Electronic supplementary information (ESI)

Cyclic CO₂ absorption/desorption property of Li₃NaSiO₄ under the partial pressure of CO₂ for practical applications

Shumpei Iwasaki,^a Kosuke Shido^a, Fumito Fujishiro,^b and Takuya Hashimoto^{a*}

^a Department of Physics, College of Humanities and Sciences, Nihon University, Setagaya-ku,

Tokyo 156-8550, Japan

^b Faculty of Science and Technology, Kochi University, Kochi-shi, Kochi 780-8520 Japan

XRD measurements of prepared Li₃NaSiO₄ were performed right before the other characterizations. Because the small peaks assigned as Li₂SiO₃ were observed in addition to the main peaks identified as Li₃NaSiO₄, Rietveld analysis was conducted assuming the coexistence of the two phases. Fig. S1 shows the results of the Rietveld analysis of the X-ray diffraction (XRD) patterns of Li₃NaSiO₄ used in this study. The Bragg angles of Li₃NaSiO₄ and Li₂SiO₃ are represented by green and pink bars, respectively. The blue curve represents the difference in the experimentally obtained data (•) and calculated data (red curve). The obtained parameters are listed in Tab. S1.

The calculated weight ratio of Li₃NaSiO₄/Li₂SiO₃ was 0.9842/0.0158. The purity of Li₃NaSiO₄, calculated by assuming that the same molar of LiNaCO₃ with Li₂SiO₃ was present owing to an incomplete reaction, was 96.9 wt%.

^{*} Corresponding author: Department of Physics, College of Humanities and Sciences, Nihon

University, 3-25-40 Sakurajousui, Setagaya-ku, Tokyo 156-8550, Japan E-mail address: hashimoto.takuya@nihon-u.ac.jp (Takuya Hashimoto)

Fig. S1 Results of the Rietveld analysis of X-ray diffraction pattern of Li₃NaSiO₄ used in this study.

phase	atom	Wyckoff position	occupancy	X	У	Z	В
Li ₃ NaSiO ₄	Si	16 f	1.0	0.4626	0.06681	0.1945	1.159
	Na	16 f	1.0	0.2791	0.01566	0.5952	1.500*
	Lil	16 f	1.0	0.1579	0.7198	0.8159	0.3161
	Li2	16 f	1.0	0.1624	0.2355	0.6933	0.4097
	Li3	16 f	1.0	0.1322	-0.2511	0.5696	0.1000*
	01	16 f	1.0	0.4516	-0.07604	0.7021	0.5000*
	O2	16 f	1.0	0.3516	0.2126	0.6649	0.5000*
	O3	16 f	1.0	0.1611	-0.1546	0.7042	0.5360
	O4	16 f	1.0	0.9172	0.4212	0.6831	0.5000*
Li ₂ SiO ₃	Si	4 a	1.0	0.0000	0.1823	0.4416	0.1200
	Li	8 b	1.0	0.1718	0.3505	-0.08323	0.1000*
	01	8 b	1.0	0.1607	0.3070	0.4132	0.5348
	O2	4 a	1.0	0.0000	0.1237	0.8549	1.000*

Tab. S1 Parameters obtained from the Rietveld analysis.

* fixed for convergence

Fig. 1(a) in the main text is enlarged as Fig. S2 to clearly distinguish the reaction at the starting temperature. The temperature dependence of the reaction ratio of the Li_2SiO_3/Li_2CO_3 mixture under various $P(CO_2)$ values calculated from TG (black curves) and the differential of TG (DTG: red curves) are shown in Fig. S2. Further, the temperatures at which DTG curves deviate from 0.00, represented by arrows, are considered as reaction starting temperatures.

Fig. S2 Enlargement of Fig. 1(a). Temperature dependence of the reaction ratio of Li_2SiO_3/Li_2CO_3 mixture under various $P(CO_2)$ values calculated from TG (black curves) and differential of TG (DTG: red curves).

Fig. S3 shows the XRD pattern of CO₂-absorbed Li₃NaSiO₄ specimen at 650 °C under CO₂/N₂ mixed gas with $P(CO_2)$ of 0.10 bar after successive cooling under the same CO₂/N₂ mixed gas. The XRD pattern indicated that the specimen was a mixture of Li₂SiO₃ and LiNaCO₃, indicating that reaction (2) occurred during the heat treatment.

Fig. S3 XRD pattern of CO₂ absorbed Li₃NaSiO₄ specimen at 650 °C under CO₂/N₂ mixed gas with $P(CO_2)$ of 0.10 bar after successive cooling. The black and red Miller index represent peaks identified as Li₂SiO₃ (JCPDS No. 29-0829) and LiNaCO₃ (JCPDS No. 34-1193), respectively.

Fig. S4 shows SEM images of Li₂SiO₃ prepared by (a) 1st and (b) 5th CO₂ absorption at 650 °C in Fig. 4 and successive cooling in the CO₂/N₂ mixed gas with $P(CO_2)$ of 0.10 bar. Cogenerated LiNaCO₃ was removed by the treatment of dilute HNO₃. Needle-like crystals with shorter edges of ~2 µm were observed in (a). Although an increase in size was observed, a large increase in size was not observed in (b).

Fig. S4 SEM images of Li₂SiO₃ prepared by (a) 1^{st} and (b) 5^{th} CO₂ absorption at 650 °C in Fig. 4 and successive cooling in the CO₂/N₂ mixed gas with *P*(CO₂) of 0.10 bar. Cogenerated LiNaCO₃ was removed by immersing in dilute HNO₃.