Electronic Supplementary Information (SI)

Cu(dppf) complexes can be synthesized from Cu-exchanged solids and enable a quantification of the Cu-accessibility by 31P MAS NMR spectroscopy

Elif Kaya,[a] Daniel Dittmann,[a] Maximilian Schmidt,[a] and Michael Dyballa[a]*

[a] Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

*Corresponding author, E-mail: michael.dyballa@itc.uni-stuttgart.de
Figure S1: Small angle X-ray powder diffraction patterns of the mesoporous SBA-15.

Figure S2: X-ray powder diffraction patterns of the microporous H-MCM-22 zeolite.
Figure S3: 27Al MAS NMR spectra of Na-[Al]SBA-15, silica A200, and MCM-22.
Figure S4: SEM (BSE-detector) and EDX screenings on Cu@ A200.

Figure S5: SEM and EDX on Cu-MCM-22.
Figure S6: 1H MAS NMR spectra of Na-[Al]SBA-15 and H-MCM-22 before and after loading NH$_3$.

1H MAS NMR

Na-[Al]SBA-15

$^+$NH$_3$

H-MCM-22

$^+$NH$_3$

$\delta_{^1H}$ / ppm

15.0 10.0 5.0 0.0 -5.0
Figure S7: 31P MAS NMR spectra recorded using high-power decoupling (hpdec) by varying the delay time between scans for pure CuI(dppf) complex shows constantly increasing intensity due to long T_1 relaxation times.
Figure S8: 31P MAS NMR spectra recorded using high-power decoupling (hpdec) by varying the delay time between scans for Cu(dppf) complex in ion exchange position shows constant intensity after 10 s delay time.
Figure S9: 1H MAS NMR spectra of two samples (a and b) before (top) and after (bottom) removing adsorbed ethanol (peaks at chemical shifts $\delta_{\text{H}} = 3.6$ and 1.2 ppm). Removal of the solvent in vacuum is immanent to measure the correct solid mass.