Supporting Information

Lithium, Sodium and Potassium Enolates Aggregates and Monomers: Syntheses and Structures

Nathan Davison, Jack M. Hemingway *, Paul G. Waddell, Erli Lu (陆 而立)*

Chemistry-School of Natural and Environmental Sciences, Newcastle University.

Newcastle upon Tyne, UK. NE1 7RU

Emails: erli.lu@newcastle.ac.uk (E. L.); jack.hemingway@newcastle.ac.uk (J. M. H.)

Contents

1. General procedures	S2
2. Synthesis and Characterization of Complexes 3- Li/Na/K & 6- Li/Na	S3-S17
3. Single-Crystal X-Ray Crystallographic Data	S18-S20
4. Computational methods and data	S21
5. References	S22

1. General procedures

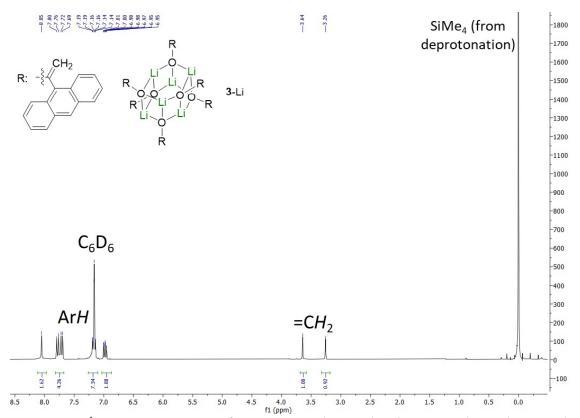
All manipulations were carried out using Schlenk techniques, or in a Vigor glovebox equipped with a -35 °C freezer and a cold well, under an atmosphere of dry argon with the O₂ and H₂O levels <0.5 ppm. Solvents were dried by sodium metal and sodium/potassium alloy, then distilled under vacuum. All solvents were stored in the glovebox over potassium mirrors except for ethers, which were stored over activated 4 Å molecular sieves. The deuterated solvents (d₆-benzene) was distilled from sodium/potassium alloy or activated 4 Å molecular sieves, degassed by three freeze-pump-thaw cycles and stored under argon. 2-Li [1], 2-Na [2], 2-K [3], 4-Li [4], 4-Na [2d] and 5-K [5] are prepared according to the literature protocols. All other chemicals were purchased from Merck, Alfa Aesar and Strem, and dried under dynamic vacuum for 12 hours and stored in the glovebox prior to use.

¹H and ⁷Li NMR spectra were recorded on a Bruker 300 Avance III spectrometer operating at 300.13 and 116.64 MHz respectively. Chemical shifts are quoted in ppm and are relative to SiMe₄ (¹H) or external 0.1M LiCl in D₂O (⁷Li). Due to poor solubility of the crystallised products and to ensure consistency, NMR spectra shown are taken from the *in situ* NMR scale reactions, except for the ¹³C NMR of the monomeric complexes. The complexes 3-Li/Na/K crystallise out from the NMR scale reaction in short time and can not be redissolved, hence their ¹³C NMR spectra are not avilable. Due to poor solubility of the aggregate complexes in C₆D₆ meaningful ¹³C NMR spectra were unable to be collected for these complexes.

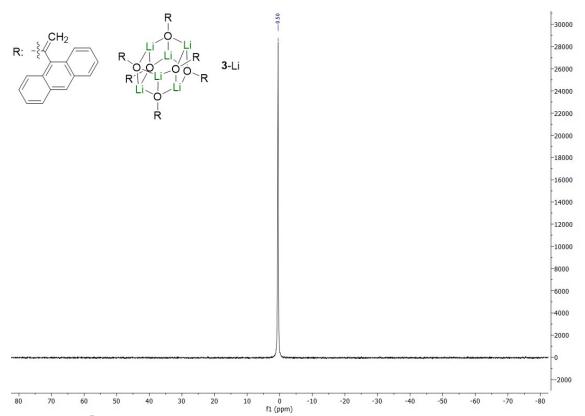
2. Synthesis and Characterisation of Complexes 3-Li/Na/K & 6-Li/Na

Synthesis of 3-Li (LiCH₂SiMe₃ + 9-acetylanthracene)

NMR scale reaction


LiCH₂SiMe₃ (0.0028 g, 0.03 mmol) was dissolved in C_6D_6 (0.5 ml). The solution was added to 9-acetylanthracene (0.0066 g, 0.03 mmol) in a one-portion manner. The resulting pale yellow solution was transferred to a J Young NMR tube. NMR was ran 15 minutes after mixing which showed complete reaction to the enolate. Yellow crystals suitable for SCXRD resulted in the NMR tube.

Scale-up:


LiCH₂SiMe₃ (0.0942 g, 1 mmol) was dissolved in benzene (1 ml). The solution was added to a solution of 9-acetylanthracene (0.2203 g, 1 mmol) in benzene (1 ml), in a one-portion manner and mixed using a pipette. Complete dissolving resulted to form a yellow solution and after 30 seconds a yellow crystalline solid precipitated out. The mixture was left at room temperature for 1 hour before the mother liquor was removed and the resulting pale yellow solid was dried *in vacuo* (0.2191 g, 97 % yield).

¹H NMR (d₆-benzene, 25 °C, 300 MHz): δ (ppm) 8.05 (s, 1H), 7.83 – 7.66 (m, 4H), 7.22 – 7.11 (signals overlapping with C₆D₆ signal, m, 2H), 7.04 – 6.92 (m, 2H), 3.64 (d, J = 1.0 Hz, 1H), 3.26 (d, J = 1.0 Hz, 1H).

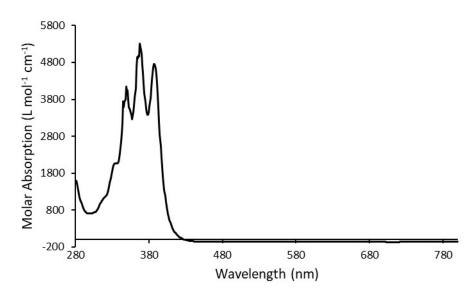

⁷Li NMR (d₆-benzene, 25 °C, 117 MHz): δ (ppm) 0.50

Figure S1: 1 H NMR spectrum of an NMR scale reaction between LiCH₂SiMe₃ and 9-acetylanthracene to form **3-Li** and SiMe₄ in C₆D₆ at 298 K.

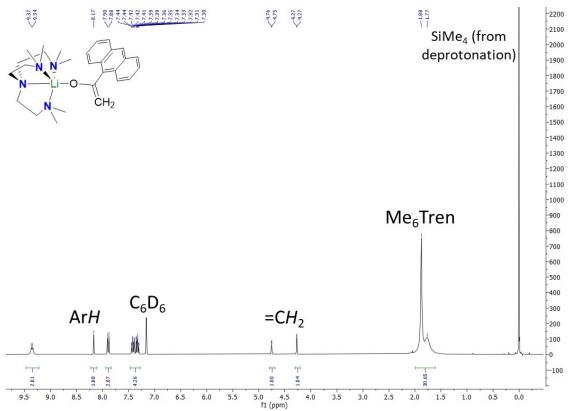
Figure S2: ^7Li NMR spectrum of an NMR scale reaction between LiCH $_2$ SiMe $_3$ and 9-acetylanthracene to form **3-Li** and SiMe $_4$ in C $_6$ D $_6$ at 298 K.

Figure S3: UV/Vis spectrum of **3-Li**. The data was collected on a 0.5 mM benzene solution at 298 K.

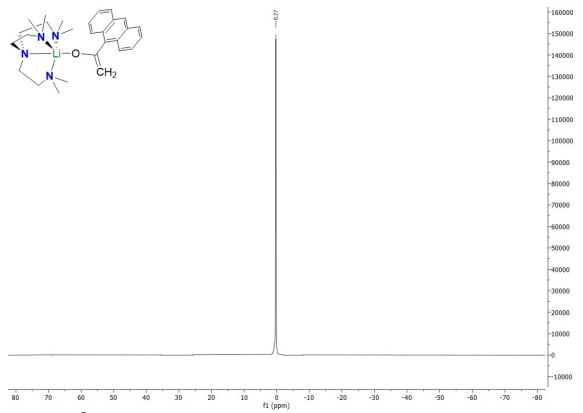
Synthesis of 6-Li ([Li(CH₂SiMe₃)(Me₆Tren)] + 9-acetylanthracene)

NMR scale reaction:

[Li(CH₂SiMe₃)(Me₆Tren)] (0.0097 g, 0.03 mmol) was dissolved in C_6D_6 (0.5 ml). The solution was added to 9-acetylanthracene (0.0066 g, 0.03 mmol) in a one-portion manner. The resulting orange solution was transferred to a J Young NMR tube. NMR was ran 15 minutes after mixing which showed complete reaction to the enolate.


Scale-up:

[LiCH₂SiMe₃)(Me₆Tren)] (0.1623 g, 0.5 mmol) was dissolved in benzene (1 ml). The solution was added to a solution of 9-acetylanthracene (0.1101 g, 0.5 mmol) in benzene (1 ml), in a one-portion manner. The resulting orange solution was left at room temperature for 15 minutes, before the volatiles were removed *in vacuo*. An orange solid resulted. The solid was dissolved in a mixture of hexane (4 ml) and toluene (7 ml). The resulting solution was filtered and placed in a -35 °C freezer. Orange crystals suitable for SCXRD resulted overnight. The mother liquor was removed and the crystals were dried *in vacuo* (0.1826 g, 80 % yield).


¹H NMR (d₆-benzene, 25 °C, 300 MHz): δ (ppm) 9.35 (d, J = 8.8 Hz, 2H), 8.17 (s, 1H), 7.94 – 7.84 (m, 2H), 7.49 – 7.27 (m, 4H), 4.75 (d, J = 2.0 Hz, 1H), 4.27 (d, J = 2.0 Hz, 1H), 1.88 (s, br, 18H), 1.77 (s, br, 12H)

¹³C NMR: (d₆-benzene, 25 °C, 75 MHz): δ (ppm) 132.6 (quaternary Ar*C*), 130.0, 127.7, 124.5, 122.8 (Ar*C*H), 79.4 (= CH_2), 56.5 (Me₆Tren- CH_2), 50.4 (Me₆Tren- CH_2), 45.0 (Me₆Tren- CH_3).

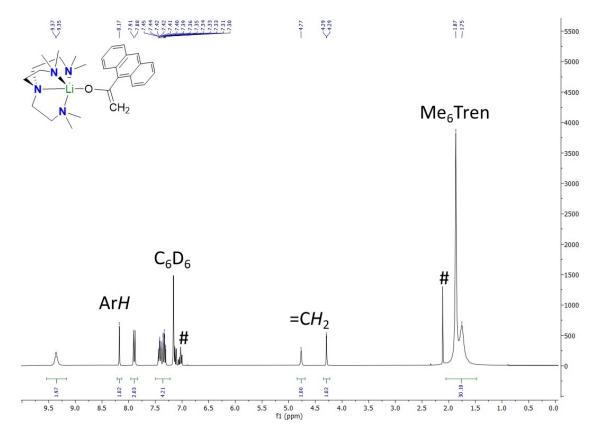

⁷Li NMR (d₆-benzene, 25 °C, 117 MHz): δ (ppm) 0.28

Figure S4: ¹H NMR spectrum of an NMR scale reaction between Li(CH₂SiMe₃)(Me₆Tren) and 9-acetylanthracene to form **6-Li** and SiMe₄ in C₆D₆ at 298 K.

Figure S5: ^7Li NMR spectrum of an NMR scale reaction between Li(CH₂SiMe₃)(Me₆Tren) and 9-acetylanthracene to form **6-Li** and SiMe₄ in C₆D₆ at 298 K.

Figure S6: 1 H NMR spectrum of isolated **6-Li** in $C_{6}D_{6}$ at 298 K. Signals labelled # = toluene from crystallisation.

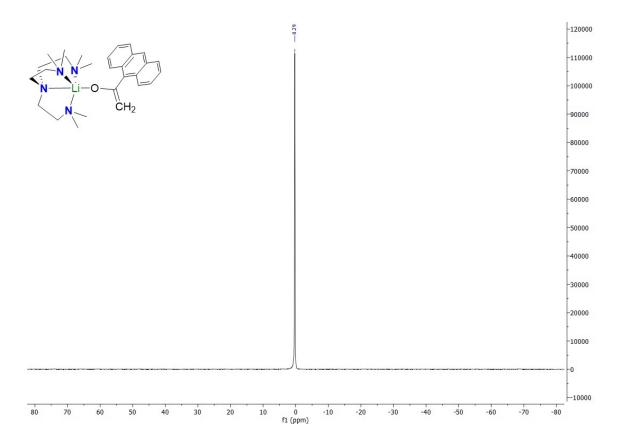
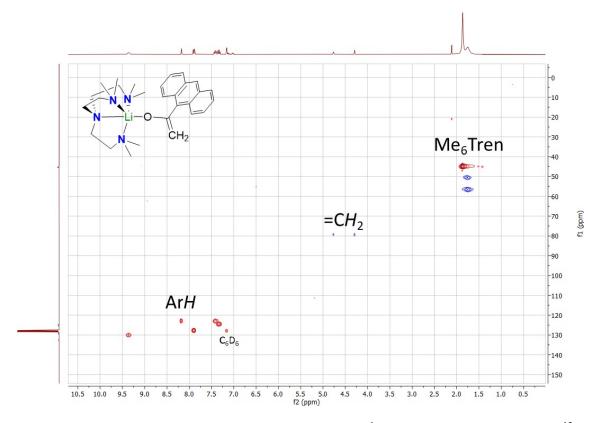
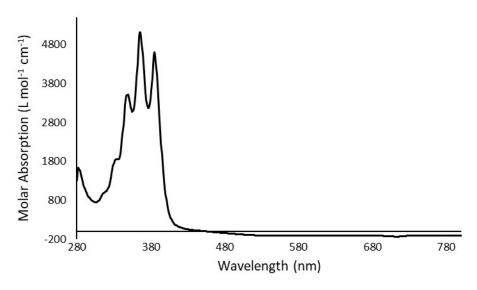
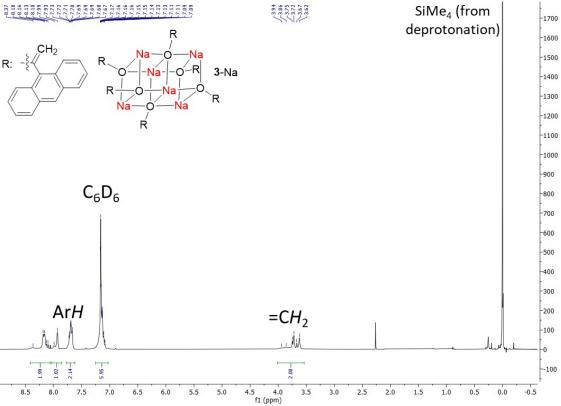




Figure S7: ⁷Li NMR spectrum of isolated 6-Li in C₆D₆ at 298 K.

Figure S8: HSQC spectrum of isolated **6-Li**. X-axis = 1 H NMR spectrum. Y-axis = 13 C NMR spectrum. Red spots = CH or CH₃ groups. Blue spots = CH₂.

Figure S9: UV/Vis spectrum of **6-Li**. The data was collected on a 0.25 mM benzene solution at 298 K.

Synthesis of 3-Na (NaCH₂SiMe₃ + 9-acetylanthracene)


NMR scale reaction

9-Acetylanthracene ($0.0066 \, g$, $0.03 \, mmol$) was dissolved in C_6D_6 ($0.5 \, ml$). The solution was added to $NaCH_2SiMe_3$ ($0.0033 \, g$, $0.03 \, mmol$) (almost insoluble in benzene at room temperature) in a one-portion manner. The resulting yellow solution was transferred to a J Young NMR tube. NMR was ran 30 minutes after mixing which showed complete reaction to the enolate. Yellow crystals suitable for SCXRD resulted in the NMR tube.

Scale-up:

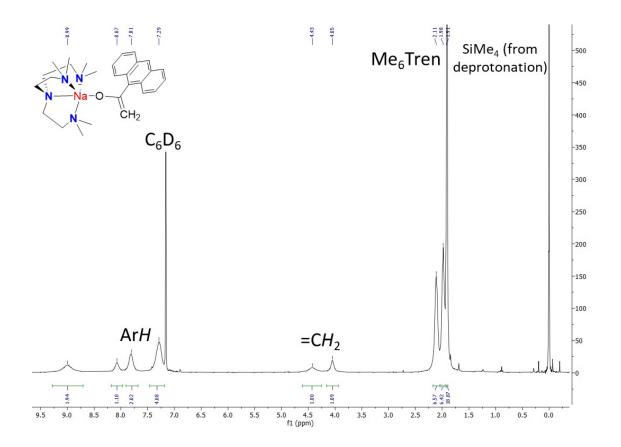
9-Acetylanthracene (0.2203 g, 1 mmol) was dissolved in benzene (1 ml). The solution was added to a suspension of NaCH₂SiMe₃ (0.1102 g, 1 mmol) in benzene (1 ml), in a one-portion manner and mixed using a pipette. Complete dissolving resulted to form a yellow solution and after 30 seconds a yellow crystalline solid precipitated out. The mixture was left at room temperature for 1 hour before the mother liquor was removed and the resulting pale yellow crystalline solid was dried *in vacuo* (0.1767 g, 73 % yield).

 1 H NMR (d₆-benzene, 25 °C, 300 MHz): δ (ppm) 8.49 – 7.84 (m, 3H), 7.79 – 7.59 (m, br, 2H), 7.30 – 7.01 (m, br, overlapping with C₆D₆, 4H), 4.03 – 3.49 (m, br, 2H).

Figure S10: ¹H NMR spectrum of an NMR scale reaction between NaCH₂SiMe₃ and 9-acetylanthracene to form **3-Na** and SiMe₄ in C₆D₆ at 298 K.

Synthesis of 6-Na ([Na(CH₂SiMe₃)(Me₆Tren)] + 9-acetylanthracene)

NMR scale reaction:


[Na(CH₂SiMe₃)(Me₆Tren)] (0.0102 g, 0.03 mmol) was dissolved in C_6D_6 (0.5 ml). The solution was added to 9-acetylanthracene (0.0066 g, 0.03 mmol) in a one-portion manner. The resulting red solution was transferred to a J Young NMR tube. NMR was ran 30 minutes after mixing which showed complete reaction to the enolate.

Scale-up:

[Na(CH₂SiMe₃)(Me₆Tren)] (0.1703 g, 0.5 mmol) was dissolved in benzene (1 ml). The solution was added to a solution of 9-acetylanthracene (0.1101 g, 0.5 mmol) in benzene (1 ml), in a one-portion manner. The resulting red solution was left at room temperature for 15 minutes, before the volatiles were removed *in vacuo*. A red solid resulted. The solid was dissolved in toluene (2 ml). The resulting solution was filtered and placed in a - 35 °C freezer. Red crystals suitable for SCXRD resulted overnight. The mother liquor was removed and the crystals dried *in vacuo* (0.1218 g = 52 % yield).

¹H NMR (d₆-benzene, 25 °C, 300 MHz): δ (ppm) 9.00 (s, br, 2H), 8.07 (s, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.29 (m, 4H), 4.44 (s, br, 1H), 4.05 (s, br, 1H), 2.06 (m, br, 6H), 1.94 (m, br, 6H), 1.89 (s, 18H).

¹³C NMR: (d₆-benzene, 25 °C, 75 MHz): δ (ppm) 132.1 (quaternary Ar*C*), 128.6, 128.0, 124.5 (Ar*C*H), 80.7 (=*C*H₂), 80.4 (=*C*H₂), 57.2 (Me₆Tren-*C*H₂), 51.7 (Me₆Tren-*C*H₂), 45.0 (Me₆Tren-*C*H₃).

Figure S11: 1 H NMR spectrum of an NMR scale reaction between Na(CH₂SiMe₃)(Me₆Tren) and 9-acetylanthracene to form **6-Na** and SiMe₄ in C₆D₆ at 298 K.

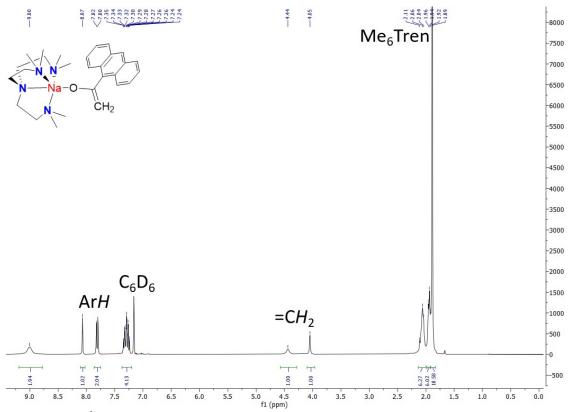
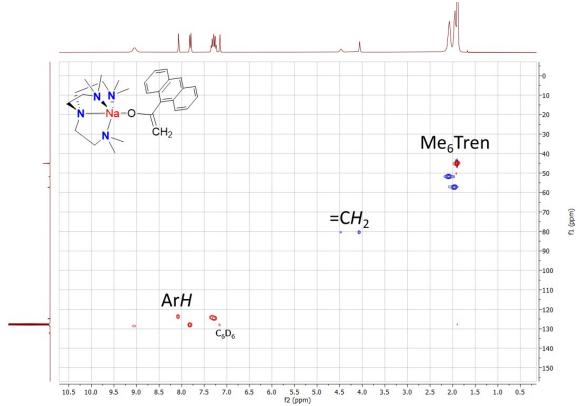
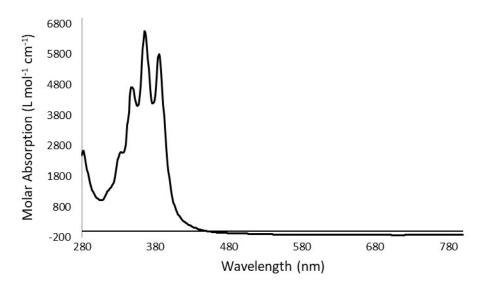




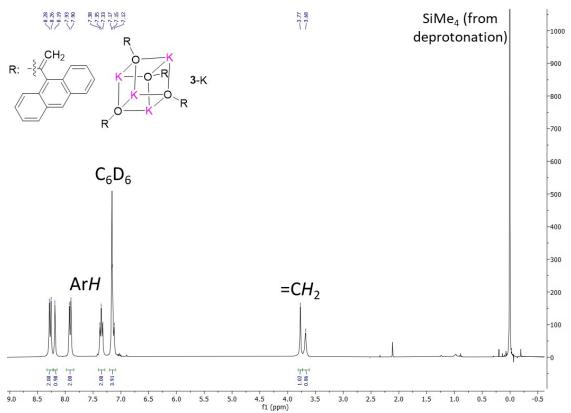
Figure S12: ¹H NMR spectrum of isolated 6-Na in C₆D₆ at 298 K.

Figure S13: HSQC spectrum of **6-Na**. X-axis = 1 H NMR spectrum. Y-axis = 13 C NMR spectrum. Red spots = CH or CH₃ groups. Blue spots = CH₂.

Figure S14: UV/Vis spectrum of **6-Na**. The data was collected on a 0.25 mM benzene solution at 298 K.

Synthesis of 3-K (KCH₂SiMe₃ + 9-acetylanthracene)

NMR scale reaction


9-Acetylanthracene (0.0066 g, 0.03 mmol) was dissolved in C_6D_6 (0.5 ml). The solution was added to KCH_2SiMe_3 (0.0038 g, 0.03 mmol) in a one-portion manner. The resulting yellow solution was transferred to a J Young NMR tube. NMR was ran 30 minutes after mixing which showed complete reaction to the enolate.

Scale-up:

9-Acetylanthracene (0.1101 g, 0.5 mmol) was dissolved in benzene (2 ml). The solution was added to a KCH₂SiMe₃ (0.1102 g, 1 mmol) in a one-portion manner and mixed using a pipette. Complete dissolving resulted to form a yellow solution and after 1 minute, a yellow crystalline solid precipitated out. The mixture was left at room temperature for 15 minutes before the mother liquor was removed and the resulting pale yellow crystalline solid was dried *in vacuo* (0.1371 g, 86 % yield).

The solid was dissolved in a mixture of toluene (2 ml), benzene (1 ml) and n-hexane (0.5 ml) and the resulting solution was filtered and placed in a -35 °C freezer. Crystals suitable for SCXRD resulted after 4 weeks.

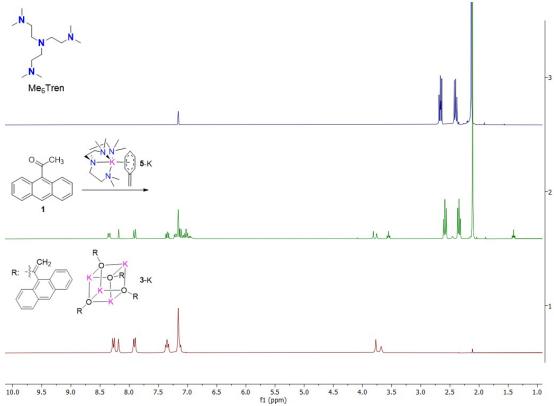

¹H NMR (d₆-benzene, 25 °C, 300 MHz): δ (ppm) 8.27 (d, J = 8.8 Hz, 2H), 8.19 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.19 – 7.10 (signals overlapping with C₆D₆ signal, m, 2H), 3.77 (s, 1H), 3.68 (s, 1H).

Figure S15: ¹H NMR spectrum of an NMR scale reaction between KCH₂SiMe₃ and 9-acetylanthracene to form **3-K** and SiMe₄ in C₆D₆ at 298 K.

Reaction between	IK(CH ₂	Ph)(Me ₆ T	ren)l and	9-acetylanthracene
iteaction between		2 11/(11100 1	i ciiji aiia	o acceptantini accinc

9-Acetylanthracene (0.0066 g, 0.03 mmol) was dissolved in C_6D_6 (0.5 ml). The solution was added to [K(CH₂Ph)(Me₆Tren)] (0.0108 g, 0.03 mmol) in a one-portion manner. The resulting yellow solution was transferred to a J Young NMR tube. NMR was ran 30 minutes after mixing which showed the same product as in the above reaction and uncoordinated Me₆Tren ligand.

Figure S16: Stacked ¹H NMR (C₆D₆, 298 K, 300 MHz) of an NMR scale reaction between **5-K** and 9-acetylanthracene (**1**) (middle: green); authenticated sample of uncoordinated Me₆Tren (top: blue); and **3-K** (bottom: red).

3. Single-Crystal X-Ray Crystallographic Data

Table S1. The crystallographic date for 3-Li, 3-Na, 3-K

Complex	3-Li	3-Na	3-K
Empirical formula	C ₁₀₈ H ₇₈ Li ₆ O ₆	C ₂₂ H ₁₇ NaO	$C_{164.9}H_{125.8}K_8O_8$
Formula weight	1513.34	320.35	2548.01
Temperature/K	150.0(2)	150.0(2)	150.0(2)
Crystal system	monoclinic	triclinic	orthorhombic
Space group	Сс	P-1	Pbca
a/Å	19.4816(5)	12.3035(3)	20.2465(4)
b/Å	16.7761(4)	13.3928(3)	24.7118(4)
c/Å	25.2397(6)	17.4184(4)	28.6260(5)
α/°	90	81.860(2)	90
β/°	96.189(2)	85.940(2)	90
γ/°	90	63.004(2)	90
Volume/Å ³	8200.9(3)	2531.60(11)	14322.4(4)
Z	4	6	4
$\rho_{calc}g/cm^3$	1.226	1.261	1.182
μ/mm ⁻¹	0.567	0.814	2.584
F(000)	3168	1008	5325
Crystal size/mm ³	$0.1 \times 0.08 \times 0.05$	$0.23 \times 0.11 \times 0.03$	$0.16 \times 0.1 \times 0.04$
Radiation	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	6.97 to 156.856	5.126 to 157.434	6.176 to 154.318
Index ranges	$-24 \le h \le 21, -20 \le$	$-15 \le h \le 13, -16 \le$	$-11 \le h \le 25, -29 \le$
D C 4: 11 4 1	$k \le 19, -32 \le 1 \le 29$	$k \le 17, -21 \le 1 \le 21$	$k \le 29, -36 \le l \le 34$
Reflections collected	40731	29892	72419
Independent reflections	$13627 [R_{int} = $	$10031 [R_{int} = 0.0256 R = -0.0256]$	$14282 [R_{int} = 0.0269, R_{sigma} =$
	$0.0302, R_{\text{sigma}} = 0.0294$	$0.0256, R_{\text{sigma}} = 0.0274$	$0.0209, R_{\text{sigma}} = 0.0220$
Data/restraints/parameter	13627/2/1082	10031/0/650	14282/1246/821
Goodness-of-fit on F ²	1.055	1.071	1.039
Final R indexes [I>=2σ	$R_1 = 0.0466, WR_2 =$	$R_1 = 0.0424, wR_2 =$	$R_1 = 0.0555, wR_2 =$
(I)]	0.1286	0.1149	0.1630
Final R indexes [all data]	$R_1 = 0.0523, WR_2 = 0.1366$	$R_1 = 0.0508, WR_2 =$	$R_1 = 0.0645, WR_2 =$
		0.1204	0.1697

Table S2. The crystallographic date for 6-Li and 6-Na

Complex	6-Li	6-Na
---------	------	------

Empirical formula	$C_{63}H_{90}Li_2N_8O_2$	C ₂₈ H ₄₁ N ₄ NaO
Formula weight	1005.3	472.64
Temperature/K	150.0(2)	150.0(2)
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /n	P2 ₁ /c
a/Å	12.4692(2)	11.3331(5)
b/Å	17.6687(4)	12.8913(5)
c/Å	13.5637(2)	19.8712(9)
α/°	90	90
β/°	95.153(2)	103.504(4)
γ/°	90	90
Volume/Å ³	2976.20(9)	2822.9(2)
Z	2	4
$\rho_{calc}g/cm^3$	1.122	1.112
μ/mm ⁻¹	0.519	0.663
F(000)	1092	1024
Crystal size/mm ³	$0.22 \times 0.16 \times 0.11$	$0.22 \times 0.15 \times 0.12$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	8.238 to 156.632	8.024 to 157.564
Index ranges	$-15 \le h \le 11, -21 \le k \le 18, -17$ $\le 1 \le 16$	$-14 \le h \le 14, -5 \le k \le 16, -25 \le 1 \le 24$
Reflections collected	23333	19536
Independent reflections	5969 [R _{int} = 0.0275, R _{sigma} = 0.0264]	5608 [R _{int} = 0.0330, R _{sigma} = 0.0323]
Data/restraints/parameters	5969/408/378	5608/0/313
Goodness-of-fit on F ²	1.05	1.043
Final R indexes [I>=2σ (I)]	$R_1 = 0.0402, wR_2 = 0.1042$	$R_1 = 0.0650, wR_2 = 0.1740$
Final R indexes [all data]	$R_1 = 0.0502, wR_2 = 0.1107$	$R_1 = 0.0777, wR_2 = 0.1829$
Largest diff. peak/hole / e Å-3	0.20/-0.14	0.39/-0.20

Crystal structure data was collected on a XtaLAB Synergy, Single source at home/near, HyPix-Arc 100 diffractometer equipped with an fine-focus sealed X-ray tube ($\lambda_{\text{CuK}\alpha}$ = 1.54184 Å) and an Oxford Cryosystems CryostreamPlus open-flow N₂ cooling device. Cell refinement, data collection and data reduction were undertaken via software

CrysAlisPro 1.171.42.73a (Rigaku OD, 2022). Intensities were corrected for absorption using CrysAlisPro 1.171.42.73a (Rigaku Oxford Diffraction, 2022) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Using Olex2 (Dolomanov, 2009), the structure was solved using SHELXT 2018/2 (Sheldrick, 2018) and refined by SHELXL 2019/1 (Sheldrick, 2015).

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

Notes on crystallographic data:

- **3-Na** The structure forms layers of clusters coplanar with the crystallographic (001) plane. The space between layers is occupied by benzene molecules.
- **3-K** It appears that there are both benzene and toluene molecules occupying the same positions throughout the crystal manifesting as disorder. One such site has been modelled as substitutionally disordered. The occupancy of the methyl group of the toluene was allowed to refine independently of the atomic displacement parameters and fixed before anisotropy was introduced into the model. The asymmetric unit also contains a solvent-accessible void in which there appear to be multiple orientations of both toluene and benzene. An unambiguous model for these solvent molecules in this site could not be achieved and hence the associated electron density was treated using the Olex2 solvent mask routine.
- **6-Li** The asymmetric unit contains a half a molecule of toluene modelled as disordered over a centre of symmetry. Accordingly, the solvent molecule was modelled in a negative part with an occupancy constrained to be a half. The atomic displacement parameters of all partially- occupied non-hydrogen atoms were restrained using the SIMU card.

4. Computational Details *General*

Geometry optimization and vibrational frequency calculations of both 6-Li and 6-Na were completed using the hybrid DFT functional B3LYP [6] [7] along with a 6-31+G* basis set for all atoms. The effects of solvent benzene molecules were accounted for through the use of the integral equation formulation of the polarizable continuum model (IEFPCM) as implemented in Gaussian 16. Optimized structures were confirmed to be minima through evaluation of the vibrational frequencies which presented as 3N-6 real numbers for both 6-Li and 6-Na. Geometry optimization, vibrational frequency, natural bond orbital analysis [8] and relaxed potential energy surface scan calculations were all completed using the Gaussian 16 package [9]. A comparison between the experimental and optimized bond lengths for both 6-Li and 6-Na are shown in Table S3.

Table S3: Experimental and calculated bond lengths of 6-Li and 6-Na alongside their percentage change.

	M – O / Å	$O-C_a$ /Å	$C_a - C_b / A$	$C_a - C_c / Å$
6-Li _(exp)	1.827(2)	1.2836(13)	1.3389(18)	1.5148(14)
6-Li _(calc)	1.821	1.302	1.366	1.522
%change	-0.33	1.43	2.02	0.48
6-Na _(exp)	2.1324(18)	1.279(3)	1.343(3)	1.521(3)
6-Na (calc)	2.143	1.304	1.365	1.520
%change	0.500	1.95	1.64	-0.07

References:

- [3] Clegg, W.; Conway, B.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; Russo, L. *Eur. J. Inorg. Chem.* **2011**, 721-726.
- [4] Davison, N.; Waddell, P. G.; Dixon, C.; Wills, C.; Penfold, T. J.; Lu, E. *Dalton Trans*. **2022**, *51*, 10707-10713.
- [5] Davidson, M. G.; Garvia-Vivo, D.; Kennedy, A. R.; Mulvey, R. E.; Robertson, S. D. *Chem. Eur. J.* **2011**, *17*, 3364-3369.
- [6] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- [7] Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- [8] Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.
- [9] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

^[1] Davidson, P. J.; Harris, D. H.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1976, 2268.

^{[2] (}a) Baillie, S. E.; Clegg, W.; García-Álvarez, P.; Hevia, E.; Kennedy, A. R.; Klett, J.; Russo, L. *Chem. Commun.* **2011**, *47*, 388-390; (b) Lynch, J. R.; Kennedy, A. R.; Barker, J.; Reid, J.; Mulvey, R. E. *Helv. Chim. Acta* **2022**, *105*, e202200082; (c) Anderson, D. E.; Tortajada, A.; Hevia, E. *Angew. Chem. Int. Ed.* **2023**, e202218498; (d) Davison, N.; McMullin, C. L.; Zhang, L.; Hu, S. -X.; Waddell, P. G.; Wills, C.; Dixon, C.; Lu, E. *J. Am. Chem. Soc.* **2023**, *145*, 6562-6576.