PV_[Barg]"]

 GROUP_TO_MEAN: !!seq ["Unit","Reactor","TASK", "Reactor Temperature_SP_[C]"]

 # Labeling of data

 PROCESS_VALUE_LABEL: !!str "_PV"

 SET_POINT_LABEL: !!str "_SP"

 S23

Figure S6. Experimental workflow and location of the output data of mixed metal nitrate solution

preparation (CombVialPrep), metal oxide solid dispense (SolidDispense) and incipient wetness

impregnation (Impregnation).

Figure S7. Experimental workflow and location of the output data of synthesis vial barcode scanning

(ImpregnationBarcode), catalyst dispense, barcode scanning of synthesis and destination vial

(CatalystDispenseBarcode), loading of reactors for testing (ReactorLoading), results of fixed-bed

testing (CATALYSIS_XR/XDB/XDC_RUN01) and market cost of used metal (COST).

End of Supporting Information

