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Nernst-Einstein Model.

The Nernst-Einstein basis in fundamental theory gives a quantitative prediction of how
efficient fully dissociated ions should move in an electrolyte given the bulk viscosity and ion sizes.
By comparing the Nernst-Einstein molar conductivity prediction to experimental measurements
of the molar conductivity, one can develop a quantitative metric for how ion transport in ionic
liquids compares to hydrodynamic Nernst-Einstein predictions (1, 2).

Prior studies have used the Nernst-Einstein approach in combination with databases of
ionic liquid properties to indicate that ionic liquids can exhibit conductivities that are either lower
or higher than hydrodynamic predictions, depending on how ion sizes are defined (2, 3). However,
the Nernst-Einstein model is still one of the simplest theoretical model that captures the general
behavior of ionic liquid conductivity, and it remains largely unclear what specific molecular
properties control the differences in transport mechanisms that are thought to drive deviation
from hydrodynamic predictions of ion mobility.

lonic Liquid Properties and Molecular Descriptors Descriptions.

2D and 3D RDKit and PubChem descriptors were chosen for our database analyses. We note
that RDKit and PubChem do not simulate intermolecular interactions, so all computed descriptors
are derived from non-interacting ion conformers. These simulations sample ion conformations for
individual ions in vacuum to calculate molecular descriptors for each ion investigated from the
ILThermo database. In addition, RDKit and PubChem do not simulate formal charge distributions
for electrostatic interaction calculations. Therefore, 3D molecular shape and energetic descriptors
contain inaccuracies from the variations in accessible molecular conformers for ions simulated
without stabilizing intermolecular forces. Computed 2D molecular descriptors do not depend on
simulated intermolecular interactions or formal charges distributions and remain accurate for
ionic liquids.



Table S1. Experimental System Descriptors Descriptions

Descriptor Name

Description

Molar Conductivity
(4,5)

Temperature (4, 5)
Viscosity (4, 5)
Density (4, 5)

Heat Capacity (4, 5)

Melting Point (4, 5)

Experimentally measured specific conductivity by measured molar
concentration.

Experimental measurement conditions.

Experimentally measured IL fluid bulk resistance to flow.
Experimentally measured mass per volume.

Experimentally measured energy change per temperature change at
constant atmospheric pressure.

Experimentally measured temperature of liquid-solid phase equilibrium
at atmospheric pressure.

Table S2. Molecular Structure Descriptors Descriptions

Descriptor Name

Description

Atom Count (6)
Bond Count (6)
Rotatable Bond
Count (6)

Rotatable Bond
Fraction (6)
Hydrogen Bond
Acceptors (6)
Hydrogen Bond
Donor (6)

Molecular Weight (6)
Valence Electrons (7)

Number of atoms in each ion.

Number of bonds in each ion.

Number of single bonds, not in a ring, bound to a nonterminal heavy
atom, excluding amide C-N bonds.

Rotatable bond counts divided by bond count.

Number of highly electronegative atoms with lone pairs, primarily N, O,
and F.
Number of hydrogens bonded to N, O, or F.

Sum of the atomic masses of atoms in an ion.
Sum of electrons in the outermost shells of atoms in an ion.




Table S3. Molecular Shape Descriptors Description

Descriptor Name

Description

Volume (8)

lonic Radius (8)
Cation/Anion Volume
Ratio (8)

Avg. Sphericity (7)

Avg. Asphericity (7)

Rel. Std. Dev. Sphericity

(7)
Rel. Std. Dev. Asphericity

(7)

Amount of space taken up by an ion. Calculated using PubChem 3D.
Radius calculated from volume using the equation for a sphere.
Ratio of cation to anion volume.

A score of how spherical a molecule is using simulated principal
moments of inertia averaged over 50 simulations.
(PM3 - PM2)% + (PM3 - PM1)? 4+ (PM2 - PM1)?
PM3% + PM2° + PM1?
A score of how aspherical a molecule is along its shortest principal
moments of inertia using simulated principal moments of inertia

averaged over 50 simulations.
3+« PM1

PM3 + PM2 + PM1
Standard deviation of sphericity divided by the mean of sphericity
over 50 simulations.
Standard deviation of asphericity divided by the mean of asphericity
over 50 simulations.

Sphericity =

Asphericity =

Table S4. Molecular Energetics Descriptors Description

Descriptor Name

Description

Polar Area (6)

Hydrogen Bond Donor
Interactions (6)

LogP (6)

Max. Partial Charge (7)
Min. Partial Charge (7)

Polar surface area of an ion calculated using Cactvs 3.4.8.18.
Number of hydrogen bond donors on an ion multiplied by the
number of hydrogen bond acceptors on the counter-ion.

Logiqs of the octanal-water partition coefficient calculated by
XLogP3.(9)

Highest partial charge on an ion averaged over 50 simulations.
Lowest partial charge on an ion averaged over 50 simulations.

Dissociation Energies.

Effective ionic liquid pair dissociation energies, Eq [ki/mol], are calculated using Eqn S1

where £

DFT [kJ/mol] is the reported calculated vacuum interaction energy of ionic liquid counter-

ions and € is the low frequency dielectric relative permittivity of the ionic liquid (10).



t-SNE Maps for Other Properties.
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Figure S1. t-SNE projections of molecular similarity overlayed with melting point (top left) at
atmospheric pressure and heat capacity (top right), specific conductivity (bottom left), and
Nernst-Einstein ratio (bottom right) at 298 K. We observe a sparse correlation between heat
capacity and structure and no correlation for other overlayed properties.
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Figure S2. t-SNE projections of molecular similarity overlayed with fit Arrhenius model
activation energy (Left) and Logyo[frequency factor] (Right).
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Figure S3. Hybrid model parity plot using only Nernst-Einstein inputs of viscosity, cation
radius, and anion radius (left) and hybrid model parity plot using Nernst-Einstein variables,
cation polar area, anion hydrogen bond donor count, anion valence electrons, and anion
hydrogen bond acceptor count (right). The addition of these RDKit descriptors significantly
improves prediction accuracy for high-conductivity ionic liquids but retains the same
inaccuracies for “Weak”-labeled ionic liquids. The retention of these outliers indicates that




lonic Liquid Machine Learning Training Performance.

Table S5. Training set prediction R?, MSE, and RMSE.

Property Connectivity Graph RDKit Bulk Properties  RDKit Descriptors
Descriptors & Bulk Properties
Conductivity R2=0.83 R2=0.97 R2=0.74 R2=0.98
(S cm?2/mol) MSE = 0.601 MSE =0.109 MSE = 0.899 MSE = 0.081
RMSE =0.78 RMSE =0.33 RMSE =0.95 RMSE =0.284
Density R?=0.95 R?=0.99 R?=0.08 R?2=1.0
(kg/m?3) MSE = 1369 MSE = 169 MSE = 25047 MSE =99.2
RMSE =37 RMSE =13.0 RMSE =158 RMSE =10.0
Viscosity R?2=0.27 R?=0.30 R?2=0.27 R?2=0.27
(Pa's) MSE = 0.095 MSE = 0.091 MSE = 0.095 MSE = 0.095
RMSE =0.31 RMSE =0.30 RMSE =0.308 RMSE =0.308
Heat Capacity R?=0.93 R?=0.98 R?=0.35 R?2=0.89
(J/mol K) MSE = 1203 MSE = 264 MSE = 11321 MSE = 338.4
RMSE =34.7 RMSE =16.3 RMSE =106.4 RMSE = 18.4
Melting Point  R?=0.52 R?=0.23 R?=0.24 R?=0.24
(K) MSE = 157 MSE = 249 MSE = 248 MSE = 245.6
RMSE =12.5 RMSE = 15.8 RMSE =15.7 RMSE =15.7
Residual R?2=0.10 R?2=0.96 R?=0.04 R?2=0.67
Conductivity MSE = 0.884 MSE = 0.035 MSE = 0.95 MSE =0.329
(S cm?/mol) RMSE = 0.94 RMSE =0.19 RMSE =0.97 RMSE =0.57
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Figure S4. Density vs anion molecular weight (Left) and heat capacity vs rotatable bond count
(Right). Each plot depicts strong positive correlations with molecular descriptors and highlights
underlying molecular mechanisms. Density in ionic liquids is largely controlled by the anion
due to the large atomic mass of inorganic atoms found in ionic liquid anions. Heat capacity is
controlled by conformational degrees of freedom and is captured by the number of rotatable
molecular bonds.



lonic Liquid Machine Learning Model Hyperparameters.

Neural network architecture and optimization were identical for all trained neural networks.
However, learning rate and epochs were chosen to minimize test set MSE to provide equal
comparison across molecular representations. Hyperparameters for each neural network are
shown in Table S6 Training batches were kept constant at 256 for all neural network models.

Table S6. Neural network learning rates (LR) and epochs.

Property Connectivity Graph RDKit Bulk Properties  RDKit Descriptors
Descriptors & Bulk Properties

Conductivity LR=2.88e-4 LR =2.88e-4 LR =5.76e-4 LR =2.88e-4
(S cm?/mol) Epochs = 150 Epochs = 600 Epochs =1600  Epochs = 600
Density LR=1.44e-4 LR=7.2e-5 LR=7.2e-4 LR=7.2e-5
(kg/m?3) Epochs = 100 Epochs = 1000 Epochs = 200 Epochs = 1000
Viscosity LR=7.2e-5 LR=7.2e-5 LR=1.44e-4 LR=7.2e-5
(Pas) Epochs = 250 Epochs = 130 Epochs = 500 Epochs = 50
Heat Capacity LR =2.88e-4 LR=7.2e-5 LR=1.44e-4 LR=7.2e-5
(J/mol K) Epochs = 200 Epochs = 500 Epochs =275 Epochs = 300
Melting Point LR =1.44e-4 LR=7.2e-5 LR=1.44e-4 LR =3.6e-5
(K) Epochs = 500 Epochs =30 Epochs = 200 Epochs =80
Residual LR =1.44e-4 LR=7.2e-5 LR =1.44e-4 LR=7.2e-5
Conductivity Epochs = 300 Epochs = 300 Epochs = 100 Epochs = 300
(S cm?/mol)

Arrhenius Parameter Machine Learning Performance.

Since activation energies appear to be a key parameter to collapse viscosity-conductivity
scaling relationships in ionic liquids, we test the extent to which our database of ionic liquid
descriptors can predict activation energies and pre-exponential factors. Arrhenius parameters
were predicted using connectivity graphs, RDKit descriptors, and bulk ionic liquid properties using
an artificial neural network. We find that all ionic liquid representations result in poor model

accuracies, see model performances in Table S6.

Table S6. Test set R2, MSE, and RMSE values for neural network predictions of modified
Arrhenius model parameters E, and A.

Property Connectivity GNN RDKit ANN Props ANN
E, (kJ/mol) R2=0.07 R?2=0.25 R?2=0.35
MSE = 89.2 MSE =71.5 MSE =62.1
RMSE =9.4 RMSE = 8.5 RMSE =7.9
Log(A) (Log(S RZ2=0.0 R?2=0.18 R?2=0.25
cm? K/mol)) MSE =1.73 MSE =1.42 MSE =1.31
RMSE=1.3 RMSE =1.2 RMSE=1.1




Table S7. Training set R?, MSE, and RMSE values for neural network predictions of modified
Arrhenius model parameters E, and A.

Property Connectivity GNN  RDKit ANN Props ANN
Ea RZ2=0.29 R?2=0.94 R?2=0.38
(kJ/mol) MSE = 68.1 MSE =5.35 MSE = 58.9
RMSE = 8.3 RMSE =2.31 RMSE =7.7
Log(A) RZ=0.21 RZ2=0.69 RZ2=0.3
(Log(S cm? MSE = 1.37 MSE =0.54 MSE =1.22
K/mol)) RMSE =1.17 RMSE =0.73 RMSE=1.1

We report an inability to predict Arrhenius model parameters using available 2D structure, 3D
single-ion descriptors, or bulk ionic liquid properties, due to the inherent dependence of Arrhenius
model parameters on molecular interactions for ion transport modeling. We reference the lack of
explicit information regarding intermolecular interactions in widely available ionic liquid
descriptions as a large source of error in our model. Energetic barriers to ion motion and “hole”
formation frequency in ionic liquids cannot be determined by structural or bulk descriptors and
instead likely depend on collective ionic interactions.

We suggest that DFT calculations or molecular simulations, in conjunction with the Arrhenius
model, may enable a rapid screening of ionic liquid electrolyte candidates. Here, we find that such
information is inaccessible using currently available ionic liquid descriptor and bulk property
information. However, DFT and molecular simulations could be key in more easily accessing
estimated ion Arrhenius parameters via estimated interaction energy and dielectric permittivity.



Activation Energy and Permittivity Data.

Table S8. lonic Liquid Activation Energies and Available Permittivities

lonic Liquid E, (k)/mol)  Permittivity (11)
1-ethyl-3-methylimidazolium acetate 37.2 16.3
1-ethyl-3-methylimidazolium Bistriflylimide anion 23.3 13.8
1-ethyl-3-methylimidazolium

Cyanoiminomethylideneazanide 20.5 12.5
1-ethyl-3-methylimidazolium trifluoromethanesulfonate 19.9 19.3
1-hexyl-3-methylimidazolium Bistriflylimide anion 31.4 8.5
1-ethyl-3-methylimidazolium thiocyanate 18.1 15.1
1-ethyl-3-methylimidazolium tetrafluoroborate 26.7 12.9
1-butyl-1-methylpyrrolidinium

tris(pentafluoroethyl)trifluorophosphate 36.8 53
1-butyl-3-methylimidazolium methylsulfate 38.9 11.9
1-butyl-3-methylimidazolium tetrafluoroborate 32.4 9.7
1-butyl-3-methylimidazolium thiocyanate 21.3 9.7
1-butyl-3-methylimidazolium Bistriflylimide anion 28.9 9.2
1-butyl-3-methylimidazolium

Cyanoiminomethylideneazanide 23.7 10.3
1-methyl-3-octylimidazolium Bistriflylimide anion 35.3 6.9
1-propyl-3-methylimidazolium Bistriflylimide anion 29.4 9.4
1-propyl-3-methylimidazolium iodide 34.8 5.5
1-hexyl-3-methylimidazolium hexafluorophosphate 43.5 7.1
1-Ethyl-3-methylimidazolium L-lactate 28.2 12.1
1-hexylpyridinium Bistriflylimide anion 333 6
1-butyl-1-methylpyrrolidinium

Cyanoiminomethylideneazanide 25.3 8.1
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