Supporting Information

for

Coordination Chemistry of Alkali Metal Dimesityl-thio- and Dimesitylselenophosphinites [(L)₂A-EPMes₂]₂ (A = Li, Na, K; E = S, Se; L = THF, THP) and [(18C6)K-SPMes₂]

Richard C. C. Dorow, Phil Liebing, Helmar Görls, and Matthias Westerhausen

Dimesitylphosphane sulfide (1a)

Figure S2. ^{31}P NMR spectrum (161.98 MHz, CDCl₃, 298 K).

Figure S4. HSQC NMR spectrum (400.13/100.61 MHz, CDCl₃, 298 K).

Figure S5. IR (ATR).

Figure S6. MS.

Dimesitylphosphane selenide (1b)

Figure S7. ¹H NMR spectrum (400.13 MHz, C₆D₆, 298 K).

Figure S8. ³¹P NMR spectrum (161.98 MHz, C₆D₆, 298 K).

Figure S10. ⁷⁷Se NMR spectrum (76.31 MHz, C₆D₆, 298 K).

Figure S11. IR (ATR).

Figure S12. MS.

Figure S14. ³¹P-NMR-spectrum (161.98 MHz, THF- d_8 , 253 K) (57.7 and 54.4 ppm are probably Mes₂P(=S)OK and Mes₂PS₂K, -94.0 pm = Mes₂PH).

Figure S16. HSQC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S17. IR (ATR).

S11

Figure S21. ⁷⁷Se NMR spectrum (76.31 MHz, THF-*d*₈, 253 K).

Figure S22. IR (ATR).

Figure S24. ³¹P NMR spectrum (161.98 MHz, THF- d_8 , 253 K) (56.4 ppm and 53.1 ppm probably Mes₂P(=S)OK and Mes₂PS₂K).

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 (ppm)

Figure S25. ¹³C{¹H} NMR spectrum (100.61 MHz, THF-*d*₈, 253 K).

Figure S26. HSQC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S27. HMBC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S28. IR (ATR).

Figure S30. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 253 K) (-6.8 ppm = Mes₂PSe₂K, -95.3 ppm = Mes₂PH).

141.9 141.7 141.7 141.4 - 134.6 - 134.6

68 673 673 68 67 67 67 67 67 68 67 67 67 68 67 67 68 67 67 66 67 67 66 67 67 66 67 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 66 67 67 66 67 67 66 67 67 66 67

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 (ppm)

~ -164.1 ~ -168.7

Figure S31. ¹³C{¹H} NMR spectrum (100.61 MHz, THF-*d*₈, 253 K).

Figure S32. ⁷⁷Se NMR spectrum (76.31 MHz, THF-*d*₈, 253 K).

Figure S33. HSQC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S34. HMBC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S35. IR (ATR).

Figure S37. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 253 K) (doublet – Mes₂P(=S)H by hydrolysis).

68.0 67.5 67.2 67.2 67.0 65.8 65.8 25.3 25.3 24.9 24.9 24.9 22.5 20.8 22.5 20.8 20.8

Figure S38. ¹³C{¹H} NMR spectrum (100.61 MHz, THF-*d*₈, 253 K).

Figure S39. ⁷Li NMR spectrum (155.51 MHz, THF-*d*₈, 253 K).

Figure S40. HSQC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S41. HMBC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S42. IR (ATR).

Figure S43. ¹H NMR spectrum (400.13 MHz, THF-*d*₈, 253 K).

Figure S44. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 253 K).

Figure S46. HSQC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S47. HMBC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S48. IR (ATR).

Figure S50. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 253 K).

Figure S52. HSQC NMR spectrum (400.13/100.61 MHz, THF-*d*₈, 253 K).

Figure S53. IR (ATR).

Reaction mixture of Ph₂PH with KH and grey Se

Figure S54. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 298 K), -40.2 = Ph₂PH.

Figure S55. ¹H-⁷⁷Se-HMBC NMR spectrum (161.98 MHz/400.13 MHz, THF-*d*₈, 298 K).

Reaction mixture of Ph₂PH with NaHMDS and Se:

Figure S56. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 298 K), 20.8 ppm = Ph₂PSe₂Na, 6.8 ppm = Ph₂PSeNa, -15.6 ppm = Ph₂PNa

Reaction mixture of Mes₂PSeH with *n*BuLi:

Figure S57. ³¹P NMR spectrum (161.98 MHz, THF-*d*₈, 298 K).

Reaction mixture of Mes₂PSeH with NaHMDS:

Figure S59. ¹H-⁷⁷Se-HMBC NMR spectrum (161.98 MHz/400.13 MHz, THF-*d*₈, 298 K).

Crystallographic Studies

a a b	Table S1: Cr	stal data and	refinement	details for the	X-ray struct	ure determinations
---	--------------	---------------	------------	-----------------	--------------	--------------------

Compound	1a	1b	2a	2b	За
formula	C ₁₈ H ₂₃ PS	C ₁₈ H ₂₃ PSe	$C_{52}H_{76}K_2O4P_2S_2$	$C_{52}H_{76}K_2O_4P_2Se_2$	$C_{56}H_{84}K_2O_4P_2S_2$
fw (g·mol⁻¹)	302.39	349.29	969.38	1063.18	1025.49
T∕°C	-140(2)	-140(2)	-140(2)	-140(2)	-156(2)
crystal system	triclinic	triclinic	monoclinic	monoclinic	triclinic
space group	Ρī	Ρī	P 2₁/n	P 21/n	Ρī
a/ Å	8.0974(3)	8.1648(17)	11.9719(2)	11.9075(3)	13.4390(15)
<i>b/</i> Å	8.5354(3)	8.5743(16)	16.8153(3)	16.8014(4)	13.7423(14)
c/ Å	12.0938(4)	12.161(2)	13.0896(2)	13.2648(2)	17.2067(19)
α/°	83.001(2)	82.479(5)	90	90	92.241(3)
в/°	77.127(2)	77.391(5)	93.338(1)	92.043(1)	108.058(3)
γ/°	89.041(2)	89.456(5)	90	90	108.624(3)
V∕ų	808.73(5)	823.5(3)	2630.61(8)	2652.1(1)	2829.2(5)
Ζ	2	2	2	2	2
ρ (g·cm ⁻³)	1.242	1.409	1.224	1.331	1.204
μ (cm⁻¹)	2.88	23.66	3.62	16.53	3.4
measured data	6301	11315	21077	19978	41447
data with $I > 2\sigma(I)$	3376	4313	5475	5113	9512
unique data (R _{int})	3602/0.0185	4881/0.0191	6005/0.0215	6057/0.0428	16704/0.0613
wR ₂ (all data, on F ²) ^{a)}	0.1090	0.0590	0.1334	0.0985	0.1974
$R_1 (l > 2\sigma(l))^{a}$	0.0427	0.0235	0.0478	0.0434	0.0741
s ^{b)}	1.089	1.020	1.033	1.059	1.025
Res. dens./e·Å⁻³	1.173/-0.346	0.429/-0.371	1.275/-0.355	1.517/-0.551	1.043/-0.936
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} / _{max}	0.6985/0.7456	0.6075/0.7456	0.7014/0.7456	0.6794/0.7456	0.6574/0.7456
CCDC No.	2184155	2184156	2184157	2184158	2184159

Compound	3b	4	5	(tmeda)NaOPMes ₂	6
formula	$C_{56}H_{84}K_2O_4P_2Se_2$	$C_{52}H_{76}Li_2O_4P_2S_2$	$C_{60}H_{92}Na_2O_6P_2S_2$	$C_{48}H_{76}N_4Na_2O_2P_2$	C ₃₀ H ₄₆ KO ₆ PS
fw (g·mol⁻¹)	1119.29	905.06	1081.37	849.04	604.80
°C	-140(2)	-140(2)	-140(2)	-140(2)	-153(2)
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
space group	P 21/n	P 21/c	P 21/c	P 2 ₁ /n	P 21/n
a/ Å	12.344(3)	8.7520(10)	11.5510(17)	12.5768(3)	11.4806(14)
b/ Å	17.315(4)	13.3652(17)	10.5196(14)	15.2815(4)	14.5572(16)
<i>c/</i> Å	13.494(4)	22.037(3)	25.647(4)	13.3242(3)	19.572(2)
α/°	90	90	90	90	90
<i>в</i> /°	92.518(10)	95.393(4)	101.101(4)	92.363(2)	97.148(3)
γ/°	90	90	90	90	90
V/Å ³	2881.4(13)	2566.3(5)	3058.2(8)	2558.63(11)	3245.6(6)
Ζ	2	2	2	2	4
ρ (g·cm⁻³)	1.290	1.171	1.174	1.102	1.238
μ (cm⁻¹)	15.25	2.08	2	1.4	3.16
measured data	49625	35232	30199	17389	40013
data with $I > 2\sigma(I)$	6972	6202	5694	4881	7145
unique data (R _{int})	8945/0.0270	7834/0.0340	7528/0.0453	5815/0.0332	9674/0.0304
w R_2 (all data, on F^2) ^{a)}	0.0800	0.1010	0.1649	0.1683	0.1342
$R_1 (I > 2\sigma(I))^{a)}$	0.0310	0.0385	0.0640	0.0589	0.0508
S ^{b)}	1.041	1.041	1.085	1.054	1.036
Res. dens./e·Å⁻³	0.512/-0.413	0.527/-0.307	1.567/-0.357	0.729/-0.364	1.043/-0.492
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} / _{max}	0.6139/0.7456	0.6928/0.7456	0.6642/0.7456	0.6779/0.7456	0.8068/0.8623
CCDC No.	2184160	2184161	2184162	2184163	2254279

Table S1: Crystal data and refinement details for the X-ray structure determinations.

^{a)} Definition of the *R* indices: $R_1 = (\Sigma || F_0 || F_c ||) / \Sigma |F_o|;$

 $wR_{2} = \{\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2} \text{ with } w^{-1} = \sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP; P = [2F_{c}^{2} + Max(F_{o}^{2})]/3;$

^{b)} $s = \{\sum [w(F_o^2 - F_c^2)^2]/(N_o - N_p)\}^{1/2}.$

Figure S60. Solid state molecular structure and atom labelling scheme of Mes₂P(Se)H (**1b**). The ellipsoids represent a probability of 30 %, H atoms bound to C atoms are neglected for the sake of clarity. Selected bonding parameters are listed in Table 2.

Figure S61. Solid state molecular structure and atom labelling scheme of [(tmeda)Na-OPMes₂]₂. The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Selected bond lengths (pm): P-O 156.4(2), P-C 186.9(2) and 187.2(2), av. Na-O 224.2; bond angle (°): C-P-C 100.32(8)°.