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S1 Envelope
Figure S1 shows the Envelope function compared with the histogram of the number of edges in the test set from the ADP
dataset. The histogram is consistent with the distribution of interatomic distances described by previous works1. Showing
covalent peaks with multiple hits at short distances, and also a large number of long-distance peaks related to contacts.
Further confirming that weaker intermolecular interactions play a significant role in our dataset.

Figure S1 Histogram illustrating the distribution of edges in the test split of the ADP dataset. In blue, the distribution of the number of
edges (displayed on the left y-axis) as a function of the distance between atoms in Å. The red curve represents the Envelope over distance,
plotted on the right y-axis.

S2 Rotation SO(3) ADP
Given Ui as the covariance matrix of atom i, Ui can be decomposed using the expected value of a set of N random samples,
as defined in Equation (1).

Ui = E
(
XXT )−E(X)E

(
XT ) ∈ R3×3 (1)
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Where X is a matrix with the coordinates of the N random samples, such that X ∈ RN×3. The rotated version of X is
given by X′ = RX. The rotated covariance matrix, therefore, can be derived as Equation (2).

Uaug
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(
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= RUiRT ∈ R3×3

(2)

This derivation demonstrates how the covariance matrix Ui is transformed under rotation, ensuring that the rotated
ellipsoid maintains its correct orientation relative to the input data.

S3 Intersection over Union (IoU) computation
The Intersection over Union (IoU) of two ADPs is not straightforward to compute analytically. To address this, the 3D
space defined by [−1,1]3 is discretized into a voxel grid with dimensions 64× 64× 64. To ensure that both the true and
predicted ellipsoids are confined within the [−1,1]3 space, the ellipsoids are normalized by the maximum norm between
the true and predicted ellipsoid matrices U. The Mahalanobis distance is computed for each voxel relative to the predicted
and ground truth ellipsoids. The Mahalanobis distance measures the distance between a point and a distribution and is
given by the Equation 3

DM(x) =
√

xT Unorm
−1x (3)

Where Unorm is defined as U
max(∥Upred∥,∥Utrue∥) , and x represents the coordinates of the voxel center.

The resulting distance map is then binarized using a threshold of 1, such that voxels with DM(x) ≤ 1 are considered
inside the ellipsoid, while the rest are considered outside. The IoU is subsequently computed using the binarized distance
maps for predicted and ground truth ellipsoids. Two examples of the binarized voxel grid and their respective IoU can be
seen in Figure S2.

Figure S2 Visual examples of the voxelization method and the respective IoU. The green regions represent the ground truth values and
the red ones the predicted. The green regions have been plotted semitransparent to facilitate the visualization of the intersection between
the two regions.

S4 Training Details
In this section, we outline the specific training configurations employed for each dataset. For all the trainings, Adam2

optimizer with OneCycle3 scheduler with pct start of 0.01 policy has been used. For the Jarvis and the Material Project
dataset, we modified the head of the CartNet to be able to predict a scalar value (s). The prediction head, MLPhead , replaces
the Cholesky head for these two datasets. It consists of two linear layers: the first reduces the dimensionality from dim
to dim/2, followed by a SiLU activation function, and the second further reduces the dimensionality from dim/2 to 1. The
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final output is obtained by applying MLPhead to each latent vector hL
i and then averaging the resulting scalar values across

all nodes within the unit cell, denoted by AV G. Equation (4) defines mathematically the architecture used.

s = AV G(MLPhead(hL
i )) (4)

Where hL
i denote the latent vector at the final CartNet layer for atom i.

S4.1 ADP Dataset

The configuration used for training the different state-of-the art models in the ADP Dataset can be found in Table S1.

Table S1 Training configuration used for the ADP Dataset

Method #Layers Embedding Dim Batch Size Batch Accumulation Lr Epochs Loss SO(3) Augmentation Neigh. Strategy

iComformer 4 256 4 16 1 ·10−3 50 L1 False KNN-25
eComformer 4 256 4 16 1 ·10−3 50 L1 False KNN-25

Ours 4 256 4 16 1 ·10−3 50 L1 True
Radius Graph

(5 Å)

S4.2 Jarvis Dataset

The specific configurations used for training the different properties the Jarvis dataset provides are detailed in Table S2.

Table S2 Training configuration used for the Jarvis dataset.

Property #Layers Embedding Dim Batch Size Batch Accumulation Lr Epochs Loss SO(3) Augmentation Neigh. Strategy

Formation Energy 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Band Gap (OPT) 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Total Energy 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Band Gap (MBJ) 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Ehull 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

S4.3 The Materials Project Dataset

The specific configurations used for training the different properties the Materials Project dataset provides are detailed in
Table S3.

Table S3 Training configuration used for the Materials Project dataset.

Property #Layers Embedding Dim Batch Size Batch Accumulation Lr Epochs Loss SO(3) Augmentation Neigh. Strategy

Formation Energy 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Band Gap 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Form. Energy 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

Band Gap 4 256 64 1 1 ·10−3 500 L1 False
Radius Graph

(5 Å)

S5 Results Analysis
In addition we have evaluated the ADPs and the performance of our model for several chemical interactions or atom types.
Table S4 summarizes these results. In addition to the MAE, S12, and the IoU, we include the volume of the experimental
ellipsoid that provides a reference for the typical spatial extent associated with each atom type. For comparison purposes,
the metrics for all the atoms and only carbon atoms have been included as "Any" and C, respectively. For this analysis, two
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typical intermolecular interactions have been considered, hydrogen bonds and π-π-interactions between benzene rings.
For H-bonds the definition employed by CSD has been used and for π-π-interactions only benzene rings with centroids at
a distance between 3 and 4 Å have been considered.

Table S4 Analysis of the results for different atom types of the ADP test dataset. Arrows indicate the direction of improvement for each
metric.

Atom type Volume (Å
3
) MAE (Å

2
)↓ S12 (%)↓ IoU (%)↑

Any 3.08 ·10−2 2.88 ·10−3 0.75 83.53
C 3.12 ·10−2 2.90 ·10−3 0.74 83.70

R = N,O,S in H-bond (R−H · · ·R′) 2.52 ·10−2 2.65 ·10−3 0.89 82.14
R′ = N,O,F,Cl,Br, I in H-bond (R−H · · ·R′) 2.76 ·10−2 2.75 ·10−3 0.83 82.78

C in π −π interaction 2.76 ·10−2 2.43 ·10−3 0.66 85.54
central C in tert-Butyl 2.23 ·10−2 2.33 ·10−3 0.78 82.80
methyl C in tert-Butyl 3.84 ·10−2 3.81 ·10−3 0.73 83.60

For atoms participating in hydrogen bonds, moderate MAEs (∼ 2.65×10−3 Å
2

to 2.75×10−3 Å
2
) are observed, alongside

slightly elevated S12 values (0.89 and 0.83). In these atoms the experimental volumes (∼ 2.52×10−2 Å
3

to 2.76×10−2 Å
3
)

are smaller than all the atom types (∼ 3.08× 10−2 Å
3
) indicating some spatial constraints as expected, even at moderate

level. Beside moderates, the IoU values around 82% confirm that the predicted ellipsoids still overlap well with the
reference data.

In the case of π-π-interactions between benzene rings, it stand out with an MAE of 2.43×10−3 Å
2
, which is lower than

that of the general carbon category (2.90× 10−3 Å
2
). This reduced MAE aligns with their smaller average experimental

volume of 2.76× 10−2 Å
3
, compared with 3.12× 10−2 Å

3
for generic carbons. In other words, the ADPs in benzene rings

are smaller than in other C atom types, probably due to the ring rigidity and reduced conformational flexibility. Moreover,
the IoU of 85.54% for these π-π-interacting carbons exceeds both the baseline for all atoms (83.53%) and the baseline for
carbons atoms (83.70%), indicating that the model recovers the shape of their displacement ellipsoids particularly well.

Additionally, the performance of the model can be affected by substituents that are more prone to disorder due to
different factors, for example, more rotational freedom. One case scenario can be the tert-butyl group, that is the one
analyzed here. It has two types of C atoms, the central one that is expected to have less freedom and the methyl ones
that are expected to have more flexibility and consequently larger ADPs. As expected, the central carbon in the tert-butyl
group, exhibits one of the smallest experimental volumes among all carbons analyzed (2.23×10−2 Å

3
). Correspondingly, it

shows a lower MAE (2.33×10−3 Å
2
) compared to both the “Any” and generic carbon categories. This observation supports

the notion that a smaller, more spatially confined environment correlates with more accurate ADP predictions. Although
the IoU for this central carbon (82.80%) is similar to that of hydrogen-bonded atoms, it remains close to the baseline
levels, indicating that the model is capturing the overall shape of the anisotropic displacement despite slight nuances in
the ellipsoid’s geometry. Not surprisingly, the methyl carbons in tert-butyl groups occupy a larger experimental volume
(3.84× 10−2 Å

3
) and show a higher MAE (3.81× 10−3 Å

2
) than any of the listed categories. However, their IoU (83.60%)

remains comparable to generic carbons, indicating that the model consistently identifies the shape of the ellipsoid, and is
able to properly reproduce the increased thermal motion and conformational freedom in these methyl carbons.

Overall, these results highlight the robust predictive capability of our model across a variety of atom types and in-
teractions. In addition, the correlation between the volume and the accuracy metrics (particularly MAE) emphasizes the
influence of local structural constraints, such as planarity, rigidity, or conformational freedom, on anisotropic displacement
parameters.

In order to gain more insight into how the model performs in the same compound but with different crystal structures
and measured at different temperatures the results for the structures of the known ROY polymorph that were in the test
dataset have been analyzed. Table S5 summarizes the performance of CartNet in predicting their ADPs. The metrics
examined (MAE, S12, and IoU) provide complementary insights into how faithfully the model captures thermal ellipsoid
shapes and orientations.

Overall, the model demonstrates robust predictive capability for the majority of the structures, often achieving high IoU
values and low S12 and MAE metrics. Notably, several Y polymorphs (e.g., QAXMEH22, QAXMEH23, QAXMEH58) exhibit
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both high IoU scores (above 88%) and minimal shape discrepancy, suggesting that CartNet can effectively capture thermal
motion when the underlying structural motifs remain consistent. However, a performance reduction is observed for
certain polymorphs measured at low temperatures or within the P1̄ space group. This trend is exemplified by QAXMEH53
(Y04, P1̄ at 100 K) and QAXMEH56 (R, P1̄ at 150 K), which show relatively higher S12 values alongside lower IoU scores.
Similarly, although QAXMEH19 (Y, P21/n at 30 K) maintains a comparatively low MAE, its IoU is notably lower than other
Y polymorphs at higher temperatures, indicating that temperature-induced lattice distortions or pronounced packing
differences can pose additional challenges for the model.

Table S5 Table of results between the different ROY structures present in the ADP test dataset. Arrows indicate the direction of
improvement for each metric.

CSD Refcode Polymorph Space Group Temperature (K) MAE (Å
2
)↓ S12 (%)↓ IoU (%)↑

QAXMEH32 ON P21/c 100 1.21 ·10−3 0.56 80.95
QAXMEH54 ON P21/c 150 2.09 ·10−3 0.44 84.44
QAXMEH55 ORP Pbca 150 1.74 ·10−3 0.29 88.50
QAXMEH56 R P1̄ 150 3.98 ·10−3 1.71 68.46
QAXMEH19 Y P21/n 30 1.26 ·10−3 1.22 72.89
QAXMEH22 Y P21/n 293 2.56 ·10−3 0.23 90.09
QAXMEH23 Y P21/n 293 2.50 ·10−3 0.27 88.56
QAXMEH58 Y P21/n 150 1.31 ·10−3 0.20 91.95
QAXMEH53 Y04 P1̄ 100 2.75 ·10−3 1.42 68.74
QAXMEH12 YT04 P21/n 296 2.14 ·10−3 0.16 90.93

Low temperatures were anticipated to yield less accurate ADPs, as discussed in Section 5.2.3 of the main manuscript.
Nonetheless, we also examined whether there is a correlation between the IoU metric and the space groups listed in
Table S5. To this end, Table S6 presents the number of structures in the ADP test dataset alongside the mean IoU value
for each space group. No correlation was observed between the space groups and the IoU metric.

Table S6 Summary of space groups, number of structures, and mean IoU percentages of the ADP test dataset. Arrows indicate the
direction of improvement for each metric.

Space Group Number of Structures IoU (%)↑

P21/c 5327 84.29
P-1 4247 84.15

P21/n 4125 83.89
Pbca 1079 83.97

S6 DFT calculations
Density functional theory (DFT) calculations were carried out employing the Vienna ab initio Simulation package (VASP
v6.4.34–6. ADPs were calculated based on numerical displacements around the optimized geometry, generated using the
Phonopy program7,8 (v2.19.1). All DFT calculations were based on the PBE9 functional, the projector-augmented wave
method (Ecut = 500 eV) and included D3-BJ10 dispersion corrections. Electron wave functions were converged to a thresh-
old of 10−8 eV. Calculations were repeated for three different optimized geometries: (i) a fully relaxed structure, including
atomic positions and unit cell parameters, (ii) a geometry where the unit cell was fixed to the crystallographic parame-
ters, allowing the atomic positions to relax and (iii) a structural relaxation constrained to a fixed volume (241.23687Å

2
),

calculated by the Vinet equation of state for a series of compressed and expanded unit cells using the quasi-harmonic
approximation. The thermal expansion was calculated for 298K to match the experimental data from the CSD database
for the ETIDEQ refcode. Structural relaxation runs considered a k-point grid of 5×3×2 while the displaced geometries
were calculated at the Γ point using a 5×3×2 supercell. ADPs were obtained using a q-point grid of 64×64×64. Regarding
the computational requirements, calculations for each displaced geometry took ca. 20,000 s (5.8 hrs) to complete using 56
cores in a parallel run. The fully relaxed calculation and the one derived from the Vinet equation required 144 displace-
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ments to complete while the simulations based on the experimental unit cell demanded 72 displacements, as it retained
inversion symmetry. Six additional calculations, each including 144 displacements, were done for the compressed and
expanded units cells.

S7 Temperature Ablation
The temperature ablations from the paper mention a series of crystal structures of guanidinium pyridiniumnaphthalene-1,5-
disulfonate. They are used to assess the ability of CartNet to predict ADPs at other temperatures using as input the crystal
structure geometry obtained at a different temperature. The refcodes used for the study with the respective temperature
can be found in Table S7.

Table S7 The refcodes and the temperatures used for the temperature ablation study.

Refcode Temperature (K)

DOWVOC28 153
DOWVOC31 163
DOWVOC33 178
DOWVOC34 183
DOWVOC36 193
DOWVOC38 203
DOWVOC40 213
DOWVOC42 223
DOWVOC44 233
DOWVOC46 243
DOWVOC48 253
DOWVOC02 263
DOWVOC04 273
DOWVOC29 283

We repeated the fixed-geometry experiment at 153 K and 283 K , adjusting only the input temperature to CartNet.
Figure S3 shows results obtained with the 153 K geometry, and Figure S4 presents those from the 283 K geometry. In
both cases, deviations from experimental values grow as the input temperature moves further from the reference struc-
ture. This finding indicates that significant structural rearrangements (e.g., intermolecular interactions, phase transitions)
cannot be fully captured when the geometry is constant. Although CartNet accounts for some thermal expansion through
temperature input, it does not accommodate large-scale reorganizations without an updated geometry. Overall, Cart-
Net reasonably reproduces thermal ellipsoids but shows limitations when temperature changes are substantial enough to
trigger phase transitions or significant structural differences.
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Figure S3 Comparison of mean volume of the ellipsoids as a function of temperature for the guanidinium pyridinium naphthalene-1,5-
disulfonate (CSD refcode: DOWVOC) crystal structure. Blue line represent the experimental volumes, green line represent the predicted
volume of the ellipsoid using the geometry and temperature from experimental data, and orange line represent the predicted volume of
the ellipsoid when using the fixed geometry from the crystal structure at 153K and modifying the input temperature to CartNet.

Figure S4 Comparison of mean volume of the ellipsoids as a function of temperature for the guanidinium pyridinium naphthalene-1,5-
disulfonate (CSD refcode: DOWVOC) crystal structure. Blue line represent the experimental volumes, green line represent the predicted
volume of the ellipsoid using the geometry and temperature from experimental data, and orange line represent the predicted volume of
the ellipsoid when using the fixed geometry from the crystal structure at 283K and modifying the input temperature to CartNet.

S8 Visual Results
This section presents some more comparison results between the ADPs prediction of eConformer, iConformer and our
proposed CartNet method.
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S8.1 DOLBIR21

Figure S5 Thermal ellipsoids representations from experimental ADPs for the glycine crystal structure (CSD refcode: DOLBIR21) predicted
with CartNet, eComformer and iComformer. The green regions represent the experimental values, the red ones represent the prediction
values, and the grey represents the intersection between them. The numbers in each atom represent the IoU between the experimental
and the calculated ADP. Highlighted can be seen a sample ellipsoid predicted using the DFT and the same ellipsoid using CartNet. The
parallelepiped represents the unit cell, and the red, green, and blue lines correspond to the a, b, and c unit cell axes.
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S8.2 OXALAC10

Figure S6 Thermal ellipsoids representations from experimental ADPs for the Ethane-1,2-dioic acid crystal structure (CSD refcode:
OXALAC10) predicted with CartNet, eComformer and iComformer. The green regions represent the experimental values, the red ones
represent the prediction values, and the grey represents the intersection between them. The numbers in each atom represent the IoU
between the experimental and the calculated ADP. Highlighted can be seen a sample ellipsoid predicted using the DFT and the same
ellipsoid using CartNet. The parallelepiped represents the unit cell, and the red, green, and blue lines correspond to the a, b, and c unit
cell axes.
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S8.3 ITIZOA01

Figure S7 Thermal ellipsoids representations from experimental ADPs for the piperazine crystal structure (CSD refcode: ITIZOA01)
predicted with CartNet, eComformer and iComformer. The green regions represent the experimental values, the red ones represent the
prediction values, and the grey represents the intersection between them. The numbers in each atom represent the IoU between the
experimental and the calculated ADP. Highlighted can be seen a sample ellipsoid predicted using the DFT and the same ellipsoid using
CartNet. The parallelepiped represents the unit cell, and the red, green, and blue lines correspond to the a, b, and c unit cell axes.
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