Cyclic (amino)(barrelene)carbene Ru-complexes: synthesis and reactivity in olefin metathesis
Jakub Talcik, ${ }^{\text {a }}$ Melinda R. Serrato, ${ }^{\text {b }}$ Antonio Del Vecchio, ${ }^{\text {a,c }}$ Sophie Colombel-Rouen, ${ }^{\text {a }}$ Jennifer Morvan, ${ }^{\text {a }}$ Thierry Roisnel, ${ }^{\text {a }}$ Rodolphe Jazzar*b, Mohand Melaimi ${ }^{\text {b }}$, Guy Bertrand*b ${ }^{* b}$ and Marc Mauduit*a
${ }^{a}$ Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France. Email: marc.mauduit@ensc-rennes.fr
${ }^{\mathrm{b}}$ UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States. Email: rjazzar@ucsd.edu, gbertrand@ucsd.edu
c Present address: University of Pisa, via G. Moruzzi 13, Pisa - Tuscany, IT 56124

Table of contents

1 Experimental 4
1.1 General information 4
1.2 Synthesis of CABC salts 6
1.3 Synthesis of Pyr-GI 6
1.4 Synthesis of styrene derivative L1a 6
1.5 Synthesis of styrene derivative L1b 7
2 Complexes synthesis 8
2.1.1 General scheme of synthesis 8
2.1.2 General procedure for CABC Hoveyda type complexes 8
2.1.3 Synthesis of N-Mesityl CABC CHPh Pyridine Ru complex (Ru-4e) 13
2.1.4 Synthesis of N-Mesityl CABC Grela type Ru complex (Ru-4f) 14
2.1.5 Synthesis of N-Mesityl CABC Blechert type Ru complex (Ru-4g) 15
2.2 Thermal Stability of Ru-4d 16
2.3 Thermal Stability of Ru-4g 17
2.4 Evaluation of the complexes in catalysis 18
2.5 Ring-Closing Metathesis: Optimization Conditions 18
2.5.1 Kinetic studies 19
2.5.2 General procedure for ring closing metathesis reaction 21
2.5.3 General procedure for macrocyclization 25
2.5.4 General procedure for ring closing ene-yne metathesis 26
2.5.5 General Procedure for Ring-Opening Cross Metathesis 27
2.5.6 General procedure for cross metathesis 31
2.6 Solid state structure obtained by X-ray diffraction. 32
2.6.1 N-isopropyl CABC Hoveyda type Ru complex (Ru-4a) [JM-659] 32
2.6.2 N-Adamantyl CABC Hoveyda type Ru complex (Ru-4b) [JAT-168] 33
2.6.3 N-Phenyl CABC Hoveyda type Ru complex (Ru-4c) [JAT-150] 34
2.6.4 N-Mesityl CABC Hoveyda type Ru complex (Ru-4d) [JAT-157] 35
2.6.5 N -Mesityl CABC Grela type Ru complex (Ru-4f) 36
2.7 NMR spectra 37
2.7.1 ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of Ru-4a 37
2.7.2 ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Ru-4a 37
2.7.3 ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of $\mathrm{Ru}-4 \mathrm{~b}$ 38
2.7.4 ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of Ru-4b 38
2.7.5 ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{c}$ 39
2.7.6 ${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathrm{Ru}-4 \mathrm{c}$ 39
2.7.7 ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) of Ru-4d 40
2.7.8 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{~d}$ 40
2.7.9 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of Ru-4e. 41
2.7.10 ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) of Ru-4e 41
2.7.11 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{f}$. 42
2.7.12 ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of Ru-4f. 42
2.7.13 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{~g}$ 43
2.7.14 13C NMR (101 MHz, CDCl3) of Ru-4g 43
2.7.15 Catalytic products 44
2.7.16 Highlighting weak hydrogen bond interactions by ${ }^{1} \mathrm{H} N \mathrm{NR}$ in $\mathrm{Ru}-4 \mathrm{~b}$ 55
3 Computational details 56
3.1 SynAS-4a 57
3.2 AntiAS-4a 57
3.3 SynAS-4b 58
3.4 AntiAS-4b 58
3.5 SynAS-4c 59
3.6 AntiAS-4c 60
3.7 SynAS-4d 60
3.8 AntiAS-4d 61
4 Topological Steric Maps 62
5 Bibliography 62

1 Experimental

1.1 General information

All commercial reagents were used as purchased and without further purification, unless otherwise mentioned. Diethyl diallylmalonate (DEDAM) was passed through alumina and distilled and degassed prior to use. Cyclic (amino) (barrelene) carbenes (CABC) were prepared accordingly to the previous report. ${ }^{1}$ For the synthesis of CABC salts, all reactions were performed under an atmosphere of argon using standard Schlenk techniques or glovebox when mentioned. Toluene, tetrahydrofuran, dichloromethane and diethyl ether used for complex synthesis and catalysis, were purified using MBraun Solvent Purification Systems; all other used solvents were dried and degassed using standard procedures. Catalysis reactions were performed under Argon atmosphere using standard Schlenk techniques or in a glove box when mentioned. Reactions at elevated temperature were maintained by thermostatically controlled oil-baths. A temperature of $0^{\circ} \mathrm{C}$ was obtained with an ice slush bath and $-50^{\circ} \mathrm{C}$ or $-78^{\circ} \mathrm{C}$ were obtained with a mixture of acetone and liquid nitrogen bath. Reactions were monitored by thinlayer chromatography (TLC) carried out on aluminum backed silica gel 60 (F254) plates from MERCK (grain-size distribution $60 / 20 \mu \mathrm{~m}$); visualized using 254 nm UV light and KMnO_{4} in water for staining. Purifications were performed by column chromatography with silica gel (spherical, particle size $40 \mu \mathrm{~m}$, neutral) purchased from Sigma-Aldrich. The eluents employed are reported as volume (volume ratios). The required amounts of [Ru] were taken prior each reaction from freshly prepared stock solutions. All the reactions were quenched with ethylvinyl ether (EVE). Multinuclear NMR spectra were recorded on a Bruker (${ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 101$ $\left.\mathrm{MHz},{ }^{31} \mathrm{P}: 162 \mathrm{MHz}\right)$ spectrometer with complete proton decoupling for nucleus other than ${ }^{1} \mathrm{H}$. Chemical shifts are reported in parts per million (ppm), coupling constants (J) are reported in Hertz (Hz). Chemical shifts are reported in parts per million with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}: \delta 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta 77.16 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}{ }^{1} \mathrm{H}: \delta 7.16 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta 128.06\right.$ $\mathrm{ppm})$. Multiplicities in ${ }^{1} \mathrm{H}$ NMR are reported using following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ double double doublet, $\mathrm{dt}=$ double triplet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sept $=$ septet, $\mathrm{m}=$ multiplet. GC-MS spectra have been performed on SH-Rxi-5ms column ($30.0 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID; $0.25 \mu \mathrm{~m}$ thickness) (Shimadzu) using two different methods. For Ru complexes and catalysis products, HRMS were recorded on a Waters QTof-I spectrometer using ESI at the Centre Régional de Mesures Physiques de l'Ouest (CRMPO), Université de Rennes 1. X-Ray crystallography: Intensity data were collected on a D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON

100 detector using $\mathrm{MoK} \alpha$ radiation $(0.71073 \AA$) at $\mathrm{T}=150 \mathrm{~K}$. Data reduction was performed using the SHELXT program. The structures were resolved using the software SHELXS-97 by the direct methods and refined using SHELXL-2013-4. The CIF files of complexes Ru-4a-d have been deposited with CCDC numbers:

Ru-4a CCDC 2260084

Ru-4b CCDC 2253659

Ru-4c CCDC 2253660

Ru-4d CCDC 2253658

Ru-4f CCDC 2256504

1.2 Synthesis of CABC salts

CABC(a).OTf

CABC(b).OTf

$\mathrm{CABC}(\mathrm{c}) . \mathrm{BF}_{4}$

$\operatorname{CABC}(\mathrm{d}) \cdot \mathrm{PF}_{6}$

The salts $\mathbf{C A B C}(\mathbf{a - c}) . X$ were prepared according to the previously published procedure, ${ }^{1}$ involving subsequent [4+2] intramolecular cycloaddition, alkylation/arylation and anion exchange. For $\mathbf{C A B C}(\mathbf{d}) \cdot \mathbf{X}$, an alternative approach described in the same publication was used. The obtained salts were pre-treated at $100{ }^{\circ} \mathrm{C}$ for 16 hours under high vacuum and then introduced to Ar-filled glovebox.

1.3 Synthesis of Pyr-GI

Pyr-GI phosphine complex was prepared according to the previously published procedure by ligand exchange starting from the GI ($>90 \%$ yield). ${ }^{2}$

1.4 Synthesis of styrene derivative L1a

Styrene derivative L1a was synthetized following a previously published two step procedure starting from 2-hydroxy-5-nitrobenzaldehyde by subsequent O-alkylation and Wittig olefination. ${ }^{3}$

1.5 Synthesis of styrene derivative L1b

Styrene derivative L1b was synthetized following a previously published three step procedure starting from [1,1'-biphenyl]-2-ol by subsequent formylation, O-alkylation and Wittig olefination. ${ }^{4}$

2 Complexes synthesis

2.1.1 General scheme of synthesis

2.1.2 General procedure for CABC Hoveyda type complexes

1) KHMDS

Solvent, temperature, time
2) HG 1 (1 equiv.), temperature,

Procedure A: In an Ar-filled glove box, CABC salt (1.5 equiv.) was dissolved in solvent of choice. KHMDS (1.6 equiv.) was added. The mixture was allowed to stir for the indicated time at $25^{\circ} \mathrm{C}$. To this mixture, Hoveyda-Grubbs $1^{\text {st }}$ generation complex (HG1) (1 equiv.) was added and the mixture was stirred the indicated time at $25^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the product was purified by column chromatography (eluent: toluene). The solid was further diluted in dichloromethane and precipitated in hexane.

Procedure B: In an Ar-filled glove box, CABC salt (1.5 equiv.), KHMDS (1.6 equiv.) and HG1 (1 equiv.) were charged in an oven-dried Schlenk tube which was further cooled to -78 ${ }^{\circ} \mathrm{C}$ outside the glovebox. The appropriate amount of THF, previously cooled to $-78^{\circ} \mathrm{C}$ was cannulated to the Schlenk tube. The mixture was stirred for 16 hours and allowed to warm up to $25^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the product was purified by column chromatography (eluent: toluene). The solid was further diluted in dichloromethane and precipitated in hexane.

2.1.2.1 N-isopropyl CABC Hoveyda type Ru complex (Ru-4a)

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{NORu}$ Exact Mass: 633,11

Ru-4a was prepared according to the procedure \mathbf{B}, with CABC(a).OTf ($102.3 \mathrm{mg}, 0.244 \mathrm{mmol}, 1.5$ equiv.), THF (1.5 mL), KHMDS ($56.0 \mathrm{mg}, 0.281 \mathrm{mmol}, 1.6$ equiv.), and HG-1 complex ($102.5 \mathrm{mg}, 0.171 \mathrm{mmol}, 1.0$ equiv.). The desired product was obtained after purification (eluent: pentane/acetone $9: 1$) as a brown solid ($27.7 \mathrm{mg}, 26$ \% yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.02(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (sept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{sept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 12 \mathrm{H})$, 1.49 (s, 6H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 295.2$ - 294.8, 258.3, 161.2, 154.8, 146.6, 145.4, 142.9, 142.8, $131.2,126.8,124.7,124.6,124.2,123.6,122.7,122.3,113.4,75.3,73.9,73.4,62.5,51.9,31.9$, 25.0, 22.4 .

HRMS/ESI for $\left(\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N} \mathrm{O}^{35} \mathrm{Cl}_{2}{ }^{102} \mathrm{Ru}\right)(\mathrm{M}+$.): calc.: 633.11337, found: 633.1135.

X-ray diffraction: CCDC 2260084

2.1.2.2 N-Adamantyl CABC Hoveyda type Ru complex (Ru-4b)

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{NORu}$
Exact Mass: 725,18
$\mathbf{R u}-\mathbf{4 b}$ was prepared according to the procedure \mathbf{A} for the room temperature stable carbenes complexes synthesis with CABC(b).OTf ($198 \mathrm{mg}, 0.356 \mathrm{mmol}, 1.05$ equiv.), toluene (3 mL), KHMDS ($108 \mathrm{mg}, 0.541 \mathrm{mmol}, 1.6$ equiv.), and HG-1 complex ($200 \mathrm{mg}, 0.333 \mathrm{mmol}, 1.0$ equiv.). The salt was deprotonated during 30 minutes at $25^{\circ} \mathrm{C}$, followed by 2 hours of stirring with HG1 at $25^{\circ} \mathrm{C}$. The desired product was obtained after purification (eluent: toluene) as a green solid ($179.7 \mathrm{mg}, 74$ \% yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.49(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.35$ (dd, $J=7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=$ $7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28$ (hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 6 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 8 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 313.0-312.8,259.6,161.3,155.6,147.9,145.3,143.7,132.6$, $127.2,125.4,124.8,124.6,124.4,122.3,122.2,113.7,75.8,75.1,74.6,66.7,52.0,35.8,33.6$, 31.1, 22.8.

HRMS/ESI for $\left(\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N} \mathrm{O}^{35} \mathrm{Cl}_{2}{ }^{102} \mathrm{Ru}\right)(\mathrm{M}+$.): calc.: 725.1759, found : 725.1758.

X-ray diffraction: CCDC 2253659

2.1.2.3 N-Phenyl CABC Hoveyda type Ru complex (Ru-4c)

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{NORu}$ Exact Mass: 667,10
$\mathbf{R u}-\mathbf{4 c}$ was prepared according to procedure \mathbf{B} with $\mathbf{C A B C}(\mathbf{c}) . \mathbf{B F}_{4}$ ($217.4 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.5$ equiv.), THF (3 mL), KHMDS (106.3 $\mathrm{mg}, 0.533 \mathrm{mmol}, 1.6$ equiv.), and HG1 complex ($200.0 \mathrm{mg}, 0.333$ mmol, 1.0 equiv.). The reaction time was modified: after the addition of THF in the mixture, it was stirred for one hour during which time the temperature increased from $-78^{\circ} \mathrm{C}$ to approximately $-50^{\circ} \mathrm{C}$, before removal from the acetone bath. The mixture was stirred for one more hour at $25^{\circ} \mathrm{C}$. The desired product was obtained after purification (eluent: toluene) as a brown solid ($127.6 \mathrm{mg}, 62 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.19(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.92(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.53(\mathrm{~m}$, $4 \mathrm{H}), 7.41(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.93-$ 6.79 (m, 4H), $5.32-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.18$ (sept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.31$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 298.6$ - 298.4, 262.3, 158.6, $154.9,146.8,145.3,143.2,137.2$, $134.2,131.4,129.9,128.9,128.5,128.1,124.9,124.8,124.1,123.4,122.9,122.8,122.2,113.3$, 75.6, 74.9, 73.5, 52.0, 43.6, 29.4, 21.7 .

HRMS/ESI for $\left(\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N} \mathrm{O}^{35} \mathrm{Cl}_{2}{ }^{102} \mathrm{Ru}\right)(\mathrm{M}+$.): calc.: 667.09772, found: 667.0979.

X-ray diffraction: CCDC 2253660

2.1.2.4 N-Mesityl CABC Hoveyda type Ru complex (Ru-4d)

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{NORu}$ Exact Mass: 709,15

Ru-4d was prepared according to the procedure \mathbf{A}, using $\mathbf{C A B C}(\mathbf{d}) . \mathbf{P F}_{6}(106.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.3$ equiv.), THF (2 mL), KHMDS ($39.7 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.3$ equiv.), and HG1 ($95.7 \mathrm{mg}, 0.16$ $\mathrm{mmol}, 1.0$ equiv.). The mixture was stirred for 2 hours at $25^{\circ} \mathrm{C}$. The desired product was obtained after purification (eluent: toluene) as a green solid ($92 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.17(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.41$ (dd, $J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 7.08-6.97$ (m, $3 \mathrm{H}), 6.94-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (sept, $J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 297.6$ - 297.3, 266.9, 159.4, 154.9, 147.3, 145.4, 143.7, 139.4, $139.0,135.9,131.5,130.6,127.8,124.8,124.7,124.2,123.9,122.8,121.9,113.4,75.7,75.5$, 52.1, 31.7, 30.7, 25.1, 21.6, 21.1.

HRMS/ESI for $\left(\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N} \mathrm{O}^{35} \mathrm{Cl}_{2}{ }^{102} \mathrm{Ru}\right)(\mathrm{M}+$.): calc.: 709.1446, found: 709.1449.

X-ray diffraction: CCDC 2253658

2.1.3 Synthesis of N-Mesityl CABC CHPh Pyridine Ru complex (Ru-4e)

In an Ar-filled glove box, $\mathbf{C A B C}(\mathbf{d}) . \mathbf{P F}_{6}(206 \mathrm{mg}, 0.385 \mathrm{mmol}, 1.1$ equiv.) was dissolved in Toluene (3 mL) in an oven-dried Schlenk tube with KHMDS ($84 \mathrm{mg}, 0.421 \mathrm{mmol}, 1.2$ equiv.). The mixture was allowed to stir for 5 minutes at $25^{\circ} \mathrm{C}$. Pyr-GI ($243 \mathrm{mg}, 0.347 \mathrm{mmol}, 1.0$ equiv.), prepared according to previously reported procedure starting from Grubbs I and excess pyridine in toluene, was then added. ${ }^{2}$ The reaction was stirred for 16 hours at $25^{\circ} \mathrm{C}$ in the glovebox. The mixture was filtered, concentrated to a minimum volume of toluene and then purified by precipitation in pentane (ca. 10 volumes of pentane/volume of toluene) followed by washing with pentane to afford $\mathbf{R u}-\mathbf{4 e}$ as a dark green solid ($213 \mathrm{mg}, 84 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 20.92(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.55-8.44(\mathrm{~m}, 2 \mathrm{H}), 7.77$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.92(\mathrm{~m}, 5 \mathrm{H}), 6.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 315.7,270.8,159.6,153.5,152.8,147.9,145.6,139.4,138.8$, $136.3,136.0,131.0,129.8,128.9,125.5,125.2,124.9,123.1,122.9,78.5,77.3,52.6,30.2,25.6$, 21.0.

2.1.4 Synthesis of N-Mesityl CABC Grela type Ru complex (Ru-4f)

In an Ar-filled glove box, Ru-4e complex ($50 \mathrm{mg}, 0.068 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry and degassed Toluene (2 mL) in an oven-dried Schlenk tube, then Styrenyl L1a (17 mg , $0.082 \mathrm{mmol}, 1.2$ equiv.) was added and allowed to stir during 16 hours at $60^{\circ} \mathrm{C}$ outside of the glovebox. The mixture was purified by column chromatography (eluent: toluene), then washed with Hexane afford Ru-4f as a green solid ($21 \mathrm{mg}, 40 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.24(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{sept}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $6 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 292.2,264.1,158.9,158.8,147.0,145.3,143.0,142.7,139.3$, $139.2,135.5,130.7,128.2,125.9,125.2,124.8,123.7,123.1,118.5,113.4,78.1,77.8,75.6$, 52.1, 30.7, 25.1, 21.6, 21.1.

X-ray diffraction: CCDC 2256504

HRMS/ESI for ($\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{35} \mathrm{Cl}_{2}{ }^{102} \mathrm{Ru}$) (M+.): calc.: 754.12975, found: 754.1301.

2.1.5 Synthesis of N-Mesityl CABC Blechert type Ru complex (Ru-4g)

In an Ar-filled glove box, Ru-4e complex ($213 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$ equiv.) was dissolved in Toluene (4 mL) in an oven-dried Schlenk tube, then Styrenyl L1b ($84 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.2$ equiv.) was added and allowed to stir for 16 hours at $60^{\circ} \mathrm{C}$ outside of the glovebox. The mixture was purified by column chromatography (eluent: toluene), then washed with Hexane to afford $\mathbf{R u} \mathbf{- 4 g}$ as a green solid ($135 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.33(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.35$ (m, 5H), 7.19 (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (s, 2H), 7.01 (td, $J=7.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $6.96-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (sept, $J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 299.3,266.9,159.4,151.7,147.3,146.3,145.4,140.0,139.4$, 139.1, 135.8, 135.7, 131.2, 130.6, 129.6, 128.4, 127.9, 127.7, 124.8, 124.7, 124.3, 123.7, 122.8, $122.5,77.9,75.8,52.1,30.8,25.1,21.1,21.0$.

HRMS/ESI for ($\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{~N} \mathrm{O}^{35} \mathrm{Cl}_{2}{ }^{102} \mathrm{Ru}$) (M+.): calc.: 785.17597, found: $785.1760(0 \mathrm{ppm})$.

2.2 Thermal Stability of Ru-4d

In a Wilmaud ${ }^{\circledR}$ tube equipped with J Young valve, The Ru-4d complex $(15.2 \mathrm{mg}, 0.021 \mathrm{mmol}$, 1.0 equiv.) was dissolved in dry and degassed toluene- $d_{8}(0.5 \mathrm{~mL})$ and $1,3,5-$ trimethoxybenzene (ca. $2 \mathrm{mg}, 0.0118 \mathrm{mmol}, 3.3$ equiv.) as an internal standard were introduced in the reaction mixture, which was heated at $110^{\circ} \mathrm{C}$. The resulting solution was held at $110^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$-NMR over time.

2.3 Thermal Stability of Ru-4g

In a standard NMR tube, The Ru-4g complex ($15 \mathrm{mg}, 0.019 \mathrm{mmol}, 1.0$ equiv.) was dissolved in toluene $-d_{8}(0.5 \mathrm{~mL})$ and $1,3,5-$ trimethoxybenzene $(15.3 \mathrm{mg}, 0.091 \mathrm{mmol}, 5$ equiv.) as an internal standard were introduced in the reaction mixture, which was heated at $110^{\circ} \mathrm{C}$. The resulting solution was held at $110^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ over time.

2.4 Evaluation of the complexes in catalysis

2.5 Ring-Closing Metathesis: Optimization Conditions

Into an Ar-filled glovebox, an oven-dried vial was charged with diethyl diallylmalonate 1a ($0.165 \mathrm{mmol}, 40 \mu \mathrm{~L}, 1.0$ equiv.) and 1,3,5-trimethoxybenzene as internal standard (0.055 or $0.068 \mathrm{mmol}, 9.2$ or $11.4 \mathrm{mg}, 0.33$ or 4.0 equiv.), diluted in dry and degassed DCE (1.7 mL in total with $[\mathrm{Ru}]$ solution). The $[\mathrm{Ru}]$ complex ($5 \mathrm{~mol} \%$) was dissolved in DCE $(1.0 \mathrm{~mL})$ and the appropriate volume introduced in the reaction mixture, which was further stirred at $40^{\circ} \mathrm{C}$ for 18 hours. The completion reaction completion was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Entry	Catalyst	NMR conversion $[\%]$	NMR Yield $[\%]$
1	$\mathrm{Ru}-4 \mathrm{a}$	5	1
2	$\mathrm{Ru}-4 \mathrm{~b}$	3	2
3	$\mathrm{Ru}-4 \mathrm{c}$	7	5
4	$\mathrm{Ru}-4 \mathrm{~d}$	9	7
5	$\mathrm{Ru}-4 \mathrm{e}$	45	41
6	$\mathrm{Ru}-4 \mathrm{f}$	14	13
7	$\mathrm{Ru}-4 \mathrm{~g}$	75	73

2.5.1 Kinetic studies

Diethyl diallylmalonate $\mathbf{1 a}$ ($0.17 \mathrm{mmol}, 42 \mu \mathrm{~L}, 1.0$ equiv.) and a solution of $\mathbf{R u - 4 g}$ (0.0085 $\mathrm{mmol}, 6.6 \mathrm{mg}, 5 \mathrm{~mol} \%$) in Dichloroethane or toluene were charged, under continuous Ar flow, into an oven-dried Wilmaud ${ }^{\circledR}$ NMR tube. The reaction was kept for 330 minutes at 75 or 110 ${ }^{\circ} \mathrm{C}$ and analyzed each 30 minutes at the ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as internal standard ($0.17 \mathrm{mmol}, 28.8 \mathrm{mg}, 1$ equiv.).

Time (min)	Yield (\%)
T0	0
$\mathbf{3 0}$	77
$\mathbf{6 0}$	87
$\mathbf{9 0}$	89
$\mathbf{1 2 0}$	91
$\mathbf{1 5 0}$	92
$\mathbf{1 8 0}$	95
$\mathbf{2 1 0}$	95
$\mathbf{2 3 0}$	95
$\mathbf{3 0 0}$	95
$\mathbf{3 3 0}$	95

Diethyl diallylmalonate 1a ($0.17 \mathrm{mmol}, 42 \mu \mathrm{~L}, 1.0$ equiv.) and a solution of $\mathbf{R u} \mathbf{- 4 d}$ (0.0085 $\mathrm{mmol}, 6 \mathrm{mg}, 5 \mathrm{~mol} \%$) in toluene were charged, under continuous Ar flow, into an oven-dried Wilmaud ${ }^{\circledR}$ NMR tube. The reaction was kept for 360 minutes at $110{ }^{\circ} \mathrm{C}$ and analyzed throughout the time at the ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as internal standard (0.17 $\mathrm{mmol}, 28.8 \mathrm{mg}, 1$ equiv.).

Time (min)	Yield (\%)
T0	0
$\mathbf{3 0}$	14
$\mathbf{6 0}$	23
$\mathbf{1 2 0}$	34
$\mathbf{1 8 0}$	44
$\mathbf{2 4 0}$	50
$\mathbf{3 0 0}$	54
$\mathbf{3 6 0}$	60

Diethyl diallylmalonate 1a ($0.12 \mathrm{mmol}, 30 \mu \mathrm{~L}, 1.0$ equiv.) and a solution of $\mathbf{R u} \mathbf{- 4 f}(0.0062$ $\mathrm{mmol}, 4.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in toluene $-d_{8}$ were charged, under continuous Ar flow, into an ovendried Wilmaud ${ }^{\circledR}$ NMR tube. The reaction was kept for 3 hours at $110{ }^{\circ} \mathrm{C}$ and analyzed throughout the time at the ${ }^{1} \mathrm{H}$-NMR using 1,3,5-trimethoxybenzene as internal standard (0.12 mmol, $6.8 \mathrm{mg}, 0.33$ equiv.).

Time (min)	Yield (\%)		Kinetic study in toluene at $110^{\circ} \mathrm{C}$					
T0	0	100						
45	75							
60	78							
90	83							
120	90							
150	90							
180	90							
			045	60	90		150	180

2.5.2 General procedure for ring closing metathesis reaction

The substrate ($0.1,0.17$ or $0.2 \mathrm{mmol}, 1.0$ equiv.) and a solution of catalyst $\mathbf{R u - 4 g}$ (0.01 or 0.005 $\mathrm{mmol}, 7.8$ or $3.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) in toluene ($1,1.7$ or 2 mL) were sequentially loaded into an oven-dried vial. The reaction was stirred at $110^{\circ} \mathrm{C}$ for 4 hours outside the glovebox then quenched with EVE. The final conversions and yields were measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ upon addition of 1,3,5-trimethoxybenzene as internal standard (IS; 0.066 or $0.1 \mathrm{mmol}, 0.3$ or 1.0 equiv.).

Diethyl cyclopent-3-ene-1,1-dicarboxylate (2a)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}$ Molecular Weight: 212,24

The reaction was performed following the general procedure, stirring a solution of diethyl diallylmalonate $\mathbf{1 a}(0.17 \mathrm{mmol}, 41$ mg, 1.0 equiv.) providing diethyl cyclopent-3-ene-1,1dicarboxylate (2a) with 99% conversion and 97% NMR yield (IS $=0.17 \mathrm{mmol}, 28.8 \mathrm{mg}, 1.0$ equiv.). The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, toluene $\left.-d_{8}\right) \delta 5.69-5.61(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 4 \mathrm{H})$, 1.18 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$).

diethyl 3-methylcyclopent-3-ene-1,1-dicarboxylate (2b)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ Molecular Weight: 226,27

The reaction was performed following the general procedure, stirring a solution of diethyl 2-allyl-2-(2-methylallyl)malonate 1b ($0.2 \mathrm{mmol}, 49.8 \mathrm{mg}, 1.0$ equiv.) providing diethyl 3-methylcyclopent-3-ene-1,1-dicarboxylate (2b) with 83% conversion and 79% NMR yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.22-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.99-2.94(\mathrm{~m}$, $2 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

diethyl cyclohept-3-ene-1,1-dicarboxylate (2d)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}$ Molecular Weight: 240,30

The reaction was performed following the general procedure, stirring a solution of diethyl 2-allyl-2-(pent-4-en-1-yl)malonate $\mathbf{1 d}(0.2 \mathrm{mmol}, 53.7 \mathrm{mg}, 1.0$ equiv.), providing diethyl cyclohept-3-ene-1,1-dicarboxylate (2d) with 68% NMR yield. The data were consistent with the reported ones. ${ }^{5}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $4 \mathrm{H}), 2.67(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

1-tosyl-2,5-dihydro-1H-pyrrole (2e)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ Molecular Weight: 223,29

The reaction was performed following the general procedure, stirring a solution of N,N-diallyl-tosylamide $\mathbf{1 e}(0.2 \mathrm{mmol}$, $50.2 \mathrm{mg}, 1.0$ equiv.) providing diethyl 3-methylcyclopent-3-ene-1,1-dicarboxylate (2e) with 78\% isolated yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.5, \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 4.11$ ($\mathrm{s}, 4 \mathrm{H}$), 2.40 (br s, $J=2.9 \mathrm{~Hz}, 3 \mathrm{H}$).

3-methyl-1-tosyl-2,5-dihydro-1H-pyrrole (2f)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$
Molecular Weight: 237,32

The reaction was performed following the general procedure, stirring a solution of N -allyl-N-(2-methylallyl)tosylamide $\mathbf{1 f}$ ($0.2 \mathrm{mmol}, 53.1 \mathrm{mg}, 1.0$ equiv.) providing 3-methyl-1-tosyldata were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 5.23-5.21(\mathrm{~m}, 1 \mathrm{H})$, $4.08-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H})$.

1-tosyl-2,3,4,7-tetrahydro-1H-azepine (2h)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$ Molecular Weight: 251,34

The reaction was performed following the general procedure, stirring a solution of N -allyl N -allyl-N-(pent-4-en-1yl)tosylamide $\mathbf{1 h}(0.2 \mathrm{mmol}, 55.9 \mathrm{mg}, 1.0$ equiv.) providing 1-tosyl-2,3,4,7-tetrahydro-1H-azepine (2h) with 82% isolated yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{dtt}, J=10.9$, $5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dtt}, J=11.3,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 2 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 2 \mathrm{H})$.

2,5-dihydrobenzo[b]oxepine (2i)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$ Molecular Weight: 146,19

The reaction was performed following the general procedure, stirring a solution of 1-allyl-2-(allyloxy)benzene $\mathbf{1 i}(0.1 \mathrm{mmol}$, $17.4 \mathrm{mg}, 1.0$ equiv.), providing 2,5-dihydrobenzo[b]oxepine (2i) with 83% NMR yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.14-6.97(\mathrm{~m}, 3 \mathrm{H}), 5.86(\mathrm{dtt}, J=11.5$, $5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dtt}, J=11.5,3.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.48(\mathrm{~m}, 2 \mathrm{H})$.

2-phenyl-3,6-dihydro-2H-pyran (2j)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ Molecular Weight: 160,22

The reaction was performed following the general procedure, stirring a solution of (1-(allyloxy)but-3-en-1-yl)benzene $\mathbf{1 j}$ (0.1 mmol, $18.8 \mathrm{mg}, 1.0$ equiv.), providing 2-phenyl-3,6-dihydro-2Hpyran (2j) with 81% NMR yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.98-5.88(\mathrm{~m}, 1 \mathrm{H})$, $5.86-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.31-2.17(\mathrm{~m}, 1 \mathrm{H})$.

2,2-dimethyl-6-phenyl-3,6-dihydro-2H-1,2-oxasiline (2k)

The reaction was performed following the general procedure,	
obtained from allyldimethyl((1-phenylallyl)oxy)silane $\mathbf{1 k}(0.2$	
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OSi}$	
Molecular Weight: 204,34	menol, $46.5 \mathrm{mg}, 1.0$ equiv.) providing 2,2-dimethyl-6-phenyl-
	NMR yield was attributed basing on the characteristic signal at

$5.5 \mathrm{ppm}(\mathrm{q}, 1 \mathrm{H})$. The data were consistent with the reported ones. ${ }^{6}$

2,2-diphenyl-4,7-dihydro-1,3,2-dioxasilepine (2I)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Si}$ Molecular Weight: 268,39

The reaction was performed following the general procedure, stirring a solution of bis(allyloxy)diphenylsilane $\mathbf{1 1}(0.2 \mathrm{mmol}$, $59.2 \mathrm{mg}, 1.0$ equiv.), providing 2,2-diphenyl-4,7-dihydro-1,3,2-dioxasilepine (21) with 35% NMR yield. The data were consistent with the reported literature. ${ }^{7}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76-5.75(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.57(\mathrm{~m}, 4 \mathrm{H})$. Aromatic peaks fall into the toluene solvent peaks.

2.5.3 General procedure for macrocyclization

Substrate hex-5-en-1-yl undec-10-enoate $\mathbf{1 m}(84.7 \mathrm{mg}, 0.318 \mathrm{mmol}, 1.0$ equiv.) and $\mathbf{R u - 4 g}$ (5 mol\%) were charged under continuous Ar flow into an oven-dried 100 mL Schlenk tube equipped with water refrigerator and solubilized in toluene $(60 \mathrm{~mL})$. The reaction was stirred at $110^{\circ} \mathrm{C}$ for 4 hours then quenched with ethyl vinyl ether (EVE). The solvent was evaporated and the crude product was purified by chromatography on silica gel using pentane/diethyl ether $=95 / 5$ as eluent to yield oxacyclohexadec-9-en-2-one (2m) with 65% isolated yield (49.3 mg). The data were consistent with the reported literature. ${ }^{8}$ Selectivity and E / Z ratio were measured by GC analysis : $E / Z 70 / 30$, selectivity $>99 \%$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(E / Z$ isomers: $7 / 3) 5.54-5.30(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.12(\mathrm{~m}, 2 \mathrm{H})$, $2.42-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.27(\mathrm{~m}, 12 \mathrm{H})$.
<Chromatogram>
uV

<Peak Table>

SFID1	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.791	493286	112060	71.179		V	
2	14.233	199732	49950	28.821			
Total		693018	162010				

2.5.4 General procedure for ring closing ene-yne metathesis

The substrate (0.1 or $0.2 \mathrm{mmol}, 1.0$ equiv.) and a solution of catalyst $\mathbf{R u}-\mathbf{4 g}$ (0.01 or 0.005 $\mathrm{mmol}, 7.8$ or $3.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) in toluene (1 or 2 mL) were sequentially loaded into an ovendried vial. The reaction was stirred at $110^{\circ} \mathrm{C}$ for 4 hours outside the glovebox then quenched with EVE. The final conversions and yields were measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ upon addition of 1,3,5trimethoxybenzene as internal standard (IS; 0.066 or $0.1 \mathrm{mmol}, 0.3$ or 1.0 equiv.).

4,4',5,5'-tetrahydro-3,3'-bifuran (4a)

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ Molecular Weight: 138,17

The reaction was performed following the general procedure, stirring a solution of 1,4-bis(allyloxy)but-2-yne 3a (0.1 mmol , $16.6 \mathrm{mg}, 1.0$ equiv.), providing $\mathbf{4 , 4}, \mathbf{5 , 5}$ '-tetrahydro-3,3'-bifuran (4a) with 95% NMR yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.83-4.69(\mathrm{~m}, 8 \mathrm{H})$.

2,2-diphenyl-4-vinyl-2,5-dihydrofuran (4b)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$ Molecular Weight: 248,32

The reaction was performed following the general procedure, stirring a solution of (1-(allyloxy)prop-2-yne-1,1-diyl)dibenzene 3b ($0.2 \mathrm{mmol}, 49.6 \mathrm{mg}, 1.0$ equiv.), providing 2,2-diphenyl-4-vinyl-2,5-dihydrofuran (4b) with 73\% NMR yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.27(\mathrm{~m}, 8 \mathrm{H}), 6.32-6.23(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.21(\mathrm{~m}, 1 \mathrm{H})$, 5.35 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.79(\mathrm{~m}, 2 \mathrm{H})$.

1-tosyl-3-vinyl-2,5-dihydro-1H-pyrrole (4c)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$
Molecular Weight: 249,33

The reaction was performed following the general procedure, stirring a solution of N -allyl-N-(prop-2-yn-1-yl)tosylamide 3c ($0.2 \mathrm{mmol}, 49.8 \mathrm{mg}, 1.0$ equiv), providing 1-tosyl-3-vinyl-2,5-dihydro-1H-pyrrole (4c) with 23% NMR yield. The data were consistent with the reported ones. ${ }^{5}$
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.39-6.31(\mathrm{~m}$, $1 \mathrm{H}), 5.58-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=11.4 \mathrm{~Hz} 1 \mathrm{H}), 5.01(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.19(\mathrm{~m}$, $2 H), 4.18-4.16(\mathrm{~m}, 4 \mathrm{H}), 2.41-2.39(\mathrm{~m}, 1 \mathrm{H})$.

2.5.5 General Procedure for Ring-Opening Cross Metathesis

In an Ar-filled glovebox, the exo norbornene imide $5(24 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) and the respective olefin ($0.5 \mathrm{mmol}, 5.0$ equiv.) were charged into an oven-dried Schlenk tube and solubilized in toluene (0.1 M). A solution of $\mathbf{R u - 4 g}(0.005 \mathrm{mmol}, 3.9 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in toluene was added and the resulting solution stirred at $110^{\circ} \mathrm{C}$ for 4 hours outside the glovebox. The mixture was quenched with EVE and the solvent evaporated under vacuum. Conversion and yield values were provided upon ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude in presence of $1,3,5-$ trimethoxybenzene as internal standard ($0.1 \mathrm{mmol}, 16.8 \mathrm{mg}, 1.0$ equiv.). The E / Z ratio was monitored by GC-MS.

Column Information: SH-Rxi-5ms (30.0 m x 0.25 mm ID; $0.25 \mu \mathrm{~m}$ thickness) (Shimadzu)
Carrier gas: Helium
Method: Linear velocity: constant $=40.0 \mathrm{~cm} / \mathrm{s}$
Temperature protocol:

Rate $\left[{ }^{\circ} \mathbf{C} / \mathbf{m i n}\right]$	Temperature $\left[{ }^{\circ} \mathbf{C}\right]$	Hold time $[\mathrm{min}]$
-	80	0
15	300	20

2-phenyl-4-styryl-6-vinyltetrahydrocyclopenta[c]pyrrole-1,3(2H,3aH)-dione (6a)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2}$ Molecular Weight: 343,43
(6a) was obtained upon reaction with styrene ($0.5 \mathrm{mmol}, 60$ $\mu \mathrm{L}, 5.0$ equiv.) as olefin partner with 73% NMR yield, E / Z $95 / 5$. Conversion and yield were attributed basing on the characteristic signal at 2.36-2.18 ppm (m, 1H). The data were consistent with the reported literature. ${ }^{9}$

Peak	Retention time $[\mathbf{m i n}]$	Area	Area [\%]
1	15.124	1497562	6.14
2	16.175	22892639	93.86

3-(1,3-dioxo-2-phenyl-6-vinyloctahydrocyclopenta[c]pyrrol-4-yl)allyl acetate (6b)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}$ Molecular Weight: 339,39
(6b) was obtained upon reaction with allyl acetate 10 (0.5 mmol, $55 \mu \mathrm{~L}, 5.0$ equiv.) as CM partner with $88 \% \mathrm{NMR}$ yield, $\mathrm{E} / \mathrm{Z} 9 / 1$. Conversion and yield were attributed based on the characteristic signal at $2.9 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H})$. The data were consistent with the reported literature. ${ }^{10}$

4-(dec-1-en-1-yl)-2-phenyl-6-vinyltetrahydrocyclopenta[c]pyrrole-1,3(2H,3aH)-dione (6c)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2}$ Molecular Weight: 379,54
(6c) was obtained upon reaction with 1-decene ($0.5 \mathrm{mmol}, 85$ $\mu \mathrm{L}, 5.0$ equiv.) as CM partner with 71% NMR yield, $\mathrm{E} / \mathrm{Z} 85 / 15$. Conversion and yield were attributed based on the characteristic signal at $2.95-2.8 \mathrm{ppm}(\mathrm{m}, 2 \mathrm{H})$. The data were consistent with the reported literature. ${ }^{11}$

Peak	Retention time $[\mathbf{m i n}]$	Area	Area [\%]
1	15.485	31926932	13.94
2	15.931	197073301	86.06

2.5.5.1 Ring opening cross metathesis of cyclooctene

In the glovebox, in an oven-dried Schlenk, cyclooctene 7 (1.0 equiv.) and the olefin partner (4.0 equiv.) were diluted in toluene (1 mL). $\mathbf{R u}-\mathbf{4 g}$ complex ($0.005 \mathrm{mmol}, 3.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) was dissolved in toluene $(1 \mathrm{~mL})$ and introduced in the reaction mixture, which was allowed to stir at $110^{\circ} \mathrm{C}$ during 4 hours. The completion was monitored by and ${ }^{1} \mathrm{H}$-NMR. 1,3,5trimethoxybenzene as internal standard ($0.1 \mathrm{mmol}, 16.8 \mathrm{mg}, 1.0$ equiv.)

dodeca-2,10-diene-1,12-diyl diacetate (9)

9
Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}$ Molecular Weight: 282,38
(9) was obtained with cyclooctene $7(0.1 \mathrm{mmol}, 13 \mu \mathrm{~L}, 1.0$ equiv.) and allyl acetate $\mathbf{8}$ as olefin partner ($0.41 \mathrm{mmol}, 44 \mu \mathrm{~L}$, 4.0 equiv.) with 48% NMR yield, E,E/E,Z 8/2.

The same reaction with cyclooctene 7 ($0.2 \mathrm{mmol}, 25 \mu \mathrm{~L}, 1.0$ equiv.) and cis-diacetoxybut-2ene $\mathbf{1 0}$ ($0.8 \mathrm{mmol}, 130 \mu \mathrm{~L}, 4.0$ equiv.) as olefin partner afforded 38% NMR yield, 25% isolated yield $\mathrm{E}, \mathrm{E} / \mathrm{E}, \mathrm{Z} 8 / 2$. The data were consistent with the reported literature. ${ }^{12}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.52(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dt}, J=6.4,1.0$ $\mathrm{Hz}, 4 \mathrm{H}), 2.08-2.06(\mathrm{~m}, 10 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 8 \mathrm{H})$.

2.5.6 General procedure for cross metathesis

In an Ar-filled glovebox, an oven-dried vial was filled with acetate derivative (1.0 equiv. or 4 equiv.), degassed CM partner (1.0 equiv. or 2.5 equiv.) and toluene (0.5 mL or 2 mL). The solution of $\mathbf{R u}-\mathbf{4 g}$ complex ($0.005 \mathrm{mmol}, 3.9 \mathrm{mg}, 5 \mathrm{~mol} \%$) in toluene was then added and the mixture was stirred for 4 hours at $110^{\circ} \mathrm{C}$. The conversion was monitored by ${ }^{1} \mathrm{H}$ NMR. 1,3,5trimethoxybenzene as internal standard ($0.1 \mathrm{mmol}, 16.8 \mathrm{mg}, 1.0$ equiv.)

tridec-2-en-1-yl acetate (11a)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$ Molecular Weight: 240,39
(11a) was obtained from 1 -dodecene ($0.25 \mathrm{mmol}, 56 \mu \mathrm{~L}, 2.5$ equiv.) as olefin partner and cis-diacetoxybut-2-ene 10 (0.1 mmol, $16 \mu \mathrm{~L}, 1.0$ equiv.) in toluene (0.2 M) with 81% NMR yield 88% conversion, $\mathrm{E} / \mathrm{Z} 8 / 2$. The same experiment with allyl acetate $8(0.1 \mathrm{mmol}, 11 \mu \mathrm{~L}, 1.0$ equiv.) as olefin partner afforded 51% NMR yield 75% conversion, $\mathrm{E} / \mathrm{Z} 85 / 15$. The data were consistent with the reported literature. ${ }^{13}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) given as E / Z mixture $\delta 5.82-5.71(\mathrm{~m}, 2 \mathrm{H}, Z$ isomer), $5.68-5.47$ (m, 2H, E isomer), 4.61 (dd, $J=6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}, Z$ isomer), $4.50(\mathrm{dd}, J=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}, E$ isomer), $2.05(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.19(\mathrm{~m}, 16 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 3 \mathrm{H})$.

4-phenylbut-2-en-1-yl acetate (11b)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ Molecular Weight: 190,24
(11b) was obtained from allyl benzene ($0.2 \mathrm{mmol}, 25 \mu \mathrm{~L}, 1.0$ equiv.) as CM partner and cis-diacetoxybut-2-ene $\mathbf{1 0}$ (0.8 mmol , $130 \mu \mathrm{~L}, 4.0$ equiv.) in toluene (0.1 M) with 58% isolated yield $(22 \mathrm{mg}), \mathrm{E} / \mathrm{Z} 9 / 1$. The data were consistent with the reported literature. ${ }^{14}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\mathrm{E} / \mathrm{Z}$ mixture) $\delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.98-$ $5.79(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{dtt}, J=15.5,6.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.37(\mathrm{~m}, 2 \mathrm{H})$, 2.07 (s, 3H).

2.6 Solid state structure obtained by X-ray diffraction

2.6.1 N -isopropyl CABC Hoveyda type Ru complex (Ru-4a) [JM-659]

Bond precision
$C-C=0.0030 \mathrm{~A}$
Wavelength $=0.71073$

Cell:	$a=11.759(2)$ $a l p h a=110.149(6)$	$b=16.076(3)$ $b e t a=96.057(6)$	gamma=90.840(6)
Temperature:	100 K		

Correction method= \# Reported T Limits: Tmin=0.468 Tmax=0.491
AbsCorr $=$ MULTI-SCAN

Data completeness $=0.993$
$R($ reflections $)=0.0290(11994)$
$S=1.033$
Npar=
751

2.6.2 N-Adamantyl CABC Hoveyda type Ru complex (Ru-4b) [JAT-168]

Correction method= \# Reported T Limits: Tmin=0.841 Tmax=0.947
AbsCorr = MULTI-SCAN

Data completeness $=0.989$
$R($ reflections $)=0.0576(4168)$

2.6.3 N-Phenyl CABC Hoveyda type Ru complex (Ru-4c) [JAT-150]

Bond precision: $C-C=0.0033$ A Wavelength $=0.71073$

Cell:

$$
\begin{aligned}
& a=12.2592(11) \\
& \text { alpha=90 } \\
& 150 \mathrm{~K}
\end{aligned}
$$

$\mathrm{b}=14.8980$ (13)
$\mathrm{C}=19.906$ (2)

Temperature:
Calculated
$3589.8(6)$
P $21 / \mathrm{c}$
-P 2 ybc
C36 H33 Cl2 N O Ru [+
solvent]
C36 H33 Cl2 N O Ru [+
solvent]
667.60
1.235
4
0.611
1368.0
1364.54
$15,19,25$
8275
$0.732,0.890$
0.716

Reported
Volume
Space group
Hall group
Moiety formula

Sum formula
Mr
Dx,g cm-3
Z
Mu (mm-1)
FOOO
F000'
h,k,lmax
Nref
$0.732,0.890$
beta=99.104 (4)
gamma $=90$

Tmin, Tmax
Tmin'
0.716

Correction method= \# Reported T Limits: Tmin=0.757 Tmax=0.890
AbsCorr = MULTI-SCAN

Data completeness $=0.995$
Theta $(\max)=27.540$
$R($ reflections $)=0.0334(6891) \quad$ wR2 (reflections) $=0.0874(8230)$
$S=1.051$
Npar= 374

2.6.4 N-Mesityl CABC Hoveyda type Ru complex (Ru-4d) [JAT-157]

Bond precision: $C-C=0.0098 \mathrm{~A}$
Wavelength=0.71073
Cell:
$a=19.3116(15$
$\mathrm{b}=24.5754$ (19)
$\mathrm{C}=16.7833$ (11)
alpha=90
Temperature:
150 K
beta=106.051(2)
gamma=90

Volume
Space group
Hall group
Moiety formula
Sum formula
Mr
Dx,g cm-3
Z
Mu (mm-1)
FOOO
FOOO'
h, k, lmax
Nref
Tmin, Tmax
Tmin ${ }^{\prime}$

Calculated
7654.7(10)

P $21 / \mathrm{c}$
-P $2 y b c$
C39 H39 C12 N O Ru [+ solvent]
C39 H39 Cl2 N O Ru [+
solvent]
709.68
1.232

8
0.577
2928.0
2921.14

25,32,21
17696
$0.735,0.989$
0.708

Reported
7654.7(10)

P $21 / \mathrm{C}$
-P $2 y b c$
C39 H39 Cl2 N O Ru
C39 H39 C12 N O Ru
709.68
1.232

8
0.577
2928.0

25,31,21
16790
$0.723,0.989$

Correction method= \# Reported T Limits: Tmin=0.723 Tmax=0.989
AbsCorr $=$ MULTI-SCAN

Data completeness= 0.949
$R($ reflections $)=0.0819(12650)$

Theta $(\max)=27.566$
wR2 (reflections) $=0.2096(16790)$
$S=1.000$
Npar $=807$

2.6.5 N -Mesityl CABC Grela type Ru complex (Ru-4f)

Correction method= \# Reported T Limits: Tmin=0.785 Tmax=0.855
AbsCorr = MULTI-SCAN

Data completeness= 0.999
Theta $(\max)=27.491$
$R($ reflections $)=0.0244(7061)$
wR2 $($ reflections $)=$
$S=1.064$
Npar $=431$

2.7 NMR spectra

2.7.1 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{a}$

2.7.2 ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{a}$

2.7.3 ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-\mathbf{4 b}$

2.7.4 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{~b}$

2.7.5 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{c}$

2.7.6 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{c}$

 13C (ppm)

2.7.7 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{~d}$

2.7.8 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{~d}$

2.7.9 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of Ru-4e

2.7.10 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) of Ru-4e

2.7.11 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{f}$

2.7.12 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-4 \mathrm{f}$
 f1 (ppm)

2.7.13 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{Ru}-\mathbf{4 g}$

2.7.14 13C NMR (101 MHz, CDCl3) of $\mathrm{Ru}-4 \mathrm{~g}$

2.7.15 Catalytic products

${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene- d_{8}) (2a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2e)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2f)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2i)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2j)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2k)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (21)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (2m)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (4a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (4b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (4c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (6a)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (6b)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (6c)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (9)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (11a) from allyl acetate 10

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (11a) from diacetoxybutene 8

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (11b)

2.7.16 Highlighting weak hydrogen bond interactions by ${ }^{1} \mathrm{H}$ NMR in Ru-4b

3 Computational details

All calculations were performed using Gaussian 16, Revision C.01. ${ }^{15}$ All structures were calculated without constraints using B3LYP and LACVP** basis set. ${ }^{16}$ This method was chosen based for its accuracy for describing non-covalent interactions and outstanding performance for predicting structural parameters of related systems. The optimized geometric parameters were verified as true minima by the absence of negative eigenvalues in the harmonic vibrational frequency analysis. Energy reported for all molecules in this manuscript were the Gibbs free energies corrected with the zero-point energies. Geometry optimizations were benchmarked using B3LYP-d3 and several functionals comparing with X-ray structures. Based on these results, B3LYP-d3 and LACVP** basis set showed the best accuracy and were selected to perform analyze all other compounds. Gibbs free energies reported in this manuscript were corrected with the zero-point energies obtained from frequency calculations.

	R	N-C1-Ru-C4 ${ }^{\circ}$	C1-Ru-C4-H ${ }^{\circ}$	G (Hartree)	G (kCal)	$\Delta \mathrm{G}(\mathrm{kCaI})$
SynAS-4a	${ }^{\text {i }} \mathrm{Pr}$	177.17	4.21	-1107.641401	-694657.3046	0
AntiAS-4a	${ }^{\text {i }} \mathrm{Pr}$	59.81	5.65	-1107.627295	-694648.4581	8.847
SynAS-4b	Ad	177.74	1.93	-1379.02862	-864857.799	0
AntiAS-4b	Ad	56.16	3.1	-1378.997547	-864838.3116	19.487
SynAS-4c	Ph	179.98	0.09	-1220.739806	-765586.9693	0
AntiAS-4c	Ph	45.94	3.62	-1220.726062	-765578.3498	8.62
SynAS-4d	Mes	179.95	0.08	-1338.589978	-839496.7047	0
AntiAS-4d	Mes	45.07	3.23	-1338.574117	-839486.7575	9.947

$3.1 \quad$ SynAS-4a

Ru	9.939000	2.326000	12.710000
Cl	8.751000	0.779000	14.084000
Cl	11.983000	3.512000	12.404000

| N | 8.790000 | 4.312000 | 14.397000 |
| :--- | :--- | :--- | :--- | :--- |

C	8.768000	3.779000	13.172000

C	7.103000	5.486000	13.325000

| C | 9.465000 | 5.345000 | 10.594000 |
| :--- | :--- | :--- | :--- | :--- |

| H | 10.274000 | 4.759000 | 11.011000 |
| :--- | :--- | :--- | :--- | :--- |

C	6.481000	3.654000	11.854000

| C | 6.263000 | 2.284000 | 11.949000 |
| :--- | :--- | :--- | :--- | :--- |

H	6.993000	1.634000	12.416000

C	8.186000	5.295000	11.138000

| C | 6.153000 | 6.277000 | 12.832000 |
| :--- | :--- | :--- | :--- | :--- |

H	5.607000	7.038000	13.378000

C	9.340000	2.059000	11.026000

H	8.589000	2.664000	10.513000

C	7.697000	4.468000	12.347000

| C | 5.490000 | 4.491000 | 11.307000 |
| :--- | :--- | :--- | :--- | :--- |

| C | 7.163000 | 6.101000 | 10.611000 |
| :--- | :--- | :--- | :--- | :--- |

| C | 7.403000 | 6.925000 | 9.519000 |
| :--- | :--- | :--- | :--- | :--- |

H	6.604000	7.539000	9.114000

C	5.065000	1.748000	11.454000

H $\quad 4.893000 \quad 0.680000 \quad 11.529000$

| C | 9.859000 | 3.932000 | 15.361000 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\mathrm{H} & 10.319000 & 3.035000 & 14.920000\end{array}$
$\begin{array}{llll}\text { C } & 7.671000 & 5.284000 & 14.702000\end{array}$
$\begin{array}{llll}\text { C } & 4.311000 & 3.956000 & 10.809000\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.555000 & 4.607000 & 10.380000\end{array}$
$\begin{array}{lllll}\text { C } & 5.845000 & 5.974000 & 11.361000\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.061000 & 6.609000 & 10.945000\end{array}$
$\begin{array}{llll}\text { C } & 6.596000 & 4.608000 & 15.578000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.927000 & 4.469000 & 16.608000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.323000 & 3.636000 & 15.156000\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.706000 & 5.244000 & 15.583000\end{array}$
$\begin{array}{lllll}\text { C } & 9.706000 & 6.183000 & 9.497000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.703000 & 6.222000 & 9.072000\end{array}$
$\begin{array}{lllll}\text { C } & 8.161000 & 6.591000 & 15.322000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 8.944000 & 7.045000 & 14.711000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.532000 & 6.444000 & 16.340000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.317000 & 7.287000 & 15.371000\end{array}$
$\begin{array}{lllll}\text { C } & 4.101000 & 2.572000 & 10.879000\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.179000 & 2.147000 & 10.496000\end{array}$
$\begin{array}{lllll}\text { C } & 8.685000 & 6.961000 & 8.957000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.882000 & 7.604000 & 8.105000\end{array}$
$\begin{array}{llll}\text { C } & 9.340000 & 3.498000 & 16.726000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 8.580000 & 2.720000 & 16.625000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.939000 & 4.337000 & 17.303000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.178000 & 3.082000 & 17.294000\end{array}$

C	10.956000	4.995000	15.441000
H	10.637000	5.876000	16.001000
H	11.277000	5.288000	14.440000
H	11.822000	4.565000	15.955000
H	9.778000	1.224000	10.460000

3.2 AntiAS-4a

$\begin{array}{lllll}\mathrm{Ru} & 10.125000 & 2.457000 & 13.378000\end{array}$
$\begin{array}{lllll}\mathrm{Cl} & 12.046000 & 3.628000 & 14.108000\end{array}$
$\begin{array}{lllll}\mathrm{Cl} & 9.095000 & 1.436000 & 11.481000\end{array}$
$\begin{array}{lllll}\mathrm{N} & 7.392000 & 3.607000 & 13.449000\end{array}$
$\begin{array}{lllll}\text { C } & 8.718000 & 3.785000 & 13.461000\end{array}$
$\begin{array}{lllll}\text { C } & 7.643000 & 5.904000 & 13.151000\end{array}$
$\begin{array}{lllll}\text { C } & 9.891000 & 5.301000 & 15.851000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 9.892000 & 4.221000 & 15.931000\end{array}$
$\begin{array}{lllll}\text { C } & 9.889000 & 5.771000 & 12.216000\end{array}$
$\begin{array}{lllll}\text { C } & 10.559000 & 5.020000 & 11.260000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.501000 & 3.935000 & 11.245000\end{array}$
$\begin{array}{llll}\text { C } & 9.536000 & 5.922000 & 14.662000\end{array}$
$\begin{array}{lllll}\text { C } & 7.632000 & 7.233000 & 13.062000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.761000 & 7.859000 & 12.907000\end{array}$
$\begin{array}{llll}\text { C } & 9.694000 & 1.508000 & 14.859000\end{array}$
$\begin{array}{llll}\mathrm{H} & 8.920000 & 1.753000 & 15.590000\end{array}$
$\begin{array}{llll}\text { C } & 9.013000 & 5.266000 & 13.366000\end{array}$
$\begin{array}{llll}\text { C } & 9.907000 & 7.175000 & 12.156000\end{array}$
$\begin{array}{lllll}\text { C } & 9.551000 & 7.322000 & 14.560000\end{array}$
$\begin{array}{lllll}\text { C } & 9.965000 & 8.102000 & 15.632000\end{array}$
H $\quad 9.985000 \quad 9.184000 \quad 15.545000$
$\begin{array}{lllll}\text { C } & 11.296000 & 5.677000 & 10.267000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 11.826000 & 5.093000 & 9.523000\end{array}$
$\begin{array}{llll}\text { C } & 6.756000 & 2.300000 & 13.766000\end{array}$
$\begin{array}{llll}\mathrm{H} & 7.580000 & 1.588000 & 13.688000\end{array}$
$\begin{array}{lllll}\text { C } & 6.589000 & 4.840000 & 13.057000\end{array}$
$\begin{array}{lllll}\text { C } & 10.643000 & 7.826000 & 11.176000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.663000 & 8.911000 & 11.138000\end{array}$
$\begin{array}{lllll}\text { C } & 9.036000 & 7.836000 & 13.220000\end{array}$
$\begin{array}{llll}\mathrm{H} & 9.046000 & 8.925000 & 13.154000\end{array}$
$\begin{array}{lllll}\text { C } & 6.134000 & 4.724000 & 11.588000\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.312000 & 4.019000 & 11.459000\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.972000 & 4.415000 & 10.957000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 5.798000 & 5.712000 & 11.257000\end{array}$
$\begin{array}{llll}\text { C } & 10.296000 & 6.088000 & 16.937000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 10.588000 & 5.607000 & 17.864000\end{array}$
$\begin{array}{lllll}\text { C } & 5.416000 & 5.120000 & 13.994000\end{array}$
$\begin{array}{llll}\mathrm{H} & 5.751000 & 5.181000 & 15.033000\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.630000 & 4.366000 & 13.906000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.983000 & 6.087000 & 13.720000\end{array}$
$\begin{array}{lllll}\text { C } & 11.348000 & 7.069000 & 10.231000\end{array}$

H	11.926000	7.570000	9.461000
C	10.342000	7.477000	16.828000
H	10.665000	8.078000	17.671000
C	5.702000	1.837000	12.767000
H	6.108000	1.834000	11.753000
H	4.787000	2.436000	12.801000
H	5.428000	0.808000	13.021000
C	6.239000	2.277000	15.210000
H	5.279000	2.786000	15.319000
H	6.953000	2.749000	15.893000
H	6.101000	1.236000	15.521000
H	10.301000	0.618000	15.073000

3.3 SynAS-4b

Ru	6.967000	8.562000	4.586000
Cl	9.286000	8.744000	3.910000
Cl	4.625000	8.692000	4.037000
C	7.017000	9.720000	5.985000
H	7.060000	9.468000	7.046000
C	6.960000	6.916000	5.593000
N	6.968000	5.672000	5.070000
C	7.239000	5.369000	3.612000
C	6.751000	6.512000	2.703000
H	7.301000	7.451000	2.902000
H	5.679000	6.675000	2.836000
C	7.083000	6.233000	1.221000
H	6.731000	7.090000	0.633000
C	8.605000	6.077000	1.067000
H	9.111000	7.002000	1.371000
H	8.856000	5.890000	0.014000
C	9.081000	4.907000	1.941000
H	10.167000	4.785000	1.836000
C	8.366000	3.614000	1.511000
H	8.707000	2.771000	2.128000
H	8.613000	3.374000	0.468000
C	6.846000	3.798000	1.657000
H	6.332000	2.871000	1.371000
C	6.496000	4.104000	3.127000
H	6.765000	3.232000	3.726000
H	5.415000	4.261000	3.222000
C	8.764000	5.196000	3.420000
H	9.264000	6.115000	3.747000
H	9.133000	4.372000	4.037000
C	6.373000	4.953000	0.767000
H	5.284000	5.073000	0.845000
H	6.607000	4.746000	-0.285000
C	6.784000	4.552000	6.096000
C	7.895000	3.494000	6.085000
C			

H	8.872000	3.965000	6.219000
H	7.909000	2.881000	5.183000
H	7.725000	2.828000	6.938000
C	5.375000	3.931000	5.999000
H	5.188000	3.372000	6.920000
H	5.261000	3.249000	5.157000
H	4.624000	4.723000	5.924000
C	6.867000	5.319000	7.381000
C	6.882000	4.937000	8.657000
H	6.839000	3.916000	9.019000
C	6.968000	6.123000	9.619000
H	6.980000	5.828000	10.670000
C	8.210000	6.901000	9.213000
C	9.276000	7.216000	10.046000
H	9.250000	6.930000	11.093000
C	10.384000	7.891000	9.518000
H	11.223000	8.138000	10.161000
C	10.412000	8.229000	8.168000
H	11.276000	8.736000	7.750000
C	9.333000	7.921000	7.327000
H	9.382000	8.184000	6.279000
C	8.222000	7.275000	7.858000
C	5.793000	7.027000	9.276000
C	4.815000	7.447000	10.167000
H	4.871000	7.156000	11.212000
C	3.754000	8.234000	9.703000
H	2.983000	8.563000	10.392000
C	3.684000	8.577000	8.355000
H	2.853000	9.168000	7.985000
C	4.676000	8.162000	7.455000
H	4.590000	8.424000	6.409000
C	5.745000	7.404000	7.920000
C	6.935000	6.817000	7.121000
H	7.018000	10.796000	5.749000
H			

3.4 AntiAS-4b

Ru	3.998000	6.754000	5.874000
Cl	3.887000	6.465000	3.512000
Cl	2.906000	6.060000	7.894000
C	4.151000	8.558000	5.841000
H	5.050000	9.150000	6.011000
C	5.790000	6.177000	6.411000
N	6.657000	6.388000	7.424000
C	6.690000	7.596000	8.355000
C	7.384000	8.739000	7.577000
H	6.841000	8.918000	6.643000
H	8.398000	8.438000	7.295000
C	7.443000	10.016000	8.431000

$\left.\begin{array}{lccc} & & & \\ \mathrm{H} & 7.926000 & 10.810000 & 7.846000 \\ \mathrm{C} & 6.021000 & 10.447000 & 8.824000 \\ \mathrm{H} & 5.425000 & 10.653000 & 7.924000 \\ \mathrm{H} & 6.057000 & 11.377000 & 9.407000 \\ \mathrm{C} & 5.360000 & 9.331000 & 9.651000 \\ \mathrm{H} & 4.334000 & 9.619000 & 9.909000 \\ \mathrm{C} & 6.174000 & 9.087000 & 10.927000 \\ \mathrm{H} & 5.686000 & 8.322000 & 11.545000 \\ \mathrm{H} & 6.238000 & 10.005000 & 11.527000 \\ \mathrm{C} & 7.574000 & 8.623000 & 10.511000 \\ \mathrm{H} & 8.173000 & 8.392000 & 11.403000 \\ \mathrm{C} & 7.469000 & 7.333000 & 9.670000 \\ \mathrm{H} & 6.940000 & 6.569000 & 10.251000 \\ \mathrm{H} & 8.481000 & 6.976000 & 9.487000 \\ \mathrm{C} & 5.290000 & 8.037000 & 8.820000 \\ \mathrm{H} & 4.631000 & 8.209000 & 7.975000 \\ \mathrm{H} & 4.834000 & 7.229000 & 9.399000 \\ \mathrm{C} & 8.266000 & 9.729000 & 9.698000 \\ \mathrm{H} & 9.285000 & 9.420000 & 9.423000 \\ \mathrm{H} & 8.355000 & 10.638000 & 10.306000 \\ \mathrm{C} & 7.802000 & 5.346000 & 7.490000 \\ \mathrm{C} & 7.709000 & 4.466000 & 8.749000 \\ \mathrm{H} & 6.665000 & 4.215000 & 8.954000 \\ \mathrm{H} & 8.152000 & 4.918000 & 9.634000 \\ \mathrm{H} & \mathrm{C} & 8.864000 & 3.965000\end{array}\right) 1.845000$

H	7.767000	8.119000	2.126000
C	7.036000	6.857000	3.708000
H	6.504000	7.656000	4.210000
C	6.989000	5.560000	4.202000
C	6.337000	5.066000	5.520000
H	3.250000	9.124000	5.562000

3.5 SynAS-4c

Ru	7.188000	8.199000	13.600000
Cl	9.266000	7.167000	14.156000
Cl	5.951000	9.629000	12.144000
C	6.500000	8.600000	15.223000
H	5.745000	8.022000	15.759000
C	6.168000	6.599000	13.325000
N	6.322000	5.889000	12.203000
C	7.234000	6.262000	11.155000
C	6.792000	7.088000	10.117000
H	5.785000	7.485000	10.144000
C	7.673000	7.426000	9.091000
H	7.338000	8.079000	8.292000
C	8.983000	6.944000	9.103000
H	9.667000	7.215000	8.306000
C	9.420000	6.129000	10.149000
H	10.444000	5.772000	10.174000
C	8.548000	5.784000	11.181000
H	8.882000	5.186000	12.019000
C	5.484000	4.642000	12.059000
C	4.562000	4.770000	10.843000
H	3.912000	3.892000	10.792000
H	5.143000	4.829000	9.917000
H	3.933000	5.661000	10.931000
C	6.392000	3.413000	11.950000
H	7.053000	3.347000	12.819000
H	6.997000	3.453000	11.039000
H	5.772000	2.512000	11.918000
C	4.726000	4.677000	13.353000
C	3.807000	3.883000	13.899000
H	3.403000	2.979000	13.459000
H	3.342000	4.381000	15.272000
H	7.606000	6.076000	15.721000
H	2.588000	3.740000	15.730000
C	4.599000	4.511000	16.123000
C	4.819000	3.894000	17.347000
H	4.047000	3.273000	17.791000
H	6.048000	4.074000	17.995000
C	7.230000	3.592000	18.950000
C	7.998000	4.981000	17.898000
C			

C	5.588000	5.327000	15.545000
C	5.128000	5.903000	14.189000
C	3.804000	6.649000	14.462000
C	3.478000	7.963000	14.147000
H	4.186000	8.612000	13.645000
C	2.200000	8.443000	14.468000
H	1.945000	9.469000	14.222000
C	1.265000	7.619000	15.089000
H	0.280000	8.003000	15.336000
C	1.588000	6.289000	15.385000
H	0.860000	5.635000	15.855000
C	2.849000	5.808000	15.061000
H	6.873000	9.507000	15.722000

3.6 AntiAS-4c

Ru	6.702000	8.480000	12.936000
Cl	8.745000	7.997000	11.837000
Cl	4.558000	9.522000	12.736000
C	7.271000	8.848000	14.614000
H	7.227000	8.184000	15.477000
C	5.933000	6.745000	13.215000
N	5.125000	6.328000	14.198000
C	4.945000	6.961000	15.475000
C	5.720000	6.506000	16.547000
H	6.447000	5.718000	16.379000
C	5.561000	7.079000	17.808000
H	6.166000	6.731000	18.638000
C	4.629000	8.104000	17.995000
H	4.509000	8.554000	18.975000
C	3.858000	8.549000	16.921000
H	3.142000	9.352000	17.060000
C	4.007000	7.977000	15.656000
H	3.444000	8.342000	14.807000
C	4.276000	5.103000	13.885000
C	4.398000	4.044000	14.980000
H	3.824000	3.162000	14.681000
H	4.002000	4.408000	15.933000
H	5.441000	3.743000	15.111000
C	2.824000	5.560000	13.699000
H	2.767000	6.346000	12.940000
H	2.411000	5.939000	14.639000
H	2.221000	4.709000	13.371000
C	4.907000	4.656000	12.602000
C	4.791000	3.562000	11.849000
H	4.097000	2.746000	12.012000
C	5.838000	3.512000	10.729000
H	5.765000	2.616000	10.111000
C	5.688000	4.794000	9.921000

C	5.484000	4.874000	8.550000
H	5.428000	3.969000	7.953000
C	5.347000	6.131000	7.949000
H	5.189000	6.204000	6.878000
C	5.404000	7.287000	8.725000
H	5.284000	8.261000	8.264000
C	5.610000	7.204000	10.108000
H	5.601000	8.121000	10.690000
C	5.770000	5.959000	10.702000
C	6.005000	5.636000	12.178000
C	7.292000	4.778000	12.243000
C	8.418000	4.991000	13.024000
H	8.507000	5.880000	13.636000
C	9.465000	4.060000	12.973000
H	10.355000	4.227000	13.570000
C	9.376000	2.937000	12.153000
H	10.196000	2.227000	12.114000
C	8.228000	2.717000	11.379000
H	8.148000	1.837000	10.749000
C	7.186000	3.631000	11.438000
H	7.731000	9.835000	14.769000

3.7 SynAS-4d

Ru	3.279000	14.448000	4.215000
Cl	2.491000	13.549000	2.153000
Cl	4.982000	15.745000	5.261000
C	1.806000	15.346000	4.760000
H	1.113000	15.026000	5.541000
C	3.079000	12.963000	5.424000
N	3.946000	11.938000	5.453000
C	5.093000	11.880000	4.576000
C	6.315000	12.450000	4.994000
C	7.404000	12.389000	4.118000
H	8.343000	12.838000	4.430000
C	7.314000	11.789000	2.861000
C	6.092000	11.231000	2.481000
H	5.998000	10.767000	1.503000
C	4.969000	11.262000	3.313000
C	6.517000	13.113000	6.330000
H	7.061000	12.451000	7.014000
H	5.578000	13.404000	6.799000
H	7.100000	14.028000	6.206000
C	8.490000	11.782000	1.923000
H	8.469000	10.912000	1.260000
H	9.438000	11.772000	2.470000
H	8.486000	12.678000	1.290000
C	3.699000	10.627000	2.813000
H	3.755000	9.534000	2.887000

H	3.541000	10.889000	1.765000
H	2.818000	10.969000	3.355000
C	3.666000	10.836000	6.458000
C	4.807000	10.703000	7.471000
H	4.944000	11.626000	8.036000
H	5.743000	10.439000	6.968000
H	4.555000	9.904000	8.175000
C	3.437000	9.492000	5.759000
H	3.232000	8.735000	6.522000
H	4.328000	9.189000	5.201000
H	2.581000	9.537000	5.085000
C	2.413000	11.358000	7.092000
C	1.614000	10.901000	8.055000
H	1.744000	9.976000	8.605000
C	0.436000	11.840000	8.336000
H	-0.227000	11.478000	9.123000
C	1.048000	13.196000	8.663000
C	0.840000	13.925000	9.826000
H	0.161000	13.553000	10.588000
C	1.525000	15.133000	10.011000
H	1.371000	15.706000	10.920000
C	2.412000	15.588000	9.039000
H	2.957000	16.514000	9.189000
C	2.617000	14.860000	7.858000
H	3.321000	15.224000	7.118000
C	1.917000	13.674000	7.665000
C	2.004000	12.701000	6.470000
C	0.560000	12.478000	5.973000
C	0.068000	12.614000	4.679000
H	0.710000	12.925000	3.864000
C	-1.283000	12.331000	4.431000
H	-1.667000	12.439000	3.422000
C	-2.124000	11.915000	5.460000
H	-3.169000	11.703000	5.257000
C	-1.620000	11.755000	6.757000
H	-2.265000	11.412000	7.561000
C	-0.281000	12.024000	7.004000
H	1.580000	16.302000	4.266000
		10	

3.8 AntiAS-4d

Ru	4.093000	14.448000	4.443000
Cl	4.713000	13.248000	2.495000
Cl	5.055000	15.897000	6.069000
C	2.610000	15.321000	3.889000
H	1.582000	15.126000	4.183000
C	3.325000	13.092000	5.586000
N	2.363000	13.172000	6.522000
C	1.455000	14.280000	6.706000

H	9.146000	10.559000	6.201000	C	5.781000	10.183000	6.013000
C	7.116000	9.832000	6.165000	H	2.777000	16.148000	3.182000

4 Topological Steric Maps

Topological steric maps analyzed in this study were performed using SambVca 2.1 program developed by Cavallo et al. ${ }^{17}$. Using the directions provided by these authors on their website, ${ }^{18}$ topological steric maps were obtained using the xyz coordinates generated through computation (see section 3 of this ESI).

5 Bibliography

1 M. R. Serrato, M. Melaimi and G. Bertrand, Chem. Commun., 2022, 58, 7519-7521.
2 T. M. Trnka, E. L. Dias, M. W. Day and R. H. Grubbs, Arkivoc, 2002, 2002, 28-41.
3 A. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos and K. Grela, J. Am. Chem. Soc., 2004, 126, 9318-9325.

4 J. J. Van Veldhuizen, D. G. Gillingham, S. B. Garber, O. Kataoka and A. H. Hoveyda, J. Am. Chem. Soc., 2003, 125, 12502-12508.

6 H. Clavier, F. Caijo, E. Borré, D. Rix, F. Boeda, S. P. Nolan and M. Mauduit, European J. Org. Chem., 2009, 2009, 4254-4265.

7 T. R. Hoye and M. A. Promo, Tetrahedron Lett., 1999, 40, 1429-1432.
8 A. Dumas, S. Colombel-Rouen, I. Curbet, G. Forcher, F. Tripoteau, F. Caijo, P. Queval, M. Rouen, O. Baslé and M. Mauduit, Catal. Sci. Technol., 2019, 9, 436-443.

9 J. Morvan, F. Vermersch, J. Lorkowski, J. Talcik, T. Vives, T. Roisnel, C. Crévisy, N. Vanthuyne, G. Bertrand, R. Jazzar and M. Mauduit, Catal. Sci. Technol., 2023, 13, 381-388.

10 J. Hartung and R. H. Grubbs, J. Am. Chem. Soc., 2013, 135, 10183-10185.
11 J. Morvan, F. Vermersch, Z. Zhang, T. Vives, T. Roisnel, C. Crévisy, L. Falivene, L. Cavallo, N. Vanthuyne, G. Bertrand, R. Jazzar and M. Mauduit, Organometallics, 2023, 42, 495-504.

12 C. Theunissen, M. A. Ashley and T. Rovis, J. Am. Chem. Soc., 2019, 141, 6791-6796.
13 A. Del Vecchio, J. Talcik, S. Colombel-Rouen, J. Lorkowski, M. R. Serrato, T. Roisnel, N. Vanthuyne, G. Bertrand, R. Jazzar and M. Mauduit, ACS Catal., 2023, 13, 6195-6202.

14 W. H. Henderson, C. T. Check, N. Proust and J. P. Stambuli, Org. Lett., 2010, 12, 824827.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Y. Yang, M. N. Weaver, and K. M. Merz, Jr. Assessment of the " $6-31+\mathrm{G}^{* *}+$ LANL2DZ" Mixed Basis Set Coupled with Density Functional Theory Methods and the Effective Core Potential: Prediction of Heats of Formation and Ionization Potentials for First-Row Transition-Metal Complexes. J. Phys. Chem. A2009, 113, 9843-9851.
L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano and L. Cavallo. Nature Chem. 2019, 11, 872-879.
https://www.molnac.unisa.it/OMtools/sambvca2.1/help/help.html

