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1 Validation of experimental formation constants
Throughout the characterization of the universality of the scaling parameter across the previ-
ously known systems, we observed that the Mo system seemed to strongly depart from the rest,
with a slope of 0.22 that deviated from the expected value of around 0.3 calculated for the
rest of the systems. Consequently, including Mo-based species in the global regression did also
strongly modify the slope parameter of the overall regression. Nonetheless, the foundational
studies from the monomer to the octamolybdate1 did not show this discrepancy.

Figure 1: Box-and-whisker plot representation for formation constants in Mo system2.

From this information and from Figure 1, the very large Mo36 cluster seemed to be the most
likely reason for the mismatch. In order to properly explore its effect on our overall findings, we
designed a leave-one-out strategy in which we carried out the linear regression on the median
Kf values of all complexes in the dataset except for one, plotting the distribution of intercepts
against the slope, as well as the correlation coefficient against the slope (Figure 2).

Figure 2: Regression parameter mapping from leave-one-out strategy, plotting intercept against
slope (left) and r2 against slope (right)

.

We can observe how the spread in all parameters for most species is minimal, except for the
case of Mo36. Removing this species immediately switches the trend, recovering the expected
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slope of m ≈ 0.3, while all other observations remain around m = 0.22. Discarding Mo36 does
also result in a remarkable improvement of the quality of the regression, with r2 reaching 0.965.
Due to the very large value of this formation constant, it sits in a region where no other species
in the dataset appear, and therefore possible inaccuracies on the experimental constant Kexp

cannot be mitigated. Consequently, we decided to drop Mo36 from the set of experimental
constants used for fitting: all results collected in the main text have been collected under this
assumption. A somehow similar procedure was proposed by Uzal-Varela et al.3, to correct the
stability constants of reported gadolinium complexes.
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2 Universality across functionals

Figure 3: Common box-and-whisker plot representation for formation constants in Mo, W, V,
Nb, Ta and PMo systems, throughout the four tested functionals: PBE, BP86, B3LYP and
M06L. Y-axis corresponds to experimental values reported in the literature2,4–8.
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3 Speciation of AsMo with original intercept

Figure 4: Speciation diagrams for arsenomolybdates considering percentage of As (left) and Mo
(right), directly using the scaling parameters from Equation 2 in main text, averaging around
104 speciation models.

Figure 4 showcases the problems associated with employing the intercept in Equation 2 in
the main text (Kexp = 0.29 ·KDFT + 1.33): with this intercept, only monomers are observed,
without any trace of the larger arsenomolybdate clusters expected from the experimental data9.
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4 Feature sets for multi-linear regression
As discussed in the main text, the six previously studied POM systems (Mo, W, V, Nb, Ta
and PMo) were used as the training set to predict the intercept for the AsMo system, known
to be bAsMo = −7.99.

Features N R2 bpred |berr|
(Q1, Q3, max, range) 4 0.978 -7.81 0.18
(min, Q3, max, range) 4 0.984 -7.63 0.36

(mean, Q3, max, range) 4 0.998 -8.44 0.45
(min, Q1, Q3, max) 4 0.898 -8.63 0.64

(mean, Q1, max, range) 4 0.948 -8.68 0.69
(Q3, max, range) 3 0.967 -7.29 0.7

(std, Q3, max, range) 4 0.967 -7.29 0.7
(mean, max, range) 3 0.948 -8.72 0.73

(mean, max, range, IQR) 4 0.948 -8.73 0.74
(mean, min, max, range) 4 0.955 -8.74 0.7

Table 1: Selection of the 10 best feature combinations regarding the error (in absolute value) in
the prediction of the test set (AsMo), with target value b = -7.99. Entries in bold correspond
to sets with a smaller number of features. Values in the Table sorted in decreasing order respect
to the |berr| value.

Table 1 collects the ten combinations whose prediction of the test intercept is closer to the
expected value: from these, we proceeded to select the two that only comprised three distinct
features to reduce the risk of overfitting.
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5 Validation of intercept predictions
Despite the moderate values of the error between predicted and expected intercepts for each
system in the cross-validation procedure (as collected in the heatmap in Figure 6 of the main
text), we were also interested in analyzing the limit situations: the combinations of systems
where the predictions were farther from the expected value.

Figure 5: Dispersion of predicted intercepts b through the leave-two-out cross-validation pro-
cedure for the two three-feature combinations selected for further analysis. Circles correspond
to the target intercept values, while crosses represent the predicted values.

Figure 5 shows all b predictions in the dataset: for a given POM system, there are six
entries corresponding to all six combinations where that system is included in the test set
together with each of the other systems. This illustrates how for both descriptor sets, the dis-
persion of predicted intercepts for IPAs is moderate, while the two HPAs have two clear outliers
corresponding to the (PMo, AsMo) combination: that is, the situation where no information
about heteropolyanionic systems was included in the training set. In direct consequence, this
misprediction, far from being worrying, actually demonstrates how the proposed multi-linear
regression strategy is capturing the chemical nature of the treated systems, despite its simplic-
ity.

Moreover, we carried out a deeper exploration for the (Q3, max, range) descriptor set used
to develop the final predictive model. First, we compared the relative errors between model
predictions and the target intercept values in three situations: i) model trained with the seven
systems, ii) leave-one-out strategy, predicting the species for which the model is not trained,
and iii) leave-two-out strategy, predicting all pairs of species out of training. For this case, we
selected the largest error from the set of six predictions for each species, except for AsMo and
PMo, where the outliers shown in Figure 5 when the training set lacks any heteropolyanionic
system were removed.

The errors showcased in Figure 6 are small and quite consistent, even in the strictest case
where only five systems are used for training and the worst prediction for each system is
selected. Yet again, this confirms the solidity of our approach to predict the expected values of
the intercepts without any experimental data. It is also remarkable that both Nb and Ta show
larger errors in the baseline 0-out model, which might be traced back to the reduced number
of experimental formation constants used for the characterization of the target intercepts10

compared with the rest of the systems. Furthermore, we also explored the distribution of the
multi-linear regression coefficients through a more strict leave-three-out validation procedure,
further reducing the size of the training set (Figure 7).

These results confirm the robustness of the approach: the coefficients c1 to c3 show minimal
variations, with the only major outlier for all three of them being the (Ta, AsMo, PMo) model.
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Figure 6: Relative errors of 0-out (green), 1-out (orange) and 2-out (blue) cross-validation
procedures for the (Q3, max, range) descriptor set .

.

Figure 7: Box-and-whiskers representation of the distribution of c1, c2, c3 and c4 coefficients
for the multilinear regression using the (Q3, max, range) descriptor set.

For the rest, even most of the situations where only four systems are retained in the training set
remain quite consistent, again highlighting the adequacy of the strategy. While the independent
term c4 shows a much larger degree of variation, the major outliers are combinations of three
dropped features, including at least one of the HPAs (if not both) as well as V, which due to
its amphoteric character is also expected to be remarkably different from the rest.

Consequently, despite the very small sample size (seven systems), these findings confirm that
the proposed predictive model is revealing important chemical features of the systems under
study, and that it can be used as a part of an universal scaling for the formation constants of
polyoxometalates.
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6 Phase diagrams for arsenomolybdates
Apart from the speciation diagrams (Figure 7 of the main text) and in line with our study
on phosphomolybdates11, we used the same set of SMs selected for the speciation with the
1:1 ratio to compute the corresponding phase diagrams, plotting the major species at varying
[As]/[Mo] ratios. It shall be noted that we consider the main species for arsenic and the main
species for molybdenum, resulting in two plots (Figure 8).

Figure 8: Phase diagrams for AsMo system, highlighting the major species for As (left panel)
and Mo (right panel). A total of 18 As:Mo ratios were used, determining the average speciation
of the ≈ 6 · 104 speciation models selected throughout the statistical pipeline.

These phase diagrams showcase the same trends observed for the speciation, with {As2Mo6}
dominating at low-to-moderate heteroatom/metal ratios and acidic pH, and {AsMo9} taking
over as the proportion of molybdenum increases. From pH = 6 onwards, nucleation is sup-
pressed and only monomers dominate the speciation. Moreover, the {As2Mo5} becomes the
dominant species for As in a narrow region around pH = 5: there, at large ratios, most of the
molybdenum remains as [MoO4]

2−.
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