Supplementary Information

Ultralong afterglow of heavy-atom-free carbon dots with a phosphorescence lifetime of up to 3.7 s for encryption and fingerprinting description

Xinlei Zhang, Xia Liu, Peng Liu, Bohan Li, Yan Xu*

Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
*Corresponding Authors:
xuyan@mail.neu.edu.cn (Yan Xu);

Fig. S1. The experimental PXRD patterns of as-prepared BA and D-CDs $/ \mathrm{BA}(\mathrm{X}=$ $0.25,0.5,1.0,1.5,2.0,6.0)$ samples.

Fig. S2. Fluorescence emission spectra of $\mathrm{D}-\mathrm{CDs}_{x} / \mathrm{BA}$ with different $\mathrm{D}-\mathrm{CDs}$ contents.

Fig. S3. Fluorescence emission spectra of $\mathrm{D}-\mathrm{CDs}_{1.5} / \mathrm{BA}$ powder and in alcohol

Fig. S4. Time-resolved delay spectra measured at (a) 383 nm and (b) 473 nm for different lifetimes.

Fig. S5. Afterglow spectra of D-CDs mixed into different matrices.

Fig. S6. Temperature-dependent emission intensity variation of $\mathrm{D}-\mathrm{CDs}_{1.5} / \mathrm{BA}$ with excitation wavelength of 315 nm .

Table S1 The time resolved phosphorescence decay components of the D-CDs ${ }_{1.5} / \mathrm{BA}$

Em.	Ex.	T1 (s)	A1	A1' (\%)	T $_{\text {avg }}$ (s) ${ }^{\mathbf{a}}$
$\mathbf{4 7 3}$	315	3.30	7.60	100	3.30
$\mathbf{4 7 3}$	254	3.66	9.15	100	3.66
$\mathbf{4 7 3}$	365	2.78	9.43	100	2.78

${ }^{a}$ The average lifetimes were calculated using the equation :

$$
\tau_{\text {avg }}=\left(A_{1}{ }^{\prime} * \tau_{1} * \tau_{1}\right) /\left(A_{1}{ }^{\prime} * \tau_{1}\right)
$$

Table S2 Comparison of lifetime of CD-based RTP materials under UV light

Materials	Lifetime (s)	PQY (\%)	References
CDs and boric acid	3.66	12.67	This work
CDs and PVA	2.43	7.51	1
CDs and boric acid	2.26	17.5	2
CDs and urea	0.21	30	3
CDs and boric acid	0.44	17.61	4

References

1. D. Li, Y. Yang, J. Yang, M. Fang, B. Z. Tang and Z. Li, Nat. Commun., 2022, 13, 347-355.
2. W. Li, W. Zhou, Z. Zhou, H. Zhang, X. Zhang, J. Zhuang, Y. Liu, B. Lei and C. Hu, Angew. Chem., Int. Ed., 2019, 58, 7278-7283.
3. J. Tan, Z. Yi, Y. Ye, X. Ren and Q. Li, J. Lumin., 2020, 223, 117267-11774.
4. W. He, X. Sun and X. Cao, ACS Sustain. Chem. Eng., 2021, 9, 4477-4486.
