Electronic Supplementary Information (SI)

Cu(dppf) complexes can be synthesized from Cuexchanged solids and enable a quantification of the Cuaccessibility by ³¹P MAS NMR spectroscopy

Elif Kaya,^[a] Daniel Dittmann,^[a] Maximilian Schmidt,^[a] and Michael Dyballa^{[a]*}

[a] Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

*Corresponding author, E-mail: michael.dyballa@itc.uni-stuttgart.de

Figure S1: Small angle X-ray powder diffraction patterns of the mesoporous SBA-15.

Figure S2: X-ray powder diffraction patterns of the microporous H-MCM-22 zeolite.

Figure S3: ²⁷Al MAS NMR spectra of Na-[Al]SBA-15, silica A200, and MCM-22.

Figure S4: SEM (BSE-detector) and EDX screenings on Cu@ A200.

Figure S5: SEM and EDX on Cu-MCM-22.

Figure S6: ¹H MAS NMR spectra of Na-[Al]SBA-15 and H-MCM-22 before and after loading NH₃.

Figure S7: ³¹P MAS NMR spectra recorded using high-power decoupling (hpdec) by varying the delay time between scans for pure $Cu^{I}(dppf)$ complex shows constantly increasing intensity due to long T₁ relaxation times.

Figure S8: ³¹P MAS NMR spectra recorded using high-power decoupling (hpdec) by varying the delay time between scans for Cu^I(dppf) complex in ion exchange position shows constant intensity after 10 s delay time.

Figure S9: ¹H MAS NMR spectra of two samples (a and b) before (top) and after (bottom) removing adsorbed ethanol (peaks at chemical shifts δ_{1H} = 3.6 and 1.2 ppm). Removal of the solvent in vacuum is immanent to measure the correct solid mass.