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1 Supplementary overview of DeepRLI

The content of this section is a supplement to the main overview of DeepRLI section.

1.1 Ablation study on the cosine envelope

We train a version of the model without the cosine envelope using the same hyperparameter

configuration. This version achieves a Pearson correlation coefficient of 0.838 on CASF-2016,
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slightly lower than the performance with the cosine envelope (Rp = 0.849). This indicates

that the cosine envelope enhances the model’s capability. Theoretically, its impact is more

pronounced when training data is limited, as it helps prevent the model from converging to

incorrect local minima of the loss function, which could otherwise result in assigning higher

attention weights to distant nodes. When ample training data is available, the influence

of the cosine envelope diminishes, as sufficient data enables the model to learn the correct

relationships between interactions and distances.

Figure S1: Visualization of interactions based on the attention weights from the final
graph transformer layer of DeepRLI without cosine envelope. The heatmap illustrating [lig-
and atom]–[residue atom] interaction connections. Darker colors represent higher attention
weights and more important interactions. For clarity, only part of interaction connections
with a larger weight are shown.

The cosine envelope is integrated into the network after the softmax layer in the attention

mechanism, so the sum of the weights applied to node embeddings is not constrained to

equal to 1. Since the cosine envelope function is always less than or equal to 1, the total

weights are typically less than 1. This feature ensures that when a central atom does not

have strong interactions with surrounding atoms, these atoms are not assigned high weights.

Beyond performance enhancement, the cosine envelope also improves model interpretability.

As illustrated in Figure S1, compared to that illustrated in Figure 7d of the main text,

the version of DeepRLI with the cosine envelope exhibits more focused attention weights,

highlighting strong interactions and diminishing weaker ones.
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2 Supplementary results and discussions

The content of this section is a supplement to the main results and discussions section.

2.1 Assessment of the model performance

2.1.1 Introduction to benchmarks

The performance of DeepRLI is tested on multiple recognized benchmarks, including bench-

marks such as CASF-2016,1 CSAR-NRC HiQ,2 Merck FEP3 and LIT-PCBA.4

CASF-2016 benchmark. The Comparative Assessment of Scoring Functions (CASF)

benchmark was created by Cheng et al. and first published in 2009 as CASF-2007.5 It

has since been maintained and updated, with subsequent releases of CASF-20136,7 and the

latest CASF-2016 version. In a nutshell, this dataset consists of different protein–ligand

complexes with high-resolution crystal structures and reliable binding constants, obtained

through systematically non-redundant sampling from the PDBbind database. And it is used

to evaluate the performance of scoring functions regarding protein–ligand binding in the

four previously mentioned aspects. Specifically, the CASF-2016 benchmark, which is the

focus of this study, comprises an array of 285 high-quality protein–ligand complex crystal

structures accompanied by reliable binding constants. Notably, these structures cover 57

different targets, each with five structures bound to different ligands. The structure-activity

data pairs can be used for scoring and ranking capability assessment. Moreover, to meet the

requirements for docking and screening ability tests, CASF-2016 also includes protein–ligand

binding poses (decoys) generated by molecular docking programs. For each protein–ligand

complex, a decoy set containing up to 100 ligand binding poses is generated for docking

ability assessment. Additionally, each protein is cross-docked with another 280 ligands to

obtain a larger decoy set suitable for screening ability assessment.

CSAR-NRC HiQ benchmark. The Community Structure-Activity Resource (CSAR)-
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National Research Council of Canada (NRC) High-Quality (HiQ) benchmark was proposed

in 2010 by Dunbar and many other researchers. CSAR aims to collect data from industry

and academia that can be used to improve docking and scoring computational methods.

The CSAR-NRC HiQ benchmark primarily serves to evaluate the efficacy of various scoring

algorithms. Originally, the dataset encompassed 343 distinct protein–ligand complexes, di-

vided into two sets: set1 with 176 and set2 with 167 complexes. Subsequently, in 2011, the

dataset was expanded to include an additional set, set3, comprising 123 complexes, thereby

augmenting the total count to 466 structure-activity datasets. A critical aspect to consider

is the substantial overlap of complex structures within the CSAR-NRC HiQ dataset and our

training set, PDBbindGS_HiQ. To mitigate the risk of artificially inflating the scoring per-

formance of our model due to this redundancy, we have elected to exclude these overlapping

complexes. This adjustment results in a revised dataset composition, with set1, set2, and

set3 now containing 50, 36, and 75 complexes, respectively. Furthermore, this benchmark

is often not evaluated in its complete state in other published works, for example, parts

overlapping with the entire PDBbind general set are removed.8 For ease of comparison, we

also evaluate it on the same datasets as those works.

Merck FEP benchmark. Accurately ranking small molecules with subtle differences

in binding efficacy to specific proteins plays an important role in the hit-to-lead and lead

optimization stages of drug discovery. To address this challenging task, rigorous free energy

simulation methods such as free energy perturbation (FEP), thermodynamic integration

(TI), and λ-dynamics are employed for this purpose,9 among which Schrödinger FEP+10 is

currently recognized as a mature and reliable program. In 2020, Merck KGaA published a

benchmark for the assessment of relative free energy calculations, namely the Merck FEP

benchmark, and tested the effects of large-scale prospective applications of FEP+.3 This

dataset collected a total of 8 pharmaceutical targets and 264 active ligands, with ligands

belonging to a specific target having analogous skeletons and nuanced structural variations.

Therefore, it can be used to further evaluate the ranking power of our model, especially the
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possibility of its application in hit-to-lead and lead optimization.

LIT-PCBA benchmark. The LIT-PCBA is a recent benchmark specifically designed

for the comparative evaluation of virtual screening. Compared to past analogous test sets,

it relies on experimental biological activity data from the PubChem BioAssay database to

support its crafting, thereby minimizing the presence of false positive and false negative com-

pound data, which is common in past benchmarks due to insufficient experimental data and

random selection of decoys. Moreover, it maintains a similar range and distribution of molec-

ular properties for both active and inactive compounds, avoiding inappropriate evaluations

of virtual screening methods due to inherent chemical biases. Therefore, the LIT-PCBA

benchmark is currently a suitable dataset for evaluating the screening power of machine

learning-based scoring functions (MLBSFs). Notably, it includes 15 targets, 7955 active

compounds, and 2644022 inactive compounds. Such a hit rate (the ratio of active to inactive

compounds) accurately reflects the real-world virtual screening scenario, greatly aiding in

our further understanding of DeepRLI’s screening effectiveness in challenging tasks. Since

our model is based on 3D complex structures and currently lacks the capability for confor-

mational sampling, in our tests, we first employ Glide SP11,12 to ascertain various binding

poses of small molecules with proteins, and then screen molecules guided by the predictions

of DeepRLI.

0 Ligand Bias benchmark. The 0 Ligand Bias benchmark13 is designed to evaluate

whether MLBSFs rely on ligand-specific biases rather than generalizable biophysics by elim-

inating ligand-dependent information. It consists of 365 protein–ligand complexes where

identical ligands (matched by InChI-Key) bind to different proteins. To ensure the bench-

mark challenges model reliance on ligand identity, clusters of identical ligands are selected

with mean pK values between 6 and 7 (normalized across the dataset) and a variance in

pK values greater than 1, removing cases where ligands have highly similar binding affini-

ties. This setup forces models to disregard ligand-specific memorization and instead leverage

protein features or interactions, testing their ability to generalize beyond ligand bias. By
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excluding ligand-dependent cues, the benchmark rigorously assesses whether MLBSFs can

capture meaningful protein–ligand interactions rather than dataset artifacts.

2.1.2 Evaluation on CASF-2016 benchmark

Figure S2 shows the results of the scoring, ranking, docking, and screening power of the

DeepRLI model evaluated on the CASF-2016 benchmark.1

2.1.3 Evaluation on CSAR-NRC HiQ Benchmark

Figure S3 shows the results of the scoring power of the DeepRLI model evaluated on the

CSAR-NRC HiQ benchmark.2 The CSAR-NRC HiQ benchmark includes three protein–

ligand complex structure datasets (“set1”, “set2” and “set3”). We calculate not only the

results for these three individual datasets, but also for their union (“sett”). To avoid inter-

ference from data leakage and facilitate comparison with other methods, we also evaluate

the results on datasets with some complex structure data removed (Figures S4, S5 and S6).

2.1.4 Evaluation on Merck FEP benchmark

Table S1 shows the results of the ranking power of the DeepRLI model evaluated on the

Merck FEP benchmark.3

2.2 Interpretation

2.2.1 PLIP results of 1BZC case

To validate the reasonableness of the attention mechanism-based interpretability of DeepRLI,

we use the traditional rule-based protein–ligand interaction analysis program PLIP15,16 to

infer the potential key molecular interactions in the 1BZC complex example. Figure S7

presents the three-dimensional structure around the binding site of the 1BZC complex and

the key interactions detected by PLIP. Furthermore, the details of these interactions are

exhaustively listed in Tables S2, S3, and S4.
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Figure S2: Performance of DeepRLI in scoring, ranking, docking, and screening on the
CASF-2016 benchmark. (a) A correlation scatter plot depicting DeepRLI prediction of the
experimental pKd values for protein–ligand complexes. The light blue area surrounding
the diagonal line represents the range of thermal fluctuations, specifically ±0.434, and data
points falling within this range can be considered to be in good agreement with the experi-
mental data. (b) Bar plots for three ranking metrics demonstrate DeepRLI’s ability to rank
active small molecules of various targets. The targets are arranged from left to right in
alphabetical order of their PDB IDs. (c) Three heatmaps composed of 285 (5 × 57) small
squares, where the squares from left to right and top to bottom correspond to complexes
arranged in alphabetical order of their PDB IDs. Colored squares represent successfully
docked complexes, i.e., those where one of the top n (1, 2, 3) poses predicted by DeepRLI
have an RMSD less than 2 Å; in contrast, uncolored squares represent failures. (d) Similar
to c, these heatmaps show whether active ligands are present in the top α (1%, 5%, 10%)
small molecules predicted by DeepRLI. (e) Similar to b, the three bar graphs demonstrate
DeepRLI’s ability to enrich active small molecules in the top α (1%, 5%, 10%) across various
targets.
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Figure S3: Scoring performance of DeepRLI on the CSAR-NRC HiQ benchmark. Scatter
plots a–d show the correlation between predicted binding affinity values by DeepRLI and
the actual experimental pKd values for various types of protein–ligand complex structure
datasets, which are sequentially from datasets “set1”, “set2”, “set3”, and “sett”, including
all data of datasets (subscript “all”).
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Figure S4: Scoring performance of DeepRLI on the CSAR-NRC HiQ benchmark. Scatter
plots a–d show the correlation between predicted binding affinity values by DeepRLI and
the actual experimental pKd values for various types of protein–ligand complex structure
datasets, which are sequentially from datasets “set1”, “set2”, “set3”, and “sett”, excluding
training set part of datasets (subscript “et”).
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Figure S5: Scoring performance of DeepRLI on the CSAR-NRC HiQ benchmark. Scatter
plots a–d show the correlation between predicted binding affinity values by DeepRLI and
the actual experimental pKd values for various types of protein–ligand complex structure
datasets, which are sequentially from datasets “set1”, “set2”, “set3”, and “sett”, exclude
general set part but include core set part of datasets (subscript “egic”).
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Figure S6: Scoring performance of DeepRLI on the CSAR-NRC HiQ benchmark. Scatter
plots a–d show the correlation between predicted binding affinity values by DeepRLI and
the actual experimental pKd values for various types of protein–ligand complex structure
datasets, which are sequentially from datasets “set1”, “set2”, “set3”, and “sett”, exclude
general set part of datasets (subscript “eg”).
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Table S1: The ranking power, measured by Spearman correlation coefficient (ρ), of several
representative scoring functions on the Merck FEP benchmark. Apart from PBCNet and
DeepRLI, the data for all other models are from Shen et al.8 PBCNet is a model recently
developed specifically for the task of relative binding affinity prediction.14 The best result in
each column is highlighted in bold

Method CDK8 c-Met Eg5 HIF-2α PFKFB3 SHP-2 SYK TNKS2 mean

AutoDock4 0.629 0.324 −0.397 0.376 0.530 0.609 0.544 0.558 0.397
Vina 0.849 −0.257 −0.520 0.493 0.546 0.569 0.519 0.538 0.342
Vinardo 0.782 −0.359 −0.475 0.371 0.515 0.490 0.379 0.305 0.251
Glide SP 0.345 0.378 −0.111 0.445 0.480 0.542 −0.006 0.316 0.299
Glide XP 0.617 0.165 0.017 0.410 0.513 0.490 0.124 0.582 0.365
X-Score 0.406 0.531 −0.316 0.224 0.430 −0.030 0.689 0.669 0.325
MM-GBSA 0.649 0.499 −0.002 0.282 0.554 0.585 0.108 0.158 0.354
∆Lin_F9XGB 0.826 0.077 −0.099 0.480 0.603 0.640 0.103 0.458 0.386
Pafnucy 0.406 0.531 −0.316 0.224 0.430 −0.030 0.689 0.669 0.325
GenScore 0.675 0.677 0.275 0.437 0.571 0.338 0.144 0.578 0.462
PBCNet 0.63 0.76 0.58 0.30 0.47 0.56 0.48 0.32 0.51
DeepRLI 0.513 0.745 −0.024 0.459 0.577 0.639 0.441 0.331 0.460

Hydrophobic Interaction Hydrogen Bond π-Stacking

Figure S7: The 3D molecular structure surrounding the binding site of the 1BZC complex,
as well as the potential intermolecular non-covalent interactions present within the complex
detected by the the PLIP non-covalent interaction analysis tool.
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Table S2: The potential intermolecular hydrophobic interactions present within the 1BZC
complex identified through the utilization of the PLIP non-covalent interaction analysis toola

Residue Distance (Å) Ligand atom Protein atom

TYR46 3.94 2438 377
VAL49 3.91 2442 405

PHE182 3.35 2436 1527
ALA217 3.45 2435 1786

a In the PLIP analysis results, the atoms are represented by the numbering in the PDB file.

Table S3: The potential intermolecular hydrogen bonds present within the 1BZC complex
identified through the utilization of the PLIP non-covalent interaction analysis toolb

Residue Distance H-A
(Å)

Distance
D-A (Å)

Donor angle
(ř)

Donor atom Acceptor atom

ARG47 3.27 4.03 135.35 389 [Ng+] 2456 [O.co2]
ARG47 2.27 3.19 155.66 380 [Nam] 2451 [O2]
ASP48 2.94 3.90 165.69 2447 [Nam] 398 [O3]

ALA217 1.87 2.81 159.54 1782 [Nam] 2431 [O3]
GLY218 2.80 3.30 111.55 1787 [Nam] 2429 [O2]
ILE219 2.17 3.10 156.43 1791 [Nam] 2429 [O2]
GLY220 1.96 2.94 172.50 1799 [Nam] 2429 [O2]
ARG221 1.84 2.81 169.06 1803 [Nam] 2430 [O3]
ARG221 1.79 2.72 155.79 1813 [Ng+] 2431 [O3]

b The atom serial numbers in the PLIP analysis results are accompanied by brackets,
within which are recorded the atom types according to SYBYL17 or IDATM.18

Table S4: The potential intermolecular π-stackings present within the 1BZC complex iden-
tified through the utilization of the PLIP non-covalent interaction analysis tool

Residue Distance (Å) Angle (°) Offset (Å) Stacking type Ligand atoms

TYR46 3.92 21.79 0.63 Parallel 2439, 2440, 2441, 2442,
2443, 2444
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2.2.2 More examples for interpretation

Case: 2FVD

The 2FVD system represents cyclin-dependent kinase 2 (CDK2) complexed with in-

hibitor [4-amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-m

ethoxyphenyl)methanone (LIA).19 CDKs are serine/threonine kinases regulating cell cycle

progression.20 Their dysregulation in cancers makes CDK inhibition a promising therapeutic

strategy.21

Table S5: PLIP-detected hydrophobic interactions in 2FVD complexa

Residue Distance (Å) Ligand Atom Protein Atom

VAL18 3.99 2312 141
ALA31 3.74 2304 242
PHE82 3.92 2296 570
LEU134 3.80 2304 990
LEU134 3.78 2298 991
ASP145 3.44 2313 1067

aAtom numbering follows PDB file conventions.

Table S6: PLIP-detected hydrogen bonds in 2FVD complexb

Residue H-A Distance
(Å)

D-A Distance
(Å)

Donor Angle
(ř)

Donor Atom Acceptor Atom

GLU81 2.16 2.74 114.11 2319 [N3] 554 [O2]
LEU83 2.70 3.68 171.25 571 [Nam] 2306 [N2]
LEU83 2.10 2.76 122.80 2300 [Npl] 574 [O2]
ASP86 2.15 3.05 151.92 598 [Nam] 2322 [O2]
LYS89 2.77 3.21 106.67 631 [N3] 2323 [O2]

bAtom types in brackets follow SYBYL/IDATM nomenclature.

Table S7: PLIP-detected salt bridges in 2FVD complex

Residue Distance (Å) Ligand Group Ligand Atoms

ASP86 4.92 Tertamine 2294

Figure S8 demonstrates DeepRLI’s interpretability analysis for 2FVD. Residues ILE10,

VAL18, LYS33, PHE80, PHE82, HIS84, GLN85, ASP86, LYS89, and ASP145 show high
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Figure S8: Visualization of interactions based on attention weights from DeepRLI’s final
graph transformer layer. Color intensity reflects attention weight magnitude, with darker
colors indicating higher weights. Shown are results for PDB ID 2FVD complex. a, 3D bind-
ing site structure with high-attention residues in ball-and-stick representation. b, Circular
layout of residue-level interaction importance. c, Ligand-centric view of residue-atom inter-
actions. d, Atom-level interaction heatmap. Only significant interactions are displayed in
(c) and (d) for clarity.
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Hydrophobic Interaction Hydrogen Bond Salt Bridge

Figure S9: 3D molecular structure of 2FVD binding site with PLIP-detected non-covalent
interactions.

S16



attention weights, indicating critical contributions to binding affinity prediction. Atomic-

level analysis reveals strong attention between VAL18/ASP145 and LIA’s 2,3-difluoro-6-

methoxyphenyl group, and between PHE82/ASP86/LYS89 and LIA’s 1-methanesulfonylpipe

ridin-4-ylamino moiety. PLIP analysis (Tables S5-S7) confirms hydrophobic interactions with

VAL18/PHE82/ASP145, hydrogen bonds/salt bridges with ASP86, and hydrogen bonds

with LYS89, aligning with DeepRLI’s attention patterns.

Case: 3ARP

The 3ARP system contains Vibrio harveyi chitinase A complexed with dequalinium

(DEQ).22 Chitinases catalyze β-(1,4)-linked N-acetylglucosamine polymer degradation, cru-

cial for fungal cell wall maintenance.22

Table S8: PLIP-detected hydrophobic interactions in 3ARP complex

Residue Distance (Å) Ligand Atom Protein Atom

1TRP68 3.64 4547 1159
TRP168 3.83 4546 1161
TRP168 3.62 4544 1162
TRP168 3.55 4572 1160
VAL205 3.80 4551 1464
TRP275 3.72 4568 2021
TRP275 3.88 4567 2022
TRP275 3.96 4575 2029
TRP275 3.56 4563 2028
THR276 3.77 4545 2037
LEU277 3.91 4546 2044
ASP392 3.74 4575 2984
TRP397 3.75 4558 3030
TRP397 3.59 4554 3026
TRP397 3.30 4560 3023
TRP570 3.76 4570 4351

DeepRLI analysis (Fig. S10) highlights TRP168, VAL205, HIS228, TRP275, THR276,

LEU277, ASP392, and TRP397 as key contributors. High attention weights focus on interac-

tions between TRP168/TRP275/TRP397 and DEQ’s 4-amino-2-methylquinolinium groups.

PLIP results (Tables S8-S10) confirm extensive hydrophobic contacts, water bridges, and
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TRP168

a b

c

d

TRP397ASP392THR276LEU277

HIS228

VAL205 TRP275

Figure S10: Attention weight visualization for 3ARP complex. a, Binding site 3D structure
with high-attention residues. b, Residue-level interaction network. c, Ligand-atom interac-
tion mapping. d, Atomic interaction heatmap.
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Hydrophobic Interaction Water Bridge π-Stacking

Figure S11: PLIP-detected interactions in 3ARP binding site.

Table S9: PLIP-detected water bridges in 3ARP complex

Residue A-W D-W Donor Water Donor Acceptor Water
(Å) (Å) Angle (ř) Angle (ř) Atom Atom Atom

HIS228 4.04 2.84 148.49 75.07 4576 [Npl] 1642 [N2] 4900
TRP397 4.02 3.17 168.97 123.09 4577 [Npl] 3027 [N2] 5117

Table S10: PLIP-detected π-stacking in 3ARP complex

Residue Distance (Å) Angle (ř) Offset (Å) Type Ligand Atoms

TRP168 3.78 0.75 1.56 Parallel 4548-4553
TRP168 3.52 1.72 0.70 Parallel 4548-4553
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π-stacking interactions matching DeepRLI’s attention patterns.

Case: 4DE2

The 4DE2 system contains CTX-M-9 class A β-lactamase complexed with inhibitor

3-[(dimethylamino)methyl]-N-[3-(1H-tetrazol-5-yl)phenyl]benzamide (DN3).23 β-lactamases

mediate bacterial resistance to β-lactam antibiotics by catalyzing their hydrolysis, making

β-lactamase inhibitors crucial for combating antimicrobial resistance.23

Table S11: PLIP-detected hydrophobic interactions in 4DE2 complexa

Residue Distance (Å) Ligand Atom Protein Atom

TYR105 3.99 4044 606
TYR105 3.57 4043 608
PRO167 3.98 4037 1074
ASN170 3.67 4037 1096

aAtom numbering follows PDB file conventions.

Table S12: PLIP-detected hydrogen bonds in 4DE2 complexb

Residue H-A
Distance (Å)

D-A
Distance (Å)

Donor Angle
(ř)

Donor Atom Acceptor Atom

SER70 3.07 3.78 131.72 329 [O3] 4049 [Nar]
ASN104 1.93 2.91 172.34 601 [Nam] 4026 [O2]
SER130 2.67 3.62 167.46 803 [O3] 4048 [Nar]
ASN170 2.82 3.25 107.49 1099 [Nam] 4026 [O2]
LYS234 3.32 4.02 127.17 1571 [N3] 4049 [Nar]
GLY236 3.35 3.82 111.34 4047 [Nar] 1582 [O2]
SER237 3.49 3.86 105.08 4038 [Nam] 1586 [O2]

bAtom types in brackets follow SYBYL/IDATM nomenclature.

Table S13: PLIP-detected water bridges in 4DE2 complex

Residue A-W D-W Donor Water Donor Acceptor Water
(Å) (Å) Angle (ř) Angle (ř) Atom Atom Atom

THR235 3.82 4.00 105.00 103.76 1577 [O3] 4046 [Nar] 4148
THR235 3.73 4.00 105.00 136.91 1577 [O3] 4048 [Nar] 4148
SER237 3.92 2.87 164.97 101.13 1583 [Nam] 4049 [Nar] 4305
SER237 3.69 2.87 164.97 127.76 1583 [Nam] 4046 [Nar] 4305
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SER130
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GLY236

THR235 LYS234

SER70

ASN132

PRO167

ASN170

Figure S12: Attention weight visualization for 4DE2 complex. a, 3D binding site structure
with high-attention residues in ball-and-stick representation. b, Circular layout of residue-
level interaction importance. c, Ligand-centric view of residue-atom interactions. d, Atomic
interaction heatmap (partial display for clarity).
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Hydrophobic Interaction Water BridgeHydrogen Bond Salt Bridge

Figure S13: PLIP-detected interactions in 4DE2 binding site.

Table S14: PLIP-detected salt bridges in 4DE2 complex

Residue Distance (Å) Ligand Group Ligand Atoms

ASP240 5.11 Tertamine 4034
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Figure S12 reveals DeepRLI’s attention patterns for 4DE2 complex. Key residues SER70,

LYS73, ASN104, TYR105, SER130, ASN132, PRO167, ASN170, LYS234, THR235, GLY236,

SER237, and ASP240 demonstrate high attention weights. Atomic-level analysis shows

strong focus on interactions between SER70/TYR105/SER130/LYS234/THR235/GLY236

/SER237 and DN3’s 3-(1H-tetrazol-5-yl)phenyl group, and between PRO167/ASN170/AS

P240 and DN3’s dimethylaminomethyl benzamide moiety. PLIP analysis (Tables S11-S14)

confirms hydrophobic interactions with TYR105/PRO167/ASN170, hydrogen bonds with A

SN104/SER130/ASN170/GLY236/SER237, water bridges with THR235/SER237, and salt

bridges with ASP240, aligning precisely with DeepRLI’s attention allocation.

Case: 4WIV

The 4WIV system represents human BRD4 bromodomain complexed with inhibitor N-

tert-butyl-2-[4-(3,5-dimethyl-1,2-oxazol-4-yl)phenyl]imidazo[1,2-a]pyrazin-3-amine (3P2).24

As a BET family member, BRD4 functions as transcriptional coactivator mediating signal

transduction from master regulators (e.g., MYC in cancer, NFB in inflammation) to RNA

Pol II.25 Dysregulated BET bromodomain activity contributes to malignancies, making its

inhibition a promising therapeutic strategy.24

Table S15: PLIP-detected hydrophobic interactions in 4WIV complexa

Residue Distance (Å) Ligand Atom Protein Atom

PRO82 3.96 1075 341
PRO82 3.74 1064 340
PHE83 3.47 1053 351
VAL87 3.92 1051 385
LEU92 3.79 1064 421
LEU94 3.61 1054 437

TYR139 3.80 1054 824
ILE146 3.89 1053 877
ILE146 3.70 1061 875

aAtom numbering follows PDB file conventions.

DeepRLI’s interpretability analysis (Fig. S14) identifies critical contributions from TRP81,

PRO82, PHE83, VAL87, LEU92, CYS136, TYR139, ASN140, ASP145, ILE146, and MET149.

S23



a b

c

d

TRP81

PRO82

TYR139

VAL87

ASN140

CYS136

PHE83 ASP145
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Figure S14: Interaction visualization through attention weights from DeepRLI’s final graph
transformer layer. Color intensity reflects weight magnitude, with darker hues indicating
higher importance. Results shown for PDB ID 4WIV complex. a, Binding site 3D structure
highlighting high-attention residues in ball-and-stick representation. b, Circular diagram of
residue-level interaction importance. c, 2D ligand-centric view of residue-atom interactions.
d, Atomic interaction heatmap. Panels (c) and (d) display only prominent interactions for
clarity.
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Hydrophobic Interaction Water BridgeHydrogen Bond π-Stacking

Figure S15: 3D molecular structure of 4WIV binding site with PLIP-detected non-covalent
interactions.

Table S16: PLIP-detected hydrogen bonds in 4WIV complexb

Residue H-A (Å) D-A (Å) Donor Angle
(ř)

Donor Atom Acceptor Atom

ASN140 3.00 3.84 143.91 836 [Nam] 1060 [Nar]
bAtom types in brackets follow SYBYL/IDATM nomenclature.

Table S17: PLIP-detected water bridges in 4WIV complex

Residue A-W D-W Donor Water Donor Acceptor Water
(Å) (Å) Angle (ř) Angle (ř) Atom Atom Atom

CYS136 3.89 3.71 104.05 88.37 791 [Nam] 1060 [Nar] 1183

Table S18: PLIP-detected π-stacking interactions in 4WIV complex

Residue Distance (Å) Angle (ř) Offset (Å) Type Ligand Atoms

TRP81 4.86 83.53 1.08 T-shaped 1057-1066
TRP81 5.09 83.03 1.78 T-shaped 1058-1070
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Atomic-level attention weights highlight: (1) Interactions between PHE83/VAL87/CYS13

6/TYR139/ASN140 and 3P2’s 3,5-dimethyl-1,2-oxazol-4-yl group; (2) PRO82/LEU92/ILE

146 interactions with the phenyl moiety; (3) TRP81/LEU92 interactions with imidazo[1,2-

a]pyrazine portion. PLIP validation (Tables S15-S18) confirms: Hydrophobic contacts with

PRO82/PHE83/VAL87/LEU92/TYR139/ILE146; Hydrogen bonding with ASN140; Wa-

ter bridges with CYS136; π-stacking with TRP81. This alignment substantiates DeepRLI’s

capability to identify biologically significant interaction patterns for affinity prediction.

Through these five case studies, DeepRLI demonstrates interpretability through attention

weight visualization from graph transformer layers. The significant interaction contributions

identified by DeepRLI align remarkably with conventional PLIP analysis, validating the

model’s capability to capture critical protein–ligand interaction features. This correspon-

dence confirms that graph representations learned through graph convolutional networks

maintain strong correlation with binding affinities, enabling DeepRLI’s robust performance

across diverse prediction tasks.

3 Supplementary methods

The content of this section supplements the methods part of the main text.

3.1 Input features

Table S19 and Table S20 list the node features and edge features of the model input respec-

tively.

3.2 Datasets

Table S21 lists the data used in the training process of DeepRLI.26 The minimal input for

training consists of a data unit made up of a crystal structure-activity pair, a re-docked

positive structure, a re-docked negative structure, and a cross-docked negative structure.
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Table S19: List of node features

Feature name Feature vector

affiliation 0 or 1 (for protein or ligand)
symbol C, N, O, F, P, S, Cl, Br, I, Met, Unk (one

hot)
hybridization s, sp, sp2, sp3, sp3d, sp3d2 (one hot)
formal charge -2, -1, 0, 1, 2, 3, 4 (one hot)

degree 0, 1, 2, 3, 4, 5 (one hot)
is a donor 0 or 1

is an acceptor 0 or 1
is negative ionizable 0 or 1
is positive ionizable 0 or 1

is Zn binder 0 or 1
is aromatic 0 or 1

is a hydrophobe 0 or 1
is a lumped hydrophobe 0 or 1

Table S20: List of edge features

Feature name Feature vector

is intermolecular 0 or 1
is covalent 0 or 1
bond type single, double, triple, aromatic (one hot)
distance (gaussian smearing, 33)
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In our actual training process, the data unit also includes an additional crystal structure-

activity pair to further enhance the model’s scoring performance.

Table S21: List of data units for training

No. Native
ID

Re-docked Positive
IDs

Re-docked Negative
IDs

Cross-docked Negative
IDs

1 10gs [10gs_27, 10gs_6] [10gs_1, 10gs_10,
10gs_11, . . .]

[10gs-1a9q, 10gs-1bn1,
10gs-1bnv, . . .]

2 184l [184l_1, 184l_12,
184l_13, . . .]

[184l_11, 184l_14,
184l_15, . . .]

[184l-1ghy, 184l-1t4v,
184l-3l0v, . . .]

... ... ... ... ...
4156 966c [966c_1, 966c_21] [966c_11, 966c_12,

966c_13, . . .]
[966c-1c1r, 966c-1d09,

966c-1d3d, . . .]
+ Supplementary Native IDs (randomly select one for each row): [1afl, 1avn, 1bai, . . .]

3.3 Derivation of contrastive loss

In order to be able to take advantage of the unknown exact pKd data, we need to construct a

loss function suitable for them. Here we explore the origin of the mean squared error (MSE)

from the perspective of probability distribution, and then generalize this method to data

with fuzzy true values.

In the ordinary affinity prediction model training, the dataset is a set of {(xi, y
true
i )}Ni=1.

And our purpose is to build a neural network ypred = µθ(x) so that the predicted value is as

close as possible to the real value, that is, the loss function L = 1
N

∑N
i=1(y

pred
i − ytrue

i )2 is as

small as possible. If we regard the data as independent and identically distributed random

variables, that is

{(xi, y
true
i )}Ni=1

i.i.d.∼ pd(x, y), (S1)

then the problem can be reformulated as constructing a neural network so that the predicted

distribution pθ(x, y) is as close as possible to the real distribution:

pθ(x, y) → pd(x, y). (S2)
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That is, the optimization goal is to reduce the difference between these two distributions,

L = D(pd∥pθ). (S3)

And the difference can be quantified by the Kullback-Leibler (KL) divergence:

DKL(pd∥pθ) =
∫∫

pd(x, y) ln
pd(x, y)

pθ(x, y)
dxdy (S4)

= −
∫∫

pd(x, y) ln pθ(x, y)dxdy +

∫∫
pd(x, y) ln pd(x, y)dxdy (S5)

= −E[ln pθ(x, y)] + C (S6)

≈ − 1

N

N∑
i=1

ln pθ(xi, y
true
i ) + C (S7)

In the above formula, since pd is known, the integral of the second term in Eq. S5 is a

constant. Specifically, the true distribution of the data is

pd(x, y) = pd(y|x)pd(x) = δ(y − ytrue(x))pd(x). (S8)

Therefore, the distribution of predicted values pθ(y|x) can reasonably be assumed to be a

Gaussian distribution:

pθ(x, y) = pθ(y|x)pθ(x) =
1√

2πσ2
θ(x)

exp

(
−(y − µθ(x))

2

2σθ(x)

)
· pθ(x) (S9)

Further,

ln pθ(x, y) = −1

2
ln 2πσ2

θ(x)−
(y − µθ(x))

2

2σθ(x)
+ ln pθ(x) (S10)

is substituted into Eq. S7 and set σθ to be a constant, the KL divergence is restored to the

original MSE loss function,

DKL(pd∥pθ) ∼
1

N

N∑
i=1

(µθ(xi)− ytrue
i )2. (S11)
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Now we introduce some data for which we only know the approximate range of affinity

values, namely

{(xi, (−∞, ytrue
i ))}Ni=1. (S12)

Without any prior knowledge, y can be defaulted to be uniform:

pd(y|x) =

 ϵ if y < ytrue(x),

0 if y ≥ ytrue(x).
(S13)

Therefore, the distribution of predicted values can be assumed to be a Sigmoid function,

pθ(x, y) = pθ(y|x)pθ(x) =
1

1 + exp(−(y − µθ(x)))
· pθ(x). (S14)

And further,

ln pθ(x, y) = − ln(1 + exp(−(y − µθ(x)))) + ln pθ(x). (S15)

Hence the KL divergence at this time is

DKL(pd∥pθ) ∼
1

N

N∑
i=1

ln(1 + exp(µθ(xi)− ytrue
i )), (S16)

which is exactly the Softplus function. It is a contrastive loss function that will make the

prediction results as low as possible below a certain given value, which is applicable in

some sense to the data we generate through docking. The Softplus function is just one of

many possibilities, and many other types of loss functions can also make the distribution of

prediction scores close to Eq. S13, such as those shown in Table S22. To clearly compare

the differences between these functions, Figure S16 plots their curves and the probability

distributions of the predicted values caused by them.

From the plot of probability distributions, we can observe that the optimization goals of

the two loss functions, Softplus and exp, are actually to infinitely distance themselves from

specific anchor points. Even with the constraint of positive samples, the final prediction
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Table S22: Several feasible contrastive loss functions

Name Formulaa

HalfMSE (ypred
i − ytrue

i )2H(ypred
i − ytrue

i )

ReLU (ypred
i − ytrue

i )H(ypred
i − ytrue

i )

Softplus ln(1 + exp(ypred
i − ytrue

i ))

exp exp(ypred
i − ytrue

i )
a H(x) is the Heaviside step function.

a b

Figure S16: (a) Some contrastive loss functions that can make the predicted value of the
optimized model less than a specified value. (b) The probability distribution of the predicted
values these loss functions give rise to. Note that the MSE in the figure is for reference only.
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of the model will tend to maintain a certain distance from the anchor points. As for the

docking data we produced, we can only determine that their affinity scores are theoretically

less than the corresponding scores of the crystal structure. As for how much less, we don’t

know. They could be very close or very far away. Therefore, Softplus and exp cannot fully

meet our requirements.

On the other hand, HalfMSE and ReLU (a limit of Softplus) have a uniform maximum

probability distribution on the left side of the anchor point, which means that the result of

optimization is to make the predicted values fall in this area as much as possible. How far

they need to be depends on the knowledge of the positive samples, which avoids artificially

introducing a gap with the anchor point. They both meet our objectives, the only difference

is a slight difference in the distribution on the right side of the anchor point. In this work, we

chose HalfMSE as our contrastive loss function because it is close to the loss function used

for the positive samples, provides faster optimization speed in the initial stage of training,

and has a smoother transition when close to the anchor point.

3.4 Training

The hyperparameter settings used for training DeepRLI are shown in Table S23. The maxi-

mum number of training epochs is set to 1000 to provide a sufficiently large value that neither

interferes with task execution nor prematurely terminates training under normal conditions,

while ensuring timely termination in exceptional cases. Since an automatic learning rate

decay strategy is employed, training automatically stops when the learning rate decreases

below a critical threshold. In practice, training typically concludes between 300 and 450

epochs without ever reaching the 1000-epoch limit.

For training the DeepRLI model on a single “NVIDIA Tesla V100 SXM2 32GB” GPU,

a batch size of 6 is used. This conservative batch size is chosen because each training

data unit contains five fully connected complex graphs, and larger batch sizes would require

significantly more GPU memory. The initial learning rate is set to 0.0002. If the validation
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Table S23: Hyperparameters used in model training

Parameter Name Parameter Value

maximum number of epochs 1000
batch size 6

initial learning rate 0.0002
reduction factor of learning rate 0.5

reduction patience of learning rate 15
minimum learning rate 10−6

number of node features 39
number of edge features 39

hidden dimensions 64
number of attention heads 8

loss shows no improvement over 15 consecutive epochs, the learning rate is reduced by a

factor of 0.5. Training terminates automatically once the learning rate falls below 10−6.

Model-related hyperparameters are also listed in Table S23. The input dimensions for

the first neural network layers of node and edge features depend on their respective feature

dimensions, both set to 39. The hidden embedding dimensions for nodes and edges within

the neural network are 64. The graph transformer module uses 8 attention heads.

Training remains stable with no observed overfitting, so the final epoch’s model is directly

adopted as the production model. The trained model parameters are publicly available on

GitHub (see the “Code Availability” section in the main text). To instantiate the production

model for inference, users can initialize the model with the provided hyperparameters and

load the trained parameters via the released state dictionary file.

3.5 Computational overhead of DeepRLI

We assessed the computational overhead of DeepRLI using a server equipped with an “Intel

Xeon Gold 6132 @ 2.60GHz” CPU and an “NVIDIA Tesla V100 SXM2 32GB” GPU. For

the 0 Ligand Bias dataset, comprising 365 protein–ligand complexes, DeepRLI’s average

data preprocessing time is 0.441072 seconds per item, and the average inference time is

0.047680 seconds per item, resulting in a total average runtime of 0.488752 seconds per
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complex. Under the same configuration, GenScore’s average data preprocessing time is

1.725224 seconds per item, with an average inference time of 0.780646 seconds per item,

leading to a total average runtime of 2.50587 seconds per complex. Consequently, DeepRLI

operates five times faster than GenScore, demonstrating lower computational costs. When

utilizing 100 parallel processes (feasible on a machine with dual AMD CPUs), DeepRLI can

evaluate nearly 20 million distinct protein–ligand complexes in a day. In a virtual screening

scenario involving the same protein with different ligands, the computational load for data

preprocessing can be further reduced by pre-extracting the protein pockets, significantly

enhancing processing speed.
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