Supporting Information for

Snowflake relocated Cu_2O electrocatalyst on Ag backbone template for the production of liquid C_{2+} chemicals from CO_2

Youjin Lee^{a,b,c†}, Minjun Choi^{a,b,c†}, Sooan Bae^{a,b,c}, Akhil Tayal^d, Okkyun Seo^e, Hojoon Lim^d, Kug-Seung Lee^f, Jae Hyuck Jang^g, Beomgyun Jeong^{*h*,*}, and Jaeyoung Lee^{*a,b,c,**}

^{*a*} School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, Republic of Korea ^b International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, Republic of Korea ^c Ertl Center for Electrochemistry and Catalysis, GIST, 123 Cheomdangwagi-Ro, Buk-gu, Gwangju 61005, Republic of Korea ^d National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973. USA ^e Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan. ^f Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea ^g Center for Research Equipment, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea ^h Research Center for Materials Analysis, KBSI, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea

[†]These authors contributed equally to this work.

*Corresponding author. *E-mail address:* jaeyoung@gist.ac.kr (J. Lee), bjeong@kbsi.re.kr (B. Jeong)

Products	FE (%) at applied potential (V_{RHE})						
	-1.1	-1.2	-1.3	-1.35	-1.4		
Acetaldehyde	5.06	7.17	6.76	7.29	2.88		
(CH ₃ CHO)							
Ethanol	2.51	2.77	5.91	4.07	0.55		
(C_2H_5OH)					0.55		
1-propanol	1.7	2.32	3.38	2.31	0.57		
(C ₃ H ₇ OH)					0.57		
Propionaldehyde	1.19	0.61	1.71	0.62	0.31		
(C_2H_5CHO)					0.51		
Allylic alcohol	1.21	1.82	3.18	1.83	0.42		
(C_3H_5OH)					0.72		
Butyraldehyde	0.13	0.16	0.31	0.13	0.03		
(C ₄ H ₇ CHO)					0.05		

Table S1. Faradaic efficiencies of the liquid C_{2^+} products of 2 hr CO₂RR depend on applied potential

Electrocatalyst	Electrolytes	Electrode area (cm ²)	Potentials (V vs. RHE)	Current Density (mA cm ⁻²)	FE _{C2+} liquid products (%)	Production rate (µmol h ⁻¹)	References
Cu ₂ O-Ag	0.5 M KHCO ₃	9	-1.3	21.37	21.24	125.01	This work
Ag-Cu ₂ O _{PB}	0.1 M KHCO ₃	4	-1.2	-2	38.17	12.73	5
Cu-SA/NPC	0.1 M KHCO ₃	6	-0.36	-0.5	39.6	6.21	23
1-CuCNT- ImR	0.5 M KHCO ₃	5.7	-2	-5	72.8	0.29	24
NDD _L /Si RA	0.5 M NaHCO ₃	-	-0.8	-6	77.6	24.43	25

Table S2. Comparison of the CO₂RR production rate of Cu-based catalysts

Table S3. XPS survey scan results of as-prepared Cu₂O-Ag and after the CO₂RR for 2 hr at - 1.3 $V_{\text{RHE.}}$

Sample	Atomic Concentration (%)					
	Ag 3d5	C1s	Cu 2p3	O 1s		
As prepared	3.26	52.95	13.24	30.55		
After CO ₂ RR	0.28	50.31	13.05	36.36		

Fig. S1. LSV of the deposition solution, KCN solution containing $CuSO_4$ and $AgNO_3$ as a function of applied potential.

Fig. S2. Samples of the deposited Cu_2O -Ag catalyst upon applying 0.18 V_{RHE} under various conditions. (a) XRD patterns depending on temperature. (b) XRD patterns of the deposited catalysts depending on the applied voltage at room temperature (25°C).

Fig. S3. SEM images of the Cu_2O -Ag placed on a carbon paper deposited applying for various charge (1 C, 3 C, 10 C, and 15 C).

Fig. S4. SAED pattern converted to an XRD pattern of as-prepared Cu_2O -Ag.

Fig. S5. Current density-time profile of the Cu₂O-Ag electrode applying different cathode potentials for 2 hr. (Electrolyte: 0.5 M KHCO₃, temperature: 25°C)

Fig. S6. HS-GC–MS total ion chromatogram of the catholyte samples after the CO_2RR for 2 hr depending on the applied potentials. (Electrolyte: 0.5 M KHCO₃, temperature: 25°C)

Fig. S7. Comparison of the liquid C_{2+} production rate of the relocated Cu_2O -Ag catalyst and other studies using Cu-based catalysts. (The experimental details are represented in Table S2 in the Supporting Information, Refs. 5, 23-25)

Fig. S8. (a) SEM and (b) TEM images of the relocated Cu(111)-Ag catalyst placed on a TEM grid after the CO_2RR . Applied cathode potential: -1.3 V_{RHE} for 2 hr.

Fig. S9. SEM-EDS analysis of relocated Cu(111)-Ag after the CO_2RR experiment for 2 hr at -1.3 V_{RHE} .

Fig. S10. SAED pattern converted to an XRD pattern of relocated Cu(111)-Ag after the CO₂RR.

Fig. S11. SEM images of Cu electrode a) before and b) after 120 min of reaction under -1.3 V_{RHE} with CO₂ gas purging.

Fig. S12. XRD pattern of electrodeposited only Cu_2O catalyst sample (at 0.182 V_{RHE} , for 10 C, at 25°C)

Fig. S13. (a) SEM images of relocated Cu(111)-Ag catalyst samples depending on the CO_2 reduction reaction time of 1 min, 5 min, 10 min, 15 min, 30 min, 60 min applying -1.3 V_{RHE} with CO_2 gas purging.

Fig. S14. Normalized a Cu and b Ag K-edge XANES spectra of Cu₂O-Ag in as-prepared state and after 1, 5, 10, 15, 30, 60, and 120 min CO_2RR at $-1.3 V_{RHE}$.

Fig. S15. Cyclic voltammetry taken over a range of scan rates to measure double-layer capacitances of Cu_2O -Ag electrodes. (a) before and (b) after the CO_2RR in 0.5 M KHCO₃.