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Nernst-Einstein Model.
The Nernst-Einstein basis in fundamental theory gives a quantitative prediction of how 

efficient fully dissociated ions should move in an electrolyte given the bulk viscosity and ion sizes. 
By comparing the Nernst-Einstein molar conductivity prediction to experimental measurements 
of the molar conductivity, one can develop a quantitative metric for how ion transport in ionic 
liquids compares to hydrodynamic Nernst-Einstein predictions (1, 2). 

Prior studies have used the Nernst-Einstein approach in combination with databases of 
ionic liquid properties to indicate that ionic liquids can exhibit conductivities that are either lower 
or higher than hydrodynamic predictions, depending on how ion sizes are defined (2, 3). However, 
the Nernst-Einstein model is still one of the simplest theoretical model that captures the general 
behavior of ionic liquid conductivity, and it remains largely unclear what specific molecular 
properties control the differences in transport mechanisms that are thought to drive deviation 
from hydrodynamic predictions of ion mobility. 

Ionic Liquid Properties and Molecular Descriptors Descriptions.
2D and 3D RDKit and PubChem descriptors were chosen for our database analyses. We note 

that RDKit and PubChem do not simulate intermolecular interactions, so all computed descriptors 
are derived from non-interacting ion conformers. These simulations sample ion conformations for 
individual ions in vacuum to calculate molecular descriptors for each ion investigated from the 
ILThermo database. In addition, RDKit and PubChem do not simulate formal charge distributions 
for electrostatic interaction calculations. Therefore, 3D molecular shape and energetic descriptors 
contain inaccuracies from the variations in accessible molecular conformers for ions simulated 
without stabilizing intermolecular forces. Computed 2D molecular descriptors do not depend on 
simulated intermolecular interactions or formal charges distributions and remain accurate for 
ionic liquids. 
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Table S1. Experimental System Descriptors Descriptions
Descriptor Name Description
Molar Conductivity
(4, 5)

Experimentally measured specific conductivity by measured molar 
concentration.

Temperature (4, 5) Experimental measurement conditions.
Viscosity (4, 5) Experimentally measured IL fluid bulk resistance to flow.
Density (4, 5) Experimentally measured mass per volume.
Heat Capacity (4, 5) Experimentally measured energy change per temperature change at 

constant atmospheric pressure.
Melting Point (4, 5) Experimentally measured temperature of liquid-solid phase equilibrium 

at atmospheric pressure.

Table S2. Molecular Structure Descriptors Descriptions
Descriptor Name Description
Atom Count (6) Number of atoms in each ion.
Bond Count (6) Number of bonds in each ion. 
Rotatable Bond 
Count (6)

Number of single bonds, not in a ring, bound to a nonterminal heavy 
atom, excluding amide C-N bonds. 

Rotatable Bond 
Fraction (6)

Rotatable bond counts divided by bond count.

Hydrogen Bond 
Acceptors (6)

Number of highly electronegative atoms with lone pairs, primarily N, O, 
and F.

Hydrogen Bond 
Donor (6)

Number of hydrogens bonded to N, O, or F.

Molecular Weight (6) Sum of the atomic masses of atoms in an ion.
Valence Electrons (7) Sum of electrons in the outermost shells of atoms in an ion.



Table S3. Molecular Shape Descriptors Description
Descriptor Name Description
Volume (8) Amount of space taken up by an ion. Calculated using PubChem 3D. 
Ionic Radius (8) Radius calculated from volume using the equation for a sphere.
Cation/Anion Volume 
Ratio (8)

Ratio of cation to anion volume. 

Avg. Sphericity (7) A score of how spherical a molecule is using simulated principal 
moments of inertia averaged over 50 simulations. 

𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
(𝑃𝑀3 ‒ 𝑃𝑀2)2 + (𝑃𝑀3 ‒ 𝑃𝑀1)2 + (𝑃𝑀2 ‒ 𝑃𝑀1)2

𝑃𝑀32 + 𝑃𝑀22 + 𝑃𝑀12

Avg. Asphericity (7) A score of how aspherical a molecule is along its shortest principal 
moments of inertia using simulated principal moments of inertia 
averaged over 50 simulations. 

𝐴𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =  
3 ∗ 𝑃𝑀1

𝑃𝑀3 + 𝑃𝑀2 + 𝑃𝑀1
Rel. Std. Dev. Sphericity 
(7)

Standard deviation of sphericity divided by the mean of sphericity 
over 50 simulations.

Rel. Std. Dev. Asphericity 
(7)

Standard deviation of asphericity divided by the mean of asphericity 
over 50 simulations.

Table S4. Molecular Energetics Descriptors Description
Descriptor Name Description
Polar Area (6) Polar surface area of an ion calculated using Cactvs 3.4.8.18.
Hydrogen Bond Donor 
Interactions (6)

Number of hydrogen bond donors on an ion multiplied by the 
number of hydrogen bond acceptors on the counter-ion.

LogP (6) Log10 of the octanal-water partition coefficient calculated by 
XLogP3.(9)

Max. Partial Charge (7) Highest partial charge on an ion averaged over 50 simulations.
Min. Partial Charge (7) Lowest partial charge on an ion averaged over 50 simulations.

Dissociation Energies.
Effective ionic liquid pair dissociation energies,  [kJ/mol], are calculated using Eqn S1 𝐸𝑑

where  [kJ/mol] is the reported calculated vacuum interaction energy of ionic liquid counter-𝐸𝐷𝐹𝑇

ions and  is the low frequency dielectric relative permittivity of the ionic liquid (10).𝜀

𝐸𝑑 =
𝐸𝐷𝐹𝑇

𝜀
(S1)



t-SNE Maps for Other Properties.

Figure S1. t-SNE projections of molecular similarity overlayed with melting point (top left) at 
atmospheric pressure and heat capacity (top right), specific conductivity (bottom left), and 
Nernst-Einstein ratio (bottom right) at 298 K. We observe a sparse correlation between heat 
capacity and structure and no correlation for other overlayed properties.



Figure S2. t-SNE projections of molecular similarity overlayed with fit Arrhenius model 
activation energy (Left) and Log10[frequency factor] (Right).

Hybrid Model Parity Plots.

Figure S3. Hybrid model parity plot using only Nernst-Einstein inputs of viscosity, cation 
radius, and anion radius (left) and hybrid model parity plot using Nernst-Einstein variables, 
cation polar area, anion hydrogen bond donor count, anion valence electrons, and anion 
hydrogen bond acceptor count (right). The addition of these RDKit descriptors significantly 
improves prediction accuracy for high-conductivity ionic liquids but retains the same 
inaccuracies for “Weak”-labeled ionic liquids. The retention of these outliers indicates that 
the added molecular descriptors still lack necessary information to fully describe ionic 
conductivity.



Ionic Liquid Machine Learning Training Performance.

Table S5. Training set prediction R2, MSE, and RMSE.
Property Connectivity Graph RDKit 

Descriptors
Bulk Properties RDKit Descriptors 

& Bulk Properties
Conductivity 
(S cm2/mol)

R2 = 0.83
MSE = 0.601
RMSE = 0.78

R2 = 0.97
MSE = 0.109
RMSE = 0.33

R2 = 0.74
MSE = 0.899
RMSE = 0.95

R2 = 0.98
MSE = 0.081
RMSE = 0.284

Density
(kg/m3)

R2 = 0.95
MSE = 1369
RMSE = 37

R2 = 0.99
MSE = 169
RMSE = 13.0

R2 = 0.08
MSE = 25047
RMSE = 158

R2 = 1.0
MSE = 99.2
RMSE = 10.0

Viscosity 
(Pa s)

R2 = 0.27
MSE = 0.095
RMSE = 0.31

R2 = 0.30
MSE = 0.091
RMSE = 0.30

R2 = 0.27
MSE = 0.095
RMSE = 0.308

R2 = 0.27
MSE = 0.095
RMSE = 0.308

Heat Capacity 
(J/mol K)

R2 = 0.93
MSE = 1203
RMSE = 34.7

R2 = 0.98
MSE = 264
RMSE = 16.3

R2 = 0.35
MSE = 11321
RMSE = 106.4

R2 = 0.89
MSE = 338.4
RMSE = 18.4

Melting Point 
(K)

R2 = 0.52
MSE = 157
RMSE = 12.5

R2 = 0.23
MSE = 249
RMSE = 15.8

R2 = 0.24
MSE = 248
RMSE = 15.7

R2 = 0.24
MSE = 245.6
RMSE = 15.7

Residual 
Conductivity
(S cm2/mol)

R2 = 0.10
MSE = 0.884
RMSE = 0.94

R2 = 0.96
MSE = 0.035
RMSE = 0.19

R2 = 0.04
MSE = 0.95
RMSE = 0.97

R2 = 0.67
MSE = 0.329
RMSE = 0.57

Figure S4. Density vs anion molecular weight (Left) and heat capacity vs rotatable bond count 
(Right). Each plot depicts strong positive correlations with molecular descriptors and highlights 
underlying molecular mechanisms. Density in ionic liquids is largely controlled by the anion 
due to the large atomic mass of inorganic atoms found in ionic liquid anions. Heat capacity is 
controlled by conformational degrees of freedom and is captured by the number of rotatable 
molecular bonds.



Ionic Liquid Machine Learning Model Hyperparameters. 
Neural network architecture and optimization were identical for all trained neural networks. 

However, learning rate and epochs were chosen to minimize test set MSE to provide equal 
comparison across molecular representations. Hyperparameters for each neural network are 
shown in Table S6 Training batches were kept constant at 256 for all neural network models.

Table S6. Neural network learning rates (LR) and epochs.
Property Connectivity Graph RDKit 

Descriptors
Bulk Properties RDKit Descriptors 

& Bulk Properties
Conductivity 
(S cm2/mol)

LR = 2.88e-4
Epochs = 150

LR = 2.88e-4
Epochs = 600

LR = 5.76e-4
Epochs = 1600

LR = 2.88e-4
Epochs = 600

Density
(kg/m3)

LR = 1.44e-4
Epochs = 100

LR = 7.2e-5
Epochs = 1000

LR = 7.2e-4
Epochs = 200

LR = 7.2e-5
Epochs = 1000

Viscosity 
(Pa s)

LR = 7.2e-5
Epochs = 250

LR = 7.2e-5
Epochs = 130

LR = 1.44e-4
Epochs = 500

LR = 7.2e-5
Epochs = 50

Heat Capacity 
(J/mol K)

LR = 2.88e-4
Epochs = 200

LR = 7.2e-5
Epochs = 500

LR = 1.44e-4
Epochs = 275

LR = 7.2e-5
Epochs = 300

Melting Point 
(K)

LR = 1.44e-4
Epochs = 500

LR = 7.2e-5
Epochs = 30

LR = 1.44e-4
Epochs = 200

LR = 3.6e-5
Epochs = 80

Residual 
Conductivity
(S cm2/mol)

LR = 1.44e-4
Epochs = 300

LR = 7.2e-5
Epochs = 300

LR = 1.44e-4
Epochs = 100

LR = 7.2e-5
Epochs = 300

Arrhenius Parameter Machine Learning Performance. 
Since activation energies appear to be a key parameter to collapse viscosity-conductivity 

scaling relationships in ionic liquids, we test the extent to which our database of ionic liquid 
descriptors can predict activation energies and pre-exponential factors. Arrhenius parameters 
were predicted using connectivity graphs, RDKit descriptors, and bulk ionic liquid properties using 
an artificial neural network. We find that all ionic liquid representations result in poor model 
accuracies, see model performances in Table S6. 

Table S6. Test set R2, MSE, and RMSE values for neural network predictions of modified 
Arrhenius model parameters Ea and A.

Property Connectivity GNN RDKit ANN Props ANN
Ea (kJ/mol) R2 = 0.07

MSE = 89.2
RMSE = 9.4

R2 = 0.25
MSE = 71.5
RMSE = 8.5

R2 = 0.35
MSE = 62.1
RMSE = 7.9

Log(A) (Log(S 
cm2 K/mol))

R2 = 0.0
MSE = 1.73
RMSE = 1.3

R2 = 0.18
MSE = 1.42
RMSE = 1.2

R2 = 0.25
MSE = 1.31
RMSE = 1.1



Table S7. Training set R2, MSE, and RMSE values for neural network predictions of modified 
Arrhenius model parameters Ea and A.

Property Connectivity GNN RDKit ANN Props ANN
Ea
(kJ/mol)

R2 = 0.29
MSE = 68.1
RMSE = 8.3

R2 = 0.94
MSE = 5.35
RMSE = 2.31

R2 = 0.38
MSE = 58.9
RMSE = 7.7

Log(A) 
(Log(S cm2 
K/mol))

R2 = 0.21
MSE = 1.37
RMSE = 1.17

R2 = 0.69
MSE = 0.54
RMSE = 0.73

R2 = 0.3
MSE = 1.22
RMSE = 1.1

We report an inability to predict Arrhenius model parameters using available 2D structure, 3D 
single-ion descriptors, or bulk ionic liquid properties, due to the inherent dependence of Arrhenius 
model parameters on molecular interactions for ion transport modeling. We reference the lack of 
explicit information regarding intermolecular interactions in widely available ionic liquid 
descriptions as a large source of error in our model. Energetic barriers to ion motion and “hole” 
formation frequency in ionic liquids cannot be determined by structural or bulk descriptors and 
instead likely depend on collective ionic interactions. 

We suggest that DFT calculations or molecular simulations, in conjunction with the Arrhenius 
model, may enable a rapid screening of ionic liquid electrolyte candidates. Here, we find that such 
information is inaccessible using currently available ionic liquid descriptor and bulk property 
information. However, DFT and molecular simulations could be key in more easily accessing 
estimated ion Arrhenius parameters via estimated interaction energy and dielectric permittivity. 



Activation Energy and Permittivity Data.

Table S8. Ionic Liquid Activation Energies and Available Permittivities
Ionic Liquid Ea (kJ/mol) Permittivity (11)
1-ethyl-3-methylimidazolium acetate 37.2 16.3
1-ethyl-3-methylimidazolium Bistriflylimide anion 23.3 13.8
1-ethyl-3-methylimidazolium 
Cyanoiminomethylideneazanide 20.5 12.5
1-ethyl-3-methylimidazolium trifluoromethanesulfonate 19.9 19.3
1-hexyl-3-methylimidazolium Bistriflylimide anion 31.4 8.5
1-ethyl-3-methylimidazolium thiocyanate 18.1 15.1
1-ethyl-3-methylimidazolium tetrafluoroborate 26.7 12.9
1-butyl-1-methylpyrrolidinium 
tris(pentafluoroethyl)trifluorophosphate 36.8 5.3
1-butyl-3-methylimidazolium methylsulfate 38.9 11.9
1-butyl-3-methylimidazolium tetrafluoroborate 32.4 9.7
1-butyl-3-methylimidazolium thiocyanate 21.3 9.7
1-butyl-3-methylimidazolium Bistriflylimide anion 28.9 9.2
1-butyl-3-methylimidazolium 
Cyanoiminomethylideneazanide 23.7 10.3
1-methyl-3-octylimidazolium Bistriflylimide anion 35.3 6.9
1-propyl-3-methylimidazolium Bistriflylimide anion 29.4 9.4
1-propyl-3-methylimidazolium iodide 34.8 5.5
1-hexyl-3-methylimidazolium hexafluorophosphate 43.5 7.1
1-Ethyl-3-methylimidazolium L-lactate 28.2 12.1
1-hexylpyridinium Bistriflylimide anion 33.3 6
1-butyl-1-methylpyrrolidinium 
Cyanoiminomethylideneazanide 25.3 8.1
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