Supporting Information

Inorganic-organic-hybrid $\mathbf{C u}$-dipyridyl semiconducting polymers based on redox-active cluster $\left[\mathrm{SFe}_{3}(\mathrm{CO}) 9\right]^{-}$: filling the gap in iron carbonyl chalcogenide polymers<br>Ming-Chi Hsu, ${ }^{a}$ Ru Yan Lin, ${ }^{a}$ Tzu-Yen Sun, ${ }^{a}$ Yu-Xin Huang, ${ }^{a}$ Min-Sian Li, ${ }^{a}$ Yu-Huei Li, ${ }^{a}$ Hui-Lung Chen* ${ }^{* b}$ and Minghuey Shieh*a<br>${ }^{a}$ Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 116325, Republic of China<br>${ }^{b}$ Department of Chemistry and Institute of Applied Chemistry, Chinese Culture University, Taipei 111396, Taiwan, Republic of China<br>*To whom all correspondence should be addressed. E-mail: mshieh@ntnu.edu.tw (M. Shieh); chl3@faculty.pccu.edu.tw (H.-L. Chen)

## Contents

Other experimental details ..... 1-4
Explanation for Checkcif alert of polymer 1-dpy-2D ..... 5
Fig. S1 PXRD patterns of 1-bpea-1D and 1-bpee-1D via three-component LAG synthesis.
Fig. S2 PXRD patterns of transformations between 1-bpea-1D and 1-bpea-2D. ..... 7
Fig. S3 PXRD patterns of transformations between 1-bpee-2D-1 and 1-bpee-2D- 3-MeCN. ..... 8
Fig. S4 PXRD patterns of transformations from 1-bpee-2D-2 to 1-bpee-2D-1 andto 1-bpee-2D-3-MeCN.
Fig. S5 ORTEP diagrams of 1-bpea-2D, 1-bpee-2D-1-MeCN, 1-bpee-2D-2, 1- bpee-2D-3•MeCN, 1-dpy-2D, and 1-dpy-1D.
Fig. S6 PXRD patterns of 1-dpy-2D, 1-dpy-1D, and 1-bpp-2D via three- component LAG synthesis.Fig. S7 Portions of polymeric frameworks of 1-dpy-2D and 1-dpy-1D.15
Fig. S8 Portions of the five-fold interpenetrated framework in polymer 1-dpy-2D. ..... 16
Fig. S9 PXRD patterns of transformations between 1-dpy-2D and 1-dpy-1D. ..... 17
Fig. S10 Topology analysis of 1-bpea-2D, 1-bpee-2D-1-MeCN, 1-bpee-2D-2, 1- ..... 18-19
bpee-2D-3•MeCN, and 1-dpy-2D.
Fig. S11 Packing diagrams of 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1- bpee-2D-3•MeCN, 1-dpy-1D, and 1-dpy-2D. ..... 20-22
Fig. $\mathbf{S 1 2}$ TGA spectra of the resultant polymers. ..... 23-24Fig. S13 Diffuse reflectance spectra of the resultant polymers.
Fig. S14 I-V curves for pressed pellets of the resultant polymers. ..... 27-2825-26
Fig. S15 XPS spectra of the resultant polymers. ..... 29-30
Fig. S16 XANES spectra of the resultant polymers. ..... 31-32
Fig. S17 DOS plots of 1-bpee-1D, 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, ..... 33-34
1-bpee-2D-3•MeCN, 1-dpy-2D, 1-dpy-1D, and 1-bpp-2D.
Fig. S 18 The pCOHP plots of selected $\mathrm{Cu}-\mathrm{N}, \mathrm{Cu}-\mathrm{S}, \mathrm{Cu}-\mathrm{Fe}$, and $\mathrm{Cu}-\mathrm{Cu}$ bonds. ..... 35-36
Fig. S19 Calculated band structures of 1-bpee-1D, 1-bpea-2D, 1-bpee-2D- 1-MeCN, 1-bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, 1-dpy-1D, and 1-bpp- ..... 37-38

2D.
Fig. S20 DPVs of 1-bpea-2D, 1-bpee-1D, 1-bpee-2D-3•MeCN, 1-bpee-2D-1, and 1-dpy-1D.
Table S1 Selected crystallographic data for 1-bpea-2D, 1-bpee-2D-1•MeCN, 1- bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, and 1-dpy-1D.
Table S2 Selected bond distances ( $\AA$ ) and bond angles (deg) for 1-bpea-2D, 1- bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, and 1-dpy-1D.Table S3 Detailed investigation of TGA spectra.47
Table S4 Contributions (\%) in PDOS for valence and conduction bands. ..... 48
References ..... 49

## Other experimental details

Synthesis of $\left[\left(\mu_{3}-\mathbf{S}\right) \mathrm{Fe}_{3}(\mathbf{C O}){ }_{9} \mathbf{C u}_{2}(\text { bpea })\right]_{n}$ (1-bpea-1D). A powder mixture of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}]$ (199 $\mathrm{mg}, 0.28 \mathrm{mmol}),[\mathrm{Cu}(\mathrm{MeCN}) 4]\left[\mathrm{BF}_{4}\right](177 \mathrm{mg}, 0.56 \mathrm{mmol})$, and bpea ( $52 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) was grounded with ca. $250 \mu \mathrm{~L}$ of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ in an agate mortar until the solvent had evaporated ( $\mathrm{v} / \mathrm{v}$ $=1 / 1$, two times, 30 min in total). The residue was washed with $\mathrm{H}_{2} \mathrm{O}$ to give the reddish product of 1-bpea-1D ( $211 \mathrm{mg}, 0.28 \mathrm{mmol} ; \sim 100 \%$ based on $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[1]$ ), in which the PXRD pattern matched the simulation generated from the X-ray data of $\left[\mathrm{TeFe}_{3}(\mathrm{CO}){ }_{9} \mathrm{Cu}_{2} \text { (bpea) }\right]_{n}$ (Fig. S1a). ${ }^{1}$ Elemental analysis calcd. for 1-bpea-1D: C, 33.06; H, 1.59; N, 3.67. Found: C, 32.78; H, 1.98; N, 3.75. IR (ATR): $v_{\mathrm{CO}}=2042$ (w), 1982 (m), 1943 (sh), 1874 (br), 1856 (sh) $\mathrm{cm}^{-1}$.

Synthesis of $\left[\left(\mu_{3}-\mathrm{S}\right) \mathrm{Fe}_{\mathbf{3}}(\mathbf{C O})_{9} \mathbf{C u}_{\mathbf{2}}(\text { bpee })\right]_{\boldsymbol{n}}$ (1-bpee-1D). The process used to synthesize $\mathbf{1 -}$ bpea-1D was applied to 1-bpee-1D, in which $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}]$ ( $200 \mathrm{mg}, 0.28 \mathrm{mmol}$ ), $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](177 \mathrm{mg}, 0.56 \mathrm{mmol})$, and bpee $(51 \mathrm{mg}, 0.28 \mathrm{mmol})$ were used. This LAG reaction was grounded with ca. $500 \mu \mathrm{~L}$ of THF (two times, 40 min in total) and then washed with $\mathrm{H}_{2} \mathrm{O}$ to give the reddish-brown product of 1-bpee-1D ( $186 \mathrm{mg}, 0.24 \mathrm{mmol} ; 87 \%$ based on $\left.\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[1]\right)$, in which the PXRD pattern matched the simulation generated from the X-ray data of $\left[\left(\mathrm{TeFe}_{3}(\mathrm{CO}){ }_{9} \mathrm{Cu}_{2} \text { (bpee) }\right]_{n}\right.$ (Fig. S1b). ${ }^{1}$ Elemental analysis calcd. for 1-bpee-1D: C, 33.50; H, 1.72; N, 3.63. Found: C, 33.14; H, 1.32; N, 3.68. IR (ATR): $v_{\mathrm{CO}}=2041$ (w), 1988 (vs), 1949 (m), 1938 (sh), 1915 (s), 1888 (sh), 1878 (s), 1859 (s) cm ${ }^{-1}$.

Synthesis of $\left[\left(\mu_{4}-S_{S}\right) \mathrm{Fe}_{3}(\mathbf{C O})_{9} \mathbf{C u}_{2}(\mathbf{M e C N})(\mathbf{d p y})_{1.5}\right]_{n}$ (1-dpy-2D). The process used to synthesize 1-bpea-1D was applied to $\mathbf{1 - d p y - 2 D}$, in which powder samples of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}]$ (199 $\mathrm{mg}, 0.28 \mathrm{mmol}),\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](177 \mathrm{mg}, 0.56 \mathrm{mmol})$, and dpy ( $66 \mathrm{mg}, 0.42 \mathrm{mmol}$ ) were used. This LAG reaction was ground with ca. $150 \mu \mathrm{~L}$ of MeCN and then washed with $\mathrm{H}_{2} \mathrm{O}$ to give the reddish sample of 1-dpy-2D ( $187 \mathrm{mg}, 0.22 \mathrm{mmol} ; 79 \%$ based on $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}]$ ), in which the PXRD pattern matched the simulation generated from the X-ray data of 1-dpy-2D (Fig. S6a). Elemental analysis calcd. for 1-dpy-2D: C, 36.56; H, 1.77; N, 6.56. Found: C, 36.61; H, 1.91; N, 6.64. IR (ATR): $v_{\mathrm{CO}}=2020(\mathrm{w}), 1972(\mathrm{sh}), 1934(\mathrm{~m}), 1916(\mathrm{~m}), 1907(\mathrm{~m}), 1874(\mathrm{~m})$, $1864(\mathrm{~m}), 1851(\mathrm{~s}) \mathrm{cm}^{-1}$. Crystals of 1-dpy-2D for X-ray diffraction were obtained from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeCN} / \mathrm{DMF}$ at $-30^{\circ} \mathrm{C}$.

Synthesis of $\left[\left(\mu_{3}-\mathbf{S}\right) \mathrm{Fe}_{3}(\mathbf{C O}){ }_{9} \mathbf{C u}_{2}(\mathbf{d p y})_{3}\right]_{n}$ (1-dpy-1D). The process used to synthesize 1-bpea1D was applied to 1-dpy-1D, in which $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}](200 \mathrm{mg}, 0.28 \mathrm{mmol}),\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$ $(177 \mathrm{mg}, 0.56 \mathrm{mmol})$, and dpy ( $132 \mathrm{mg}, 0.84 \mathrm{mmol}$ ) were used. This LAG reaction was grounded with ca. $500 \mu \mathrm{~L}$ of THF (two times, 30 min in total) and then washed with $\mathrm{H}_{2} \mathrm{O}$ to give the reddish product of $\mathbf{1 - d p y}-1 \mathbf{D}\left(289 \mathrm{mg}, 0.28 \mathrm{mmol} ; \sim 100 \%\right.$ based on $\left.\left[E t_{4} \mathrm{~N}\right]_{2}[\mathbf{1}]\right)$. The PXRD pattern matched the simulation generated from the X-ray data of 1-dpy-1D (Fig. S6b). Elemental analysis calcd. for 1-dpy-1D: C, 44.73; H, 2.31; N, 8.02. Found: C, 44.58; H, 2.57; N, 7.95. IR (ATR): $v_{\mathrm{CO}}=2013(\mathrm{vw}), 1957(\mathrm{vs}), 1905(\mathrm{w}), 1887(\mathrm{~m}), 1878(\mathrm{~s}), 1865(\mathrm{~s}) \mathrm{cm}^{-1}$. Crystals of 1-dpy-1D for X-ray diffraction were obtained from $\mathrm{MeOH} / \mathrm{MeCN} / \mathrm{DMF}$ at $4^{\circ} \mathrm{C}$.

Synthesis of $\left[\left(\boldsymbol{\mu}_{4}-\mathbf{S}\right) \mathrm{Fe}_{3}(\mathbf{C O})_{9} \mathbf{C u}_{\mathbf{2}}(\mathbf{b p p})_{2}\right]_{n}$ (1-bpp-2D). The process used to synthesize 1-bpea-1D was applied to 1-bpp-2D, in which $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}]$ ( $199 \mathrm{mg}, 0.28 \mathrm{mmol}$ ), $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](177 \mathrm{mg}, 0.56 \mathrm{mmol})$, and bpp ( $112 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) were used. This LAG reaction was grounded with ca. $400 \mu \mathrm{~L}$ of MeCN (three times, 90 min in total) and then washed with $\mathrm{H}_{2} \mathrm{O}$ to give the purple-red product 1-bpp-2D ( $236 \mathrm{mg}, 0.24 \mathrm{mmol} ; 86 \%$ based on $\left.\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{SFe}_{3}(\mathrm{CO})_{9}\right]\right)$, in which the PXRD pattern matched the simulation generated from the X-ray data of $\left[\left(\mathrm{SeFe}_{3}(\mathrm{CO}){ }_{9} \mathrm{Cu}_{2}(\mathrm{bpp})_{2}\right]_{n}\right.$ (Fig. S6c). ${ }^{2}$ Elemental analysis calcd. for 1-bpp-2D: C, 43.10; H, 2.89; N, 5.75. Found: C, 43.17; H, 2.99; N, 5.80. IR (ATR): $v_{\mathrm{CO}}=2012$ (w), 1943 (sh), 1919 (sh), 1904 (sh), 1861 (sh), 1839 (sh) cm ${ }^{-1}$.

Conversion of 1-bpee-2D-2 to 1-bpee-2D-1. The process used to convert 1-bpea-1D to 1-bpea-2D was applied to the transformation of 1-bpee-2D-2 to 1-bpee-2D-1, where 1-bpee-2D-2 ( $128 \mathrm{mg}, 0.11 \mathrm{mmol}$ based on $\left[\left(\mu_{5}-\mathrm{S}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\text { bpee })_{3}\right]$ unit), $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}](40.1 \mathrm{mg}$, $0.06 \mathrm{mmol})$, and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](35.6 \mathrm{mg}, 0.11 \mathrm{mmol})$ were used. This LAG reaction was grounded with ca. $500 \mu \mathrm{~L}$ of MeCN (six times, 75 min in total) and then washed with $\mathrm{H}_{2} \mathrm{O}$ to give reddish-brown product of 1-bpee-2D-1•MeCN $\left(147 \mathrm{mg}, 0.16 \mathrm{mmol}\right.$ based on [ $\mu_{5}$ S) $\mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}$ (bpee) $)_{2}$ ] unit; 94\%) with the consistent PXRD pattern from as-synthesized 1-bpee-2D-1•MeCN (Fig. S4a).

Conversion of 1-bpee-2D-2 to 1-bpee-2D-3-MeCN. The process used to convert 1-bpea-1D to 1-bpea-2D was applied to the transformation of 1-bpee-2D-2 to 1-bpee-2D-3-MeCN, where 1-bpee-2D-2 ( $135 \mathrm{mg}, 0.12 \mathrm{mmol}$ based on $\left[\left(\mu_{5}-\mathrm{S}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\text { bpee })_{3}\right]$ unit) and bpee ( 11.0 $\mathrm{mg}, 0.60 \mathrm{mmol}$ ) were used. This LAG reaction was grounded with ca. $500 \mu \mathrm{~L}$ of MeCN (four times, 60 min in total) to give 1-bpee-2D-3-MeCN in quantitative yield with the consistent PXRD pattern from the X-ray data of 1-bpee-2D-3-MeCN (Fig. S4b).

Conversion of 1-dpy-2D to 1-dpy-1D. The process used to convert 1-bpea-1D to 1-bpea-2D was applied to the conversion of 1-dpy-2D to 1-dpy-1D, where 1-dpy-2D ( $130 \mathrm{mg}, 0.15 \mathrm{mmol}$ based on $\left[\left(\mu_{4}-\mathrm{S}\right) \mathrm{Fe}_{3}(\mathrm{CO}){ }_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})(\mathrm{dpy})_{1.5}\right]$ unit) and dpy ( $36 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) were used. The LAG reaction was grounded with ca. $100 \mu \mathrm{~L}$ of THF (two times, 15 min in total) to give the reddish-brown 1-dpy-1D ( $\sim 100 \%$ ), in which the PXRD pattern matched the simulation generated from the X-ray data of 1-dpy-1D (Fig. S9a).

Conversion of 1-dpy-1D to 1-dpy-2D. The process used to convert 1-bpea-2D to 1-bpea-1D was applied to the conversion of 1-dpy-1D to 1-dpy-2D, where 1-dpy-1D ( $104 \mathrm{mg}, 0.10 \mathrm{mmol}$ based on $\left[\left(\mu_{3}-\mathrm{S}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{dpy})_{3}\right]$ unit) $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}[\mathbf{1}](68 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](60 \mathrm{mg}, 0.19 \mathrm{mmol})$ were used. This LAG reaction was grounded with ca. $200 \mu \mathrm{~L}$ of MeCN (two times, 50 min in total) and then washed with $\mathrm{H}_{2} \mathrm{O}$ to give reddish-brown 1-dpy-2D ( $165 \mathrm{mg}, 0.19 \mathrm{mmol}$ based on $\left[\mathrm{SFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})(\mathrm{dpy})_{1.5}\right]$ unit; $95 \%$ ), in which the PXRD pattern matched the simulation generated from the X-ray data of 1-dpy-2D (Fig. S9b).

X-ray Structural Characterization of 1-dpy-2D, 1-dpy-1D, 1-bpea-2D, 1-bpee-2D-1-MeCN, 1-bpee-2D-2, and 1-bpee-2D-3•MeCN. Selected crystallographic data for 1-dpy2D, 1-dpy-1D, 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, and 1-bpee-2D-3•MeCN are given in Table S 1 . All crystals were mounted on glass fibers with epoxy cement. Data collection for 1-dpy-2D and 1-dpy-1D were performed on a Bruker Apex II CCD diffractometer, while 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, and 1-bpee-2D-3•MeCN were performed on a Bruker D8 Venture diffractometer, using the graphite-monochromated Moка radiation. An empirical absorption correction by the multi-scan method was applied to the data using SADABS. ${ }^{3}$ The structures were solved by direct methods and were refined with SHELXL2014. ${ }^{4}$ For 1-bpee-2D-3, the $\mathrm{C}=\mathrm{C}$ group of bpee, C 15 and C 15 ' as well as C 16 and C 16 ' were disordered and presented in a 50: 50 ratio. For 1-bpea-2D, Fe atoms, Fe 1 and $\mathrm{Fe} 1^{\prime}, \mathrm{Fe} 2$ and $\mathrm{Fe}^{\prime}$, and Fe 3 and $\mathrm{Fe} 3^{\prime}$, were disordered and presented in a 90: 10 ratio, and the carbonyls, C 5 and C5', O5 and O5', C6 and C6', and O6 and O6', were disordered and presented in a 71: 29 ratio. The selected distances and angles for 1-dpy-2D, 1-dpy-1D, 1-bpea-2D, 1-bpee-2D$\mathbf{1} \cdot \mathbf{M e C N}, \mathbf{1 - b p e e - 2 D}-2$, and 1-bpee-2D-3•MeCN are listed in Table S2.

Computational Details. Density functional theory (DFT) calculations reported in this study were performed via the periodic code of $\mathrm{DMol}^{3} 6.0$ package ${ }^{5}$ with the general gradient approximation (GGA) plus the Perdew-Burke-Ernzerhof (PBE) functional ${ }^{6}$ and dispersion (DFT-D) calculations. ${ }^{7}$ Effective core potentials (ECP) ${ }^{8}$ and a DND basis set were used in the calculations. The geometries of 1-dpy-2D, 1-dpy-1D, 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, and 1-bpee-2D-3-MeCN were taken from single-crystal X-ray diffraction data, and periodic structures of 1-bpp-2D and 1-bpee-1D were optimized by $\mathrm{DMol}^{3}$ calculation with PBE using TS method for DFT-D calculation. The state densities, crystal orbital Hamilton population, and band structures were performed on the whole crystal unit cell. The disordered part of 1-bpea-2D with small occupancy was omitted to avoid wrong calculation results. The self-consistent-field calculations were performed with a convergence criterion $10^{-5}$ a.u. on the total energy. The global real space cutoff radius was $4.6 \AA$.

UV-visible Diffuse Reflectance Spectroscopy. The diffuse reflectance spectra of solid samples of all polymers were measured between $200-2500 \mathrm{~nm}$ for the $100 \%$ reflectance reference, poly(tetrafluoroethylene), by using a Varian Cary 5000 UV-vis-NIR spectrophotometer and the room temperature optical absorption spectra of those solid compounds were obtained from diffuse reflectance experiment. The reflectance spectrum was converted to absorption using the Kubelka-Munk function, $\mathrm{F}=(1-\mathrm{R})^{2} / 2 \mathrm{R}$. ${ }^{9}$ The energy gap was determined in the F -versus-E plot by extrapolating the linear portion of the starting rising curve to zero, which provided the onset of absorption.

X-ray Photoelectron Spectroscopy. High-resolution X-ray photoelectron spectroscopy (XPS) was performed using a PHI Quantera SXM/AES 650 auger electron spectrometer (ULVAC-

PHI Inc., Japan) equipped with a monochromated $\mathrm{Al} \mathrm{K} \alpha(\mathrm{h} \nu=1486.6 \mathrm{eV})$ X-ray source. The samples of all polymers were deposited on a piece of conductive carbon tape, respectively. The spectra were analyzed using XPSPEAK (version 4.1) software, and the binding energy was standardized using a C 1 s peak at 284.8 eV .

X-ray Absorption Near-Edge Spectroscopy. Our study recorded X-ray absorption spectra on beamlines 17C of the National Synchrotron Radiation Research Center (NSRRC) in Taiwan with a double-crystal $\mathrm{Si}(111)$ monochromator. The Cu K-edge spectra of all polymers were measured in transmission mode along with a reference Cu foil. Data processing and analysis were performed using the Demeter software package (version 0.9.21). ${ }^{10} \mathrm{~A}$ linear pre-edge and a linear post-edge were subtracted, and then the data were normalized by the edge height using Athena software.

Electrical Conductivity Measurements. Pressed pellets of all polymers were made by the hand-held press in the glove bag under nitrogen. A dry glass slide was used to hold the samples, and Ag paste was used to attach the two sides of the pressed pellet to the slide. The slide was then mounted onto the chuck of the probe station, and the tungsten tips were placed in the device in vacuo. The two-contact probe method was applied, and the $I-V$ curve was obtained on a computer-controlled potentiostat (Jiehan, ECW-5000 electrochemical workstation) by supplying a voltage from -2 to 2 V (step size 0.05 V ). The $I-V$ curves for all samples were fitted by linear regression. A micrometer was used to measure the length $(L)$, width $(W)$, and thickness $(T)$ of the samples. The electrical conductivity $(\sigma)$ of all samples was calculated based on eq 1 .

$$
\begin{equation*}
\sigma=G \times \frac{L}{A}=\frac{I}{V} \times \frac{L}{W \times T} \tag{1}
\end{equation*}
$$

Solid-state Electrochemistry. The DPV measurements were recorded using a CHI 621D electrochemical potentiostat under a nitrogen atmosphere. The three-electrode system, including homemade glass carbon working electrode, platinum wire auxiliary electrode, and nonaqueous $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode was used, with tetra- $n$-butylammonium perchlorate $\left(10^{-3} \mathrm{M}\right)$ chosen as the electrolyte and redox potentials were referred to the ferrocenium/ferrocene $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)$ couple ( +0.382 V vs MeCN , SCE). The homemade working electrode was manufactured from the grounded powdered sample (ca. 50 mg ) mixed with 1.5 mL of Nafion entirely by ultrasonication for 1 minute. The resulting slurry was drop-coated onto the glassy carbon electrode to form a thin layer and dried in air for 10 minutes. Only the scan range of $-0.4 \sim+0.4 \mathrm{~V}$ was analyzed due to the ease of decomposition of polymeric frameworks during the reduction process and significant interference peaks for dipyridyl ligands at $-0.8 \sim-0.6 \mathrm{~V}$. The electron stoichiometry for the DPV study was determined by analyzing the peak width at half-height $\left(\mathrm{W}_{1 / 2}\right) .{ }^{11}$ Some values for the redox peaks were slightly larger than $\mathrm{W}_{1 / 2}=90 \mathrm{mV}$, which was expected for a quasi-reversible one-electron redox reaction. ${ }^{12}$

## Explanation for Checkcif alert of polymer 1-dpy-2D:

```
O Alert level B
PLAT430_ALERT_2_B Short Inter D...A Contact 05 ..05 . 2.70 Ang.
1-x,-y,1-z = 3_656 Check
```

Explanation: The 2D planes of 1-dpy-2D were closely packed which led to the short intermolecular distance between carbonyl ligands.

Fig. S1 PXRD pattern of the as-synthesized (a) 1-bpea-1D (black line) and simulated pattern for $\left[\mathrm{TeFe}_{3}(\mathrm{CO}){ }_{9} \mathrm{Cu}_{2}(\text { bpea) }]_{n}\right.$ (red line) (b) 1-bpee-1D (black line) and simulated pattern for $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\text { bpee })\right]_{n}$ (red line). ${ }^{1}$
(a)

(b)


Fig. S2 PXRD patterns of the transformation of (a) 1-bpea-1D to 1-bpea-2D (black line) and simulated pattern for 1-bpea-2D (red line) and (b) 1-bpea-2D to 1-bpea-1D (black line) and simulated pattern for $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\text { bpea })\right]_{n}(\text { red line })^{1}$.
(a)

(b)


Fig. S3 PXRD patterns of the transformation of (a) 1-bpee-2D-1 to 1-bpee-2D-3•MeCN (black line) and simulated pattern for 1-bpee-2D-3•MeCN (red line) and (b) 1-bpee-2D-3•MeCN to 1-bpee-2D-1 (black line) and as-synthesized pattern for 1-bpee-2D-1 (red line).
(a)

(b)



Fig. S4 PXRD patterns of the transformation of (a) 1-bpee-2D-2 to 1-bpee-2D-1 (black line) and as-synthesized pattern for 1-bpee-2D-1 (red line) and (b) 1-bpee-2D-2 to 1-bpee-2D3•MeCN (black line) and simulated pattern for 1-bpee-2D-3•MeCN (red line).
(a)

(b)


Fig. S5 ORTEP diagrams showing the structure and atom labeling for 1-bpea-2D, 1-bpee-2D-1-MeCN, 1-bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, and 1-dpy-1D, (30\% thermal ellipsoids). The labels for the carbon atoms are not shown for clarity.

1-bpea-2D


1-bpee-2D-1•MeCN (MeCN molecules were omitted)


1-bpee-2D-2


1-bpee-2D-3•MeCN (MeCN molecules were omitted)


C15: 50\%; C15': 50\%
C16: 50\%; C16': 50\%
H15: 50\%; H15': 50\%
H16: 50\%; H16': 50\%


1-dpy-1D


Fig. S6 PXRD pattern of the as-synthesized (a) 1-dpy-2D (black line) and simulated pattern for 1-dpy-2D (red line), (b) 1-dpy-1D (black line) and simulated pattern for 1-dpy-1D (red line), and (c) 1-bpp-2D (black line) and simulated pattern for $\left[\mathrm{SeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{bpp})_{2}\right]_{n}$ (red line). ${ }^{2}$
(a)

(b)


## (c)



Fig. S7 Portions of polymeric frameworks of (a) 1-dpy-2D and (b) 1-dpy-1D. CO and H atoms were omitted for clarity.
(a)

(b)


Fig. S8 The 5-fold interpenetrated 3D polymer 1-dpy-2D in the solid-state structure. CO and H atoms were omitted for the sake of clarity.


Fig. S9 Powder X-ray diffraction patterns of the transformation of (a) 1-dpy-2D to 1-dpy-1D (black line) and simulated pattern for 1-dpy-1D (red line) and (b) 1-dpy-1D to 1-dpy-2D (black line) and simulated pattern for 1-dpy-2D (red line).
(a)

(b)



Fig. S10 Topology analysis of 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3-MeCN, and 1-dpy-2D.


1-bpee-2D-2


1-bpee-2D-3•MeCN (disordered atoms were omitted)


| 1-dpy-2D |
| :---: |
| hcb |



Fig. S11 Packing diagrams of 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3-MeCN, 1-dpy-2D, and 1-dpy-1D, with broken green lines and yellow lines represented as $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) hydrogen bonds between COs of $\mathrm{SFe}_{3} \mathrm{Cu}$-based clusters and aromatic $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

## 1-bpea-2D



1-bpee-2D-1•MeCN



1-bpee-2D-3•MeCN (disordered atoms were omitted)


1-dpy-2D


Fig. $\mathbf{S 1 2}$ TGA spectra of all synthesized $\mathrm{S}-\mathrm{Fe}-\mathrm{Cu}-\mathrm{CO}$ polymers.
1-bpee-1D
(-bpea-2D
(1-dpy-2D

Fig. S13 Diffuse reflectance spectra of all synthesized $\mathrm{S}-\mathrm{Fe}-\mathrm{Cu}-\mathrm{CO}$ polymers.




## 1-bpee-2D-2

(Energy gap: 1.75 eV )

## 1-bpee-2D-3•MeCN

(Energy gap: 1.64 eV )


1-bpp-2D
(Energy gap: 1.58 eV )


Fig. S14 I-V curves of pressed pellets (length $(\mathrm{L}) \times$ width $(\mathrm{W}) \times$ thickness $(\mathrm{T})$ ) of all synthesized $\mathrm{S}-\mathrm{Fe}-\mathrm{Cu}$ polymers by two-contact probe method at room temperature, in the dark and vacuo.


## 1-bpee-2D-2

$$
0.30 \times 0.18 \times 0.0320(\mathrm{~cm})
$$

## 1-bpee-2D-3•MeCN

$0.12 \times 0.17 \times 0.0223(\mathrm{~cm})$

$$
\sigma=3.26 \times 10^{-8} \mathrm{~S} / \mathrm{cm}
$$ $\sigma=1.10 \times 10^{-7} \mathrm{~S} / \mathrm{cm}$




1-dpy-2D

$$
0.40 \times 0.21 \times 0.0148(\mathrm{~cm})
$$

1-dpy-1D
$0.23 \times 0.20 \times 0.0265(\mathrm{~cm})$
$\sigma=1.05 \times 10^{-7} \mathrm{~S} / \mathrm{cm}$
$\sigma=8.05 \times 10^{-8} \mathrm{~S} / \mathrm{cm}$



## 1-bpp-2D



Fig. S15 Experimental (black) and simulated (red) XPS focusing on the $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$ region of all synthesized $\mathrm{S}-\mathrm{Fe}-\mathrm{Cu}-\mathrm{CO}$ polymers.



Binding energy (ev)
1-bpee-2D-2
$\left(\mathrm{Cu} 2 \mathrm{p}_{3 / 2}: 932.03 \mathrm{eV}\right)$
1-bpee-2D-3•MeCN
( $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}: 931.75 \mathrm{eV}$ )


1-dpy-2D
$\left(\mathrm{Cu} 2 \mathrm{p}_{3 / 2}: 932.62 \mathrm{eV}\right)$

## 1-dpy-1D

( $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}: 932.60 \mathrm{eV}$ )



1-bpp-2D
$\left(\mathrm{Cu} 2 \mathrm{p}_{3 / 2}: 932.50 \mathrm{eV}\right)$


Fig. S16 XANES of all synthesized $\mathrm{S}-\mathrm{Fe}-\mathrm{Cu}-\mathrm{CO}$ polymers focusing on Cu K -edge energies.

## 1-bpea-1D

(K-edge energy: 8979.73 eV )

1-bpee-1D
(K-edge energy: 8979.76 eV )


1-bpea-2D
(K-edge energy: 8979.56 eV )


1-bpee-2D-1
(K-edge energy: 8979.00 eV )


## 1-bpee-2D-2

(K-edge energy: 8979.29 eV )

(K-edge energy: 8979.33 eV )

1-dpy-2D
(K-edge energy: 8979.50 eV )


1-bpp-2D
(K-edge energy: 8979.99 eV )


Fig. S17 DOS plots of 1-bpee-1D, 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3-MeCN, 1-dpy-2D, 1-dpy-1D, and 1-bpp-2D. Total density of states (DOS) (black line) and partial density of states (PDOS) (red line, $\mathrm{SFe}_{3}(\mathrm{CO})_{9}$ groups; pink line, dipyridyl ligands; navy line, Cu nodes; orange line, CO ; olive line, MeCN ) with the Fermi level set as zero.

| 1-bpee-1D | 1-bpea-2D |
| :---: | :---: |
|  |  |
| -20 -15 -10 -5 0 5 <br>   Energy (eV)    | -15 -10 -5 0 5 <br>   Energy (eV)   |

## 1-bpee-2D-1-MeCN

1-bpee-2D-2



1-bpee-2D-3•MeCN
1-dpy-2D



1-dpy-1D
1-bpp-2D



Fig. S18 Projected COHP (pCOHP) plots of selected $\mathrm{Cu}-\mathrm{N}, \mathrm{Cu}-\mathrm{S}, \mathrm{Cu}-\mathrm{Fe}$, and $\mathrm{Cu}-\mathrm{Cu}$ bonds in polymers 1-bpee-1D, 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, 1-dpy-1D, and 1-bpp-2D. The average integrated pCOHP (ICOHP) values were shown in brackets.
(

1-bpee-2D-2



1-bpee-2D-3•MeCN
1-dpy-2D





Fig. S19 Calculated band structures of 1-bpee-1D, 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3-MeCN, 1-dpy-2D, 1-dpy-1D, and 1-bpp-2D, with the Fermi level set as zero.




Fig. S20 DPV measurement of 1-bpea-2D, 1-bpee-1D, 1-bpee-2D-3•MeCN, 1-bpee-2D-1, and 1-dpy-1D with the corresponding potentials versus a saturated calomel electrode (SCE) are given. Electrolyte, $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{ClO}_{4}$; working electrode, glassy carbon; scan rate, $100 \mathrm{mV} \mathrm{s}^{-1}$.


Table S1 Selected crystallographic data for 1-bpea-2D, 1-bpee-2D-1•MeCN, 1-bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, and 1-dpy-1D.

|  | 1-bpea-2D | 1-bpee-2D-1•MeCN | 1-bpee-2D-2 |
| :---: | :---: | :---: | :---: |
| empirical formula | $\mathrm{C}_{132} \mathrm{H}_{96} \mathrm{Cu}_{8} \mathrm{Fe}_{12} \mathrm{~N}_{16} \mathrm{O}_{36} \mathrm{~S}_{4}$ | $\mathrm{C}_{70} \mathrm{H}_{46} \mathrm{Cu}_{4} \mathrm{Fe}_{6} \mathrm{~N}_{10} \mathrm{O}_{18} \mathrm{~S}_{2}$ | $\mathrm{C}_{90} \mathrm{H}_{60} \mathrm{Cu}_{4} \mathrm{Fe}_{6} \mathrm{~N}_{12} \mathrm{O}_{18} \mathrm{~S}_{2}$ |
| formula weight | 3789.00 | 1968.55 | 2250.88 |
| crystal system | monoclinic | monoclinic | triclinic |
| space group | $P 2_{1} / \mathrm{c}$ | C2/c | $P_{1}$ |
| crystal dimensions, mm | $0.13 \times 0.12 \times 0.20$ | $0.13 \times 0.10 \times 0.04$ | $0.26 \times 0.14 \times 0.10$ |
| $a, \AA$ | $32.1519(9)$ | 10.1738(6) | 11.7021(4) |
| $b, \AA$ | 11.8405(3) | 22.244(1) | 12.1401(4) |
| $c, \AA$ | 19.0752(6) | 39.699(2) | 19.7195(7) |
| $\alpha$, deg |  |  | 102.299(1) |
| $\beta$, deg | 94.033(1) | 91.936(2) | 91.349(1) |
| $\gamma, \operatorname{deg}$ |  |  | 107.867(1) |
| $V, \AA^{3}$ | 7243.8(4) | 8979.1(9) | 2593.2(2) |
| Z | 2 | 4 | 1 |
| $D$ (calc), $\mathrm{g} \mathrm{cm}^{-3}$ |  | 1.456 | 1.441 |
| $\mu, \mathrm{mm}^{-1}$ | 2.444 | 1.975 | 1.721 |
| color, habit | black, prism | black, prism | Brown, prism |
| diffractometer | D8 Venture | D8 Venture | D8 Venture |
| radiation ( $\lambda$ ), $\AA$ A | 0.71073 | 0.71073 | 0.71073 |
| temperature, K | 200(2) | 200(2) | 200(2) |
| $\theta$ range for data collection, deg | 2.275/25.036 | 2.202/22.546 | 2.267/25.076 |
| $T_{\text {min }} / T_{\text {max }}$ | 0.742/0.953 | 0.783/0.925 | 0.663/0.847 |
| no. of independent reflections $(I>2 \sigma(I))$ | $10461\left(\mathrm{R}_{\text {int }}=0.0593\right)$ | $4516\left(\mathrm{R}_{\text {int }}=0.1046\right)$ | $7909\left(\mathrm{R}_{\text {int }}=0.0404\right)$ |
| no. of parameters | 961 | 528 | 589 |
| goodness of fit | 1.029 | 1.074 | 1.041 |
| $\mathrm{R} 1^{a} / \mathrm{wR}^{a}{ }^{( }(\mathrm{I}>2 \sigma(I))$ | 0.0395/0.0898 | 0.0707/0.1759 | 0.0299/0.0658 |
| $\mathrm{R} 1^{a} / \mathrm{wR}^{a}{ }^{a}$ (all data) | 0.0548/0.0992 | 0.1400/0.2136 | 0.0385/0.0697 |


|  | 1-bpee-2D-3-MeCN | 1-dpy-2D | 1-dpy-1D |
| :---: | :---: | :---: | :---: |
| empirical formula | $\mathrm{C}_{106} \mathrm{H}_{76} \mathrm{Cu}_{4} \mathrm{Fe}_{6} \mathrm{~N}_{16} \mathrm{O}_{18} \mathrm{~S}_{2} \mathrm{C}_{52} \mathrm{H}_{30} \mathrm{Cu}_{4} \mathrm{Fe}_{6} \mathrm{~N}_{8} \mathrm{O}_{18} \mathrm{~S}_{2} \mathrm{C}_{78} \mathrm{H}_{48} \mathrm{Cu}_{4} \mathrm{Fe}_{6} \mathrm{~N}_{12} \mathrm{O}_{18} \mathrm{~S}_{2}$ |  |  |
| formula weight | 2515.20 | 1708.22 | 2094.66 |
| crystal system | triclinic | monoclinic | orthorhombic |
| space group | $P_{1}$ | $P 2{ }_{1} / n$ | Pcab |
| crystal dimensions, mm | $0.20 \times 0.07 \times 0.03$ | $0.21 \times 0.15 \times 0.08$ | $0.30 \times 0.25 \times 0.08$ |
| $a, \AA$ | 12.1657(5) | 9.9853(8) | 19.8904(3) |
| $b, \AA$ | 12.5737(5) | 18.375(1) | 17.0117(3) |
| $c, \AA$ | 18.2632(8) | 16.701(1) | 23.7088(3) |
| $\alpha$, deg | 87.707(1) |  |  |
| $\beta$, deg | 85.287(1) | 92.858(4) |  |
| $\gamma, \operatorname{deg}$ | 69.397(1) |  |  |
| $V, \AA^{3}$ | 2606.0(2) | 3060.4(4) | 8022.3(2) |
| $Z$ | 1 | 2 | 4 |
| $D$ (calc), $\mathrm{g} \mathrm{cm}^{-3}$ | 1.603 | 1.854 | 1.734 |
| $\mu, \mathrm{mm}^{-1}$ | 1.723 | 2.881 | 2.217 |
| color, habit | brown (dark), prism | black, prism | black, prism |
| diffractometer | D8 Venture | Bruker APEX2 | Bruker APEX2 |
| radiation ( $\lambda$ ), Å | 0.71073 | 0.71073 | 0.71073 |
| temperature, K | 200(2) | 296(2) | 200(2) |
| $\theta$ range for data collection, deg | 2.23/24.99 | 2.217/24.792 | 2.331/24.794 |
| $T_{\text {min }} / T_{\text {max }}$ | 0.794/0.950 | 0.583/0.802 | 0.556/0.843 |
| no. of independent reflections $(I>2 \sigma(I))$ | $7224\left(\mathrm{R}_{\mathrm{int}}=0.0466\right)$ | $4102\left(\mathrm{R}_{\mathrm{int}}=0.0307\right)$ | $5242\left(\mathrm{R}_{\text {int }}=0.0519\right)$ |
| no. of parameters | 694 | 401 | 541 |
| goodness of fit | 1.174 | 1.146 | 1.014 |
| $\mathrm{R} 1^{a} / \mathrm{wR} 2^{a}(I>2 \sigma(I))$ | 0.0320/0.0664 | 0.0343/0.0845 | 0.0299/0.0639 |
| $\mathrm{R} 1^{a} / \mathrm{wR}^{( }{ }^{a}$ (all data) | 0.0543/0.0812 | 0.0551/0.1029 | 0.0511/0.0714 |

Table S2 Selected bond distances ( $\AA$ ) and bond angles (deg) for 1-bpea-2D, 1-bpee-2D-1-MeCN, 1-bpee-2D-2, 1-bpee-2D-3•MeCN, 1-dpy-2D, and 1-dpy-1D.

| 1-bpea-2D |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)$ | 2.5278(8) | $\mathrm{Fe}(3)-\mathrm{S}(1)$ | 2.202(1) |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | 2.5364(9) | $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{S}(1)$ | 2.113(6) |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(1^{\prime}\right)$ | 2.548(6) | $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)$ | $2.639(8)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | 2.5527(9) | $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)$ | 2.664(8) |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(3^{\prime}\right)$ | $2.576(6)$ | $\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{S}(1)$ | 2.232(6) |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(2^{\prime}\right)$ | 2.610(6) | $\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)$ | $2.637(8)$ |
| $\mathrm{Cu}(2)-\mathrm{S}(1)$ | 2.343 (1) | $\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{S}(1)$ | 2.155(6) |
| $\mathrm{Cu}(3)-\mathrm{S}(2)$ | 2.282(1) | $\mathrm{Fe}(4)-\mathrm{S}(2)$ | 2.195(1) |
| $\mathrm{Cu}(4)-\mathrm{Fe}(5)$ | 2.468(8) | $\mathrm{Fe}(4)-\mathrm{Fe}(6)$ | $2.6356(8)$ |
| $\mathrm{Cu}(4)-\mathrm{Fe}(6)$ | 2.5362(8) | $\mathrm{Fe}(4)-\mathrm{Fe}(5)$ | 2.6579(8) |
| $\mathrm{Cu}(4)-\mathrm{Fe}(4)$ | 2.6072(8) | $\mathrm{Fe}(5)-\mathrm{S}(2)$ | 2.183(1) |
| $\mathrm{Fe}(1)-\mathrm{S}(1)$ | 2.193(1) | $\mathrm{Fe}(5)-\mathrm{Fe}$ (6) | 2.6542(8) |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 2.6371(9) | $\mathrm{Fe}(6)-\mathrm{S}(2)$ | 2.193(1) |
| $\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | 2.6418(9) | $\mathrm{S}(1)-\mathrm{Cu}(2)$ | 2.344(1) |
| $\mathrm{Fe}(2)-\mathrm{S}(1)$ | 2.183(1) | $\mathrm{S}(2)-\mathrm{Cu}(3)$ | 2.282(1) |
| $\mathrm{Fe}(2)-\mathrm{Fe}$ (3) | 2.6309(9) |  |  |
| $\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | 62.76(2) | $\mathrm{S}(1)-\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)$ | 54.4(2) |
| $\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | 62.66(2) | $\mathrm{Cu}(1)-\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)$ | 60.1(2) |
| $\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | 62.26(2) | $\mathrm{S}(1)-\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)$ | 51.1 (2) |
| $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Fe}\left(3^{\prime}\right)$ | 62.0(2) | $\mathrm{Cu}(1)-\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)$ | 58.5(2) |
| $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Fe}\left(2^{\prime}\right)$ | 62.2(2) | $\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)$ | 60.7(2) |
| $\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{Fe}\left(2^{\prime}\right)$ | 61.1(2) | $\mathrm{S}(2)-\mathrm{Fe}(4)-\mathrm{Cu}(4)$ | 96.36(4) |
| $\mathrm{Fe}(5)-\mathrm{Cu}(4)-\mathrm{Fe}(6)$ | 64.05(2) | $\mathrm{S}(2)-\mathrm{Fe}(4)-\mathrm{Fe}$ (6) | 53.04(3) |
| $\mathrm{Fe}(5)-\mathrm{Cu}(4)-\mathrm{Fe}(4)$ | 63.10(2) | $\mathrm{Cu}(4)-\mathrm{Fe}(4)-\mathrm{Fe}(6)$ | 57.86(2) |
| $\mathrm{Fe}(6)-\mathrm{Cu}(4)-\mathrm{Fe}(4)$ | 61.63(2) | $\mathrm{S}(2)-\mathrm{Fe}(4)-\mathrm{Fe}(5)$ | 52.40(3) |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | 99.52(4) | $\mathrm{Cu}(4)-\mathrm{Fe}(4)-\mathrm{Fe}(5)$ | 55.89(2) |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 52.76(3) | $\mathrm{Fe}(6)-\mathrm{Fe}(4)-\mathrm{Fe}(5)$ | 60.19(2) |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | 58.78(2) | $\mathrm{S} 2(1)-\mathrm{Fe}(5)-\mathrm{Cu}(4)$ | 100.88(4) |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | 53.22(3) | $\mathrm{S}(2)-\mathrm{Fe}(5)-\mathrm{Fe}$ (6) | 52.82(3) |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | 59.13(2) | $\mathrm{Cu}(4)-\mathrm{Fe}(5)-\mathrm{Fe}(6)$ | 59.23(2) |
| $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | 59.78(3) | $\mathrm{S}(2)-\mathrm{Fe}(5)-\mathrm{Fe}(4)$ | 52.84(3) |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$ | 99.54(4) | $\mathrm{Cu}(4)-\mathrm{Fe}(5)-\mathrm{Fe}(4)$ | 61.02(2) |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | 53.48(3) | $\mathrm{Fe}(6)-\mathrm{Fe}(5)-\mathrm{Fe}(4)$ | 59.49(2) |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | 59.18(2) | $\mathrm{S}(2)-\mathrm{Fe}(6)-\mathrm{Cu}(4)$ | 98.51(4) |


| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $53.12(3)$ | $\mathrm{S}(2)-\mathrm{Fe}(6)-\mathrm{Fe}(4)$ | $53.13(3)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $58.46(2)$ | $\mathrm{S}(2)-\mathrm{Fe}(6)-\mathrm{Fe}(5)$ | $52.48(3)$ |
| $\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $60.20(2)$ | $\mathrm{Cu}(4)-\mathrm{Fe}(6)-\mathrm{Fe}(5)$ | $56.72(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(1)$ | $98.52(4)$ | $\mathrm{Fe}(4)-\mathrm{Fe}(6)-\mathrm{Fe}(5)$ | $60.32(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $52.79(3)$ | $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{S}(1)-\mathrm{Fe}\left(3^{\prime}\right)$ | $76.4(2)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $58.57(2)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $74.12(4)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $52.89(3)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(3)$ | $73.73(4)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $58.21(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(3)$ | $73.89(4)$ |
| $\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $60.02(3)$ | $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{S}(1)-\mathrm{Fe}\left(2^{\prime}\right)$ | $75.6(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Cu}(1)$ | $101.1(2)$ | $\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{S}(1)-\mathrm{Fe}\left(2^{\prime}\right)$ | $73.9(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)$ | $52.5(2)$ | $\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $130.7(2)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)$ | $59.5(2)$ | $\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $141.2(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)$ | $54.2(2)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $139.51(5)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)$ | $60.1(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $129.87(5)$ |
| $\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)$ | $59.6(2)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(3)$ | $138.21(5)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Cu}(1)$ | $96.1(2)$ | $\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $133.2(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)$ | $51.7(2)$ | $\mathrm{Fe}(5)-\mathrm{S}(2)-\mathrm{Fe}(6)$ | $74.69(4)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(3^{\prime}\right)$ | $58.8(2)$ | $\mathrm{Fe}(5)-\mathrm{S}(2)-\mathrm{Fe}(4)$ | $74.76(4)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)$ | $50.2(2)$ | $\mathrm{Fe}(6)-\mathrm{S}(2)-\mathrm{Fe}(4)$ | $73.83(4)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)$ | $57.8(2)$ | $\mathrm{Fe}(5)-\mathrm{S}(2)-\mathrm{Cu}(3)$ | $142.96(5)$ |
| $\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Fe}\left(2^{\prime}\right)-\mathrm{Fe}\left(1^{\prime}\right)$ | $59.7(2)$ | $\mathrm{Fe}(6)-\mathrm{S}(2)-\mathrm{Cu}(3)$ | $133.20(5)$ |
| $\mathrm{S}(1)-\mathrm{Fe}\left(3^{\prime}\right)-\mathrm{Cu}(1)$ | $99.1(2)$ | $\mathrm{Fe}(4)-\mathrm{S}(2)-\mathrm{Cu}(3)$ | $130.09(5)$ |

## 1-bpee-2D-1-MeCN

| $\mathrm{Cu}(1)-\mathrm{S}(1)$ | $2.246(3)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.593(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)$ | $2.614(2)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $2.602(2)$ |
| $\mathrm{Cu}(2)-\mathrm{S}(1)$ | $2.335(3)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)$ | $2.220(3)$ |
| $\mathrm{Cu}(2)-\mathrm{Fe}(2)$ | $2.589(2)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $2.596(2)$ |
| $\mathrm{Fe}(1)-\mathrm{S}(1)$ | $2.240(3)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)$ | $2.184(2)$ |
|  |  |  |  |
| $\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(1)$ | $54.25(6)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $54.53(7)$ |
| $\mathrm{S}(1)-\mathrm{Cu}(2)-\mathrm{Fe}(2)$ | $53.30(7)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $54.97(7)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $54.10(7)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $59.84(5)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $52.97(6)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(2)$ | $72.23(8)$ |
| $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $59.96(5)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $72.06(8)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $54.46(6)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $71.09(8)$ |
| $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $103.99(6)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $119.6(1)$ |
| $\mathrm{Fe}(3)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $94.41(5)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $133.5(1)$ |


| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$ | $57.48(7)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $71.29(8)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $54.81(7)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $131.1(1)$ |
| $\mathrm{Cu}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $99.81(6)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $69.23(8)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $53.24(7)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $120.1(1)$ |
| $\mathrm{Cu}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $104.99(6)$ | $\mathrm{Cu}(1)-\mathrm{S}(2)-\mathrm{Cu}(2)$ | $108.8(1)$ |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $60.20(5)$ |  |  |

## 1-bpee-2D-2

| $\mathrm{Cu}(1)-\mathrm{S}(1)$ | $2.2697(7)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.5986(5)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(2)-\mathrm{S}(1)$ | $2.2785(7)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)$ | $2.2462(7)$ |
| $\mathrm{Cu}(2)-\mathrm{Fe}(2)$ | $2.5764(5)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $2.6057(5)$ |
| $\mathrm{Fe}(1)-\mathrm{S}(1)$ | $2.1938(7)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)$ | $2.1893(7)$ |
| $\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $2.5861(5)$ |  |  |
|  |  |  |  |
| $\mathrm{S}(1)-\mathrm{Cu}(2)-\mathrm{Fe}(2)$ | $54.70(2)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $60.07(1)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $53.76(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $72.32(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $55.12(2)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(2)$ | $71.94(2)$ |
| $\mathrm{Fe}(3)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $60.34(1)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$ | $71.63(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$ | $55.89(2)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $133.66(3)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $53.25(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $119.12(3)$ |
| $\mathrm{Cu}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $103.45(2)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $153.16(3)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $53.02(2)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $120.81(3)$ |
| $\mathrm{Cu}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $97.14(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $130.56(3)$ |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $59.59(1)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $69.41(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $53.92(2)$ | $\mathrm{Cu}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $87.06(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $55.04(2)$ |  |  |

## 1-bpee-2D-3•MeCN

| $\mathrm{S}(1)-\mathrm{Fe}(2)$ | $2.1934(9)$ | $\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $2.5791(6)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{S}(1)-\mathrm{Fe}(3)$ | $2.1946(9)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.5843(6)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)$ | $2.2622(8)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $2.5908(7)$ |
| $\mathrm{S}(1)-\mathrm{Cu}(2)$ | $2.2961(8)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $2.5841(6)$ |
| $\mathrm{S}(1)-\mathrm{Cu}(1)$ | $2.3011(9)$ |  |  |
|  |  |  |  |
| $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(3)$ | $72.16(3)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $100.58(2)$ |
| $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $70.88(3)$ | $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $53.25(2)$ |
| $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $71.07(3)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $101.32(2)$ |
| $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $128.64(4)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $59.92(2)$ |


| $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $121.45(4)$ | $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $53.94(2)$ |
| :--- | :---: | :---: | :---: |
| $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $157.89(4)$ | $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $55.80(2)$ |
| $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $124.18(4)$ | $\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $60.17(2)$ |
| $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $125.57(4)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $53.90(2)$ |
| $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $68.82(3)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $55.68(2)$ |
| $\mathrm{Cu}(2)-\mathrm{S}(1)-\mathrm{Cu}(1)$ | $89.66(3)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $59.92(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $56.30(2)$ | $\mathrm{S}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(1)$ | $54.87(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $53.32(2)$ |  |  |

## 1-dpy-2D

| $\mathrm{Cu}(1)-\mathrm{Fe}(1)$ | $2.5148(7)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.6443(8)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | $2.5313(8)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $2.6729(8)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | $2.5588(7)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)$ | $2.188(1)$ |
| $\mathrm{Cu}(2)-\mathrm{S}(1)$ | $2.259(1)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $2.638(1)$ |
| $\mathrm{Fe}(1)-\mathrm{S}(1)$ | $2.191(1)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)$ | $2.182(1)$ |


| $\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | $63.20(2)$ | $\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $60.80(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | $63.58(2)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(1)$ | $97.83(4)$ |
| $\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | $62.42(2)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $52.98(3)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $98.91(3)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $58.28(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $52.81(3)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $52.46(3)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $58.70(2)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $57.41(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $52.17(3)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $59.72(2)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $59.01(2)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(2)$ | $74.26(4)$ |
| $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $59.48(2)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $75.37(4)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$ | $98.48(4)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(1)$ | $74.30(4)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $52.76(3)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $131.12(5)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $59.30(2)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $124.81(5)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $52.89(3)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Cu}(2)$ | $148.22(5)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $58.09(2)$ |  |  |

## 1-dpy-1D

| $\mathrm{Cu}(1)-\mathrm{Fe}(1)$ | $2.4745(5)$ | $\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $2.6779(6)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | $2.5161(5)$ | $\mathrm{Fe}(2)-\mathrm{S}(1)$ | $2.1976(8)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | $2.5514(5)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $2.6143(5)$ |
| $\mathrm{Fe}(1)-\mathrm{S}(1)$ | $2.1759(8)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)$ | $2.1923(8)$ |
| $\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $2.6763(6)$ |  |  |


| $\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(3)$ | $64.90(2)$ | $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $51.90(2)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | $64.33(2)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $56.44(1)$ |
| $\mathrm{Fe}(3)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$ | $62.11(2)$ | $\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$ | $60.80(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$ | $99.38(3)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(1)$ | $97.68(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $52.64(2)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $53.54(2)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$ | $59.23(2)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$ | $59.61(1)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $52.47(2)$ | $\mathrm{S}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $51.91(2)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $58.30(2)$ | $\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $56.80(2)$ |
| $\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$ | $58.45(2)$ | $\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$ | $60.74(2)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$ | $96.52(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(3)$ | $75.62(3)$ |
| $\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $53.36(2)$ | $\mathrm{Fe}(1)-\mathrm{S}(1)-\mathrm{Fe}(2)$ | $75.46(3)$ |
| $\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$ | $58.28(1)$ | $\mathrm{Fe}(3)-\mathrm{S}(1)-\mathrm{Fe}(2)$ | $73.10(3)$ |

Table S3 Detailed investigation of TGA spectra.

| Polymers | Found <br> $(\%)$ | Calcd. <br> $(\%)$ | $\mid$ Found-Calcd. $\mid$ <br> $(\%)$ | Residue | $\left.T_{\text {decomp. }}{ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1-bpea-1D | 50.27 | 50.16 | 0.11 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{4}$ | 150 |
| 1-bpee-1D | 48.31 | 48.45 | 0.14 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{3}$ | 100 |
| 1-bpea-2D | 35.79 | 35.97 | 0.18 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}$ | 150 |
| 1-bpee-2D-1 | 39.23 | 39.09 | 0.14 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{3}$ | 105 |
| 1-bpee-2D-2 | 33.68 | 32.76 | 0.08 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{3}$ | 150 |
| 1-bpee-2D- | 29.36 | 29.16 | 0.20 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{3}$ | 100 |
| 3•MeCN |  |  |  |  |  |
| 1-dpy-2D | 45.25 | 44.81 | 0.44 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{4}$ | 99 |
| 1-dpy-1D | 31.16 | 31.19 | 0.03 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2}$ | 94 |
| 1-bpp-2D | 39.69 | 39.24 | 0.45 | $\mathrm{SFe}_{3} \mathrm{Cu}_{2} \mathrm{~N}_{4}$ | 100 |

Table S4 Contributions (\%) in PDOS for valence and conduction bands of 1-dpy-2D, 1-bpea2D, 1-bpp-2D, 1-bpee-1D, 1-bpee-2D-2, 1-bpee-2D-3-MeCN, 1-bpee-2D-1-MeCN, and 1-dpy-1D.

| Polymers | Bonding <br> Modes | Valence band (VB) (\%) |  |  |  | Conduction band (CB) (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CO | Cu | L | $\mathrm{SFe}_{3}(\mathrm{CO})_{9}$ | CO | Cu | L | $\mathrm{SFe}_{3}(\mathrm{CO})_{9}$ |
| 1-dpy-2D | L | 16.14 | 41.64 | 3.48 | 54.34 | 17.88 | - | 49.85 | 48.85 |
| 1-bpea-2D | L | 15.87 | 41.67 | 3.99 | 54.01 | 29.71 | - | 10.05 | 87.22 |
| 1-bpp-2D | L | 19.04 | 36.37 | 6.69 | 57.64 | 26.94 | - | 6.84 | 73.27 |
| 1-bpee-1D | B | 16.01 | 36.90 | 13.36 | 50.28 | 31.56 | - | 28.14 | 67.70 |
| 1-bpee-2D-2 | OA | 15.48 | 36.89 | 12.79 | 50.99 | 12.48 | - | 66.87 | 34.05 |
| $\begin{gathered} \text { 1-bpee-2D- } \\ \text { 3•MeCN } \end{gathered}$ | OA | 14.04 | 33.43 | 21.49 | 45.74 | 12.65 | - | 66.04 | 34.50 |
| $\begin{gathered} \text { 1-bpee-2D- } \\ 1 \cdot \mathrm{MeCN} \end{gathered}$ | A | 15.48 | 37.48 | 11.96 | 50.16 | - | - | 93.58 | - |
| 1-dpy-1D | P | 21.04 | 31.77 | 13.13 | 55.09 | - | - | 91.86 | - |

## References

1. M. Shieh, C.-C. Yu, C.-Y. Miu, C.-H. Kung, C.-Y. Huang, Y.-H. Liu, H.-L. Liu and C.-C. Shen, Chem. Eur. J., 2017, 23, 11261-11271.
2. Y.-H. Liu, K.-T. Huang, W.-C. Chen, Y.-W. Li, W.-M. Ke, B.-R. Ho, M.-C. Hsu, Y.-H. Li and M. Shieh, Inorg. Chem., 2021, 60, 18270-18282.
3. G. M. Sheldrick, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
4. G. M. Sheldrick, Acta Cryst., 2008, 64, 112-122.
5. (a) B. Delley, J. Chem. Phys., 1990, 92, 508-517; (b) B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.
6. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
7. S. Grimme, J. Comput. Chem., 2004, 25, 1463-1473.
8. (a) A. Bergner, M. Dolg, W. Küchle, H. Stoll and H. Preuß, Mol. Phys., 1993, 80, 14311441; (b) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1990, 77, 123-141; (c) P. Schwerdtfeger, M. Dolg, W. E. Schwarz, G. A. Bowmaker and P. D. Boyd, J. Chem. Phys., 1989, 91, 1762-1774; (d) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
9. (a) P. Kubelka, Z. Tech. Phys., 1931, 12, 593-601; (b) J. Tauc, Mater. Res. Bull., 1970, 5, 721-729.
10. B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537-541.
11. A. J. Bard, L. R. Faulkner and H. S. White, Electrochemical methods: fundamentals and applications, John Wiley \& Sons, 2022.
12. T. Nakanishi, H. Murakami, T. Sagara and N. Nakashima, J. Phys. Chem. B., 1999, 103, 304-308.
