Supporting Information

Ruthenium doped cobalt sulphide electrocatalyst derived from ruthenium-cobalt Prussian blue analogue (RuCo-PBA) for enhanced hydrogen evolution reaction (HER)

Manisha Sadangi,^{a, b} and J. N. Behera ^{a, b*}

^a School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India

^b Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India

E-mail: jnbehera@niser.ac.in

Fig. S1: Powder X-ray diffraction study of bare CoS_x .

Fig. S2: FESEM image of RuCo-PBA.

Fig. S3: FESEM images of $Co_9S_8/Ru@24H$ at different scales (a-c) and elemental mapping of $Co_9S_8/Ru@24H$ (d-h).

Fig. S4: FESEM images of $Co_9S_8/Ru@72H$ at different scales (a-c) and elemental mapping of $Co_9S_8/Ru@72H$ (d-h).

Fig. S5: FESEM images of CoS_x at different scales (a & b).

Fig. S6: Nitrogen adsorption desorption isotherm for Co₉S₈/Ru@24H (a), Co₉S₈/Ru@48H (b) and

Co₉S₈/Ru@72H (c).

Fig. S7: XPS spectrum of Ru 3p in Co₉S₈/Ru@48H.

Fig. S8: Cyclic voltammograms (CVs) of $Co_9S_8/Ru@24H$ (a), $Co_9S_8/Ru@48H$ (b), $Co_9S_8/Ru@72H$ (c), RuCo-PBA (d) and bare CoS_x (e).

Fig. S9: Chronopotentiometry test of $Co_9S_8/Ru@24H$ and $Co_9S_8/Ru@72H$ in 0.5 M H₂SO₄ acidic solution.

	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Electrolyte	References
Co ₉ S ₈ -30@MoS _x /CC	98	64.8	0.5 M H ₂ SO ₄	1
Co ₉ S ₈ -NDCL	149@20mA cm ⁻²	70	0.5 M H ₂ SO ₄	2
Co ₉ S ₈ /NC@MoS ₂	117	68.8	0.5 M H ₂ SO ₄	3
MoS ₂ /Co ₉ S ₈ /MoC@CNT-N	174.2	84.7	0.5 M H ₂ SO ₄	4
CoS ₂ nanowires	145	51.6	0.5 M H ₂ SO ₄	5
Co _X S _Y	188	96	0.5 M H ₂ SO ₄	6
$Co_9S_8@MoS_2$	106	51.8	0.5 M H ₂ SO ₄	7
$Zn-Co_9S_8@CF-(1-1)$	278	85.2	0.5 M H ₂ SO ₄	8
Co ₉ S ₈ /Ru@48H	94	84	0.5 M H ₂ SO ₄	This work

Table S1: Comparison of metal sulphide-based electrocatalysts for HER.

References:

- 1 X. Zhou, X. Yang, M. N. Hedhili, H. Li, S. Min, J. Ming, K. W. Huang, W. Zhang and L. J. Li, *Nano Energy*, 2017, **32**, 470–478.
- 2 J. Mujtaba, L. He, H. Zhu, Z. Xiao, G. Huang, A. A. Solovev and Y. Mei, *ACS Appl. Nano Mater.*, 2021, **4**, 1776–1785.
- 3 H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Shao and L. Hou, *ACS Appl. Mater. Interfaces*, 2017, **9**, 28394–28405.
- 4 M. Wang, K. Jian, Z. Lv, D. Li, G. Fan, R. Zhang and J. Dang, *J. Mater. Sci. Technol.*, 2021, **79**, 29–34.
- 5 M. S. Faber, R. Dziedzic, M. A. Lukowski, N. S. Kaiser, Q. Ding and S. Jin, *J. Am. Chem. Soc.*, 2014, **136**, 10053–10061.
- 6 X. Sun, H. Huang, C. Wang, Y. Liu, T. L. Hu and X. H. Bu, *ChemElectroChem*, 2018, **5**, 3639–3644.
- 7 V. Ganesan, S. Lim and J. Kim, *Chem. Asian J.*, 2018, **13**, 413–420.
- 8 B. Dong, J. Y. Xie, N. Wang, W. K. Gao, Y. Ma, T. S. Chen, X. T. Yan, Q. Z. Li, Y. L. Zhou and Y. M. Chai, *Renew. Energy*, 2020, **157**, 415–423.