Supporting Information

Photo Responsive Metal-Organic Gels of Rigid Phenylene-1,3-di-Substituted Angular Diene with Metal Halides: Gel-to-Gel Transformation triggered by [2+2] Polymerization

Shaheen Sultana, Rajorshi Mandal and Kumar Biradha*

* Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India E-mail: <u>kbiradha@chem.iitkgp.ernet.in</u>

Contents

Gelation Studies	Table S1
¹ HNMR study	Fig. S1-S5
X-ray powder diffraction pattern	Fig. S6
FT-IR spectra	Fig. S7-S8
Rheological analysis	Fig. S9-S13
FESEM & TEM image	Fig. S14-S15
Inverted vial photographs of gel-to-gel transition	Fig. S16
EDX-elemental analysis	Fig. S17
MALDI-TOF mass spectra	Fig. S18
Degree of polymerization	Table S2
Changes in rheological moduli before & after irradiation	Table S3
UV-Vis absorption spectra of MOGs	Fig. S19
References	

Table S1 Gelation in different solvents for MOG1-5.

Gels	(M:L)	Solvent (Total vol =2ml)
MOG1	CdCl ₂ (1:1)	МеОН
MOG2	CdBr ₂ (1:1)	МеОН
MOG3	HgCl ₂ (4:1)	MeOH:H ₂ O (1:1)
MOG4	HgBr ₂ (4:1)	MeOH:H ₂ O (1:1)
MOG5	HgI ₂ (4:1)	MeOH:H ₂ O (1:1)

Fig. S1 ¹HNMR spectra in DMSO-*d*₆ and % conversion of MOG1-5 after 24h of UVA irradiation.

Fig S2 ¹HNMR spectra in DMSO- d_6 of xerogels of **MOG1-5** at 24h of irradiation. Yield of the reaction has been calculated by taking into account the integration ratios of unreacted olefinic protons appearing at 6.89 ppm with newly formed cyclobutane peak at 4.21 ppm.¹

Fig. S3 ¹HNMR spectra of **3PMA** and the separated organic polymer in DMSO- d_6 .

Fig. S4 ¹³CNMR spectra of **3PMA** in DMSO- d_6 .

Fig. S5 ¹HNMR spectra illustrating % conversion of MOG1-2 and MOG4-5 upto the point of self-persistent nature in DMSO- d_6 .

Fig. S6 XRPD pattern for all the xerogels of: (a) Cd(II) MOGs (b) Hg(II) MOGs.

Fig. S7 FT-IR spectra of 3PMA and xerogel of MOG1-5.

Fig. S8 FT-IR spectra of **3PMA** xerogel of **MOG1-5** in 4000-2000 cm⁻¹ region. Notice the effect of intramolecular H bonding on secondary amine band.

Fig. S9 Rheological analysis for **MOG2**, **MOG3** and **MOG5** before irradiation: variation of storage modulus (G') and loss modulus (G") with: (a) shear stress (b) frequency and (c) step-strain hysteresis loop.

Fig. S10 Rheological data reproducibility for **MOG1-5** before irradiation: variation of storage modulus (G') and loss modulus (G") with: shear stress and frequency for (a) **MOG1**, (b) **MOG2**, (c) **MOG3**, (d) **MOG4** and (e) **MOG5** (set 2 and set 3 denotes data for two different batches of sample).

Fig. S11 Rheological analysis for **MOG2**, **MOG4**, & **MOG5** after 24 hrs of UVA irradiation: variation of storage modulus (G') and loss modulus (G'') with: (a) shear stress (b) frequency and (c) step-strain hysteresis loop.

Fig. S12 Rheological data reproducibility for **MOG1-5** after irradiation: variation of storage modulus (G') and loss modulus (G") with: shear stress and frequency for (a) **MOG1**, (b) **MOG2**, (c) **MOG3** and (d) **MOG4** (set 2 and set 3 denotes data for two different batches of sample).

Fig. S13 Rheological analysis for **MOG1** at different course of photoreaction: variation of storage modulus (G') and loss modulus (G'') with frequency showing gradual increase in mechanical strength.

MOG5

Fig. S14 Illustration of FESEM analysis of MOG5.

~20 nm-~21 nm ~13 nm-~16 nm ~7 nm-~10 nm ~142 nm-~168 nm ~86 nm-~97 nm

Fig. S15 (a-e) Illustration of TEM analysis of MOG1-5, fibril/ ring length/diameter are written at the end of the images.

Fig. S16 Photographs showing gels in upturned vials, and FESEM showing fibre width and spheres diameter before irradiation and after 24 hours of irradiation for (a) **MOG2**, (b) **MOG3**, (c) **MOG4** and (d) **MOG5**.

Fig. S17 EDX- elemental analysis for: (a-e) MOG1-5, (f) organic polymer extracted from MOG1

Fig. S18 MALDI-TOF analysis for MOG1-5 and xerogel of MOG1-3 and MOG5.

 Table S2 Degree of polymerization in gel and xerogel states for MOG1-5.

	No of photopolymeri	No of photopolymerized gelator molecules			
	Gel	Xerogel			
MOG1	11	10			
MOG2	11	10			
MOG3	11	7			
MOG4	10	0			
MOG5	10	8			

Table S3 Overall changes in rheological moduli after 24h UV irradiation for MOG1-5

	Yield Stress σ _y (Pa)				G'-G'' (Pa)			
Gels	Before		After		Before	e		After
		avr		avr		avr		avr
MOG1	132.32		228.06		4,104.14		16,823.95	
	140.13	140.34	269.08	238.08	3,925.55	4054.82	16,022.03	16,720.24
	148.58		217.10		4,134.77		17,314.74	
MOG2	53		69		3,896.15		7,183.92	
	53.90	58.73	81.60	75.80	4,115.94	4091.94	7,126.71	7,406.35
	69.30		76.81		4,263.75		7,908.43	
MOG3	105.22				802.7		••••	
	87.11	99.89			988.12	959.88		
	107.34				1088.83			

MOG4	145.25		358.91		4,271.73		20,285.25	
	119.65	136.01	417.35	370.64	4,150.92	3983.26	22,281.48	20,900.43
	143.15.		335.66		3,527.14		20,134.56	
MOG5	110.80		118		3,915.76		7,169.69	
	198.09	154.89	140.43	127.30	3,860.40	3,996.08	7,701.32	7,615.13
	155.78		123.48		4,212.09		7,974.39	

Fig. S19 Absorption spectra in solid state of (a) 3PMA, MOG1 and irradiated MOG1; (b) MOG2 and irradiated MOG2; (c) MOG3 and irradiated MOG3; (d) MOG4 and irradiated MOG4; (e) MOG5 and irradiated MOG5.

References:

- [1]. Mandal, R.; Biradha. K. Dalton Trans. 2020, 49, 13744-13752.
- [2]. Myshakina, N. S.; Ahmed, Z.; Asher, S. A. J Phys Chem B. 2008, 112, 11873-11877.