## Beyond Copper: Examining the Significance of His-Mutations in Mycobacterial GroEL1 HRCT for Ni(II) Complex Stability and Formation

Anna Rola<sup>1</sup>, Arian Kola<sup>2</sup>, Daniela Valensin<sup>2</sup>, Oscar Palacios<sup>3</sup>, Merce Capdevila<sup>3</sup>, Elżbieta Gumienna-Kontecka<sup>1</sup>, Sławomir Potocki<sup>1\*</sup>

slawomir.potocki@uwr.edu.pl

<sup>1</sup>Faculty of Chemistry, University of Wroclaw, 50- 383 Wroclaw, Poland;

<sup>2</sup>Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy

<sup>3</sup>Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;



**Figure S1.** ESI-MS spectrum of a Ni(II)-Ac-DHDHHHGHAH (L1) system in the m/z 1235–1300 range at pH 7.5 [M/L = 1:1]. The simulated and experimental isotopic distribution spectra of the peak at m/z = 1297.44 are presented in the middle.



**Figure S2.** ESI-MS spectrum of a Ni(II)-Ac-DKPAKAEDHDHHHGHAH (L2) system in the m/z 980–1060 range at pH 7.5 [M/L = 1:1]. The simulated and experimental isotopic distribution spectra of the peak at m/z = 1019.43 are presented in the middle.



**Figure S3.** ESI-MS spectrum of a Ni(II)-Ac-DKPAKAEDQDHHHGHAH (L3) system in the m/z 970– 1060 range at pH 7.5 [M/L = 1:1]. The simulated and experimental isotopic distribution spectra of the peak at m/z = 1017.43 are presented in the middle. The spectrum is identical in case of all studied mutants.



**Figure S4.** Superimposition of selected regions of <sup>1</sup>H 1D NMR spectra of His/Gln substituted peptides (L3-L8) 1.0 mM in absence (black) and in presence of different Ni(II):L ratio: 0.05 (blue), 0.1 green, 0.2 (red). T =298 K, pH 7.1, H<sub>2</sub>O/D<sub>2</sub>O 9/1.



**Figure S5.** Superimposition of selected regions of the <sup>1</sup>H-<sup>1</sup>H TOCSY spectra of His/Gln substituted peptides 1.0 mM in absence (black) and in presence of 0.2 Ni(II) eqs. (coloured contours). T =298 K, pH 7.1, H<sub>2</sub>O/D<sub>2</sub>O 9/1.



**Figure S6.** UV-Vis (A) and CD (B) spectra of Ni(II)-L3 system over the pH range 2–11. Conditions: T = 298 K and metal to ligand ratio = 1:0.8;  $[Ni(II)] = 4 \times 10^{-4}$  M.



**Figure S7.** UV-Vis (A) and CD (B) spectra of Ni(II)-L4 system over the pH range 2–11. Conditions: T = 298 K and metal to ligand ratio = 1:0.8;  $[Ni(II)] = 4 \times 10^{-4}$  M.



**Figure S8.** UV-Vis (A) and CD (B) spectra of Ni(II)-L5 system over the pH range 2–11. Conditions: T = 298 K and metal to ligand ratio = 1:0.8;  $[Ni(II)] = 4 \times 10^{-4}$  M.



**Figure S9.** UV-Vis (A) and CD (B) spectra of Ni(II)-L6 system over the pH range 2–11. Conditions: T = 298 K and metal to ligand ratio = 1:0.8; [Ni(II)] =  $4 \times 10^{-4}$  M.



**Figure S10.** UV-Vis (A) and CD (B) spectra of Ni(II)-L7 system over the pH range 2–11. Conditions: T = 298 K and metal to ligand ratio = 1:0.8; [Ni(II)] = 4 × 10<sup>-4</sup> M.



**Figure S11.** UV-Vis (A) and CD (B) spectra of Ni(II)-L8 system over the pH range 2–11. Conditions: T = 298 K and metal to ligand ratio = 1:0.8; [Ni(II)] = 4 × 10<sup>-4</sup> M.



**Figure S12.** CD spectra of (A) L2: Ac-DKPAKAEDHDHHHGHAH peptide, (B) Ni(II)-L2 system over the pH range 2–11, 180-280 nm. Conditions: T = 298 K and metal to ligand ratio = 0.8:1; [Ni(II)] = 4 × 10<sup>-4</sup> M.