Supporting Information

Modulating anti-inflammatory and anticancer properties by designing a family of metal-complexes based on 5-nitropicolinic acid

Amalia García-García,*^a Marta Medina-O'donnell,^b Sara Rojas,^a Mariola Cano-Merenilla,^b Juan Morales,^c M. Mar Quesada-Moreno,^c Juan Sainz,^b Iñigo J. Vitorica-Yrezabal,^a Antonio Rodríguez-Diéguez,^a Amparo Navarro *^c and Fernando J. Reyes-Zurita *^b

Table of contents

S1.	Selected bond length and angles	S2
S2.	Infrared spectroscopy	S4
S3.	Photophysical properties	S5
S4.	Cytotoxicity in cancer cell lines	S9
S5.	Chemical stability in solutionS	10
S6.	Cytotoxic mechanismS	11
S7.	Anti-inflammatory studiesS	12
S8.	Elemental analysisS	13
S9.	Single-crystal X-ray crystallographic dataS	14
S10.	Theoretical calculationsS	15

S1. Selected bond length and angles

Comp.	Bond	Distance (Å)	Atoms	Angle (°)
	Mn-N1A	2.273(5)	O1A-Mn-N1A	101.99(19)
	Mn-01A	2.147(4)	O1A-Mn-O2A	92.92(18)
	Mn-O2A	2.168(5)	O1A-Mn-N1B	88.89(18)
	Mn-N1B	2.295(5)	O1A-Mn-O1B	88.91(18)
	Mn-O1B	2.167(5)	O2A-Mn-N1A	73.87(18)
	Mn-O2B	2.176(5)	O2A-Mn-N1B	105.77(19)
T			O2A-Mn-O2B	83.99(18)
			O1B-Mn-N1A	89.37(19)
			O1B-Mn-N1B	90.99(18)
			O1B-Mn-O2B	99.57(18)
			O2B-Mn-N1A	95.52(18)
			O2B-Mn-N1B	73.70(18)
	Cd-N1A	2 347(8)	O1A-Cd-N1A	71 7(3)
	Cd-O1A	2 287(7)	01A-Cd-02A	99 5(2)
	Cd-02A	2,207(7)	014-Cd-N1B	96 0(3)
		2.303(7)	01A-Cd-01B	21 Q(2)
		2.323(8)	01A-Cd-01B	88 0(2)
		2.230(7)		00.U(3)
2	Cu-OZB	2.252(7)		89.5(3)
				80.3(Z)
			OIB-CO-NIA	109.4(3)
			OIB-Cd-NIB	/2.3(3)
			OIB-Cd-O2B	99.0(2)
			O2B-Cd-N1A	88.3(3)
		1.0.10(1)	O2B-Cd-N1B	104.3(3)
	Cu-N1	1.949(4)	O1-Cu-N1	84.05(15)
	Cu-01	1.943(3)	01-Cu-N1'	95.95(15)
3	Cu-04	2.708(4)	01-Cu-04	94.90(13)
•			01-Cu-O4'	85.10(13)
			N1-Cu-O4	87.97(14)
			N1-Cu-O4'	92.03(14)
	Co-N1	2.147(5)	01-Co-N1	79.09(16)
	Co-01	2.062(4)	O1-Co-N1'	100.91(16)
л	Co-O1W	2.075(4)	01-Co-01W	89.32(14)
4			01-Co-01W'	90.68(14)
			O1W-Co-N1	87.07(16)
			O1W-Co-N1'	92.93(16)
	Ni-N1	2.084(4)	O1-Ni-N1	80.67(14)
	Ni-O1	2.049(3)	01-Ni-N1'	99.33(14)
_	Ni-O1W	2.054(3)	01-Ni-01W	90.97(13)
5		/ - /	01-Ni-01W'	89.03(13)
			O1W-Ni-N1	93.01(14)
			01W-Ni-N1'	86.99(14)
	7n-N1	2,152(3)	01-7n-N1	79,36(9)
	7n-∩1	2.152(3)	$01_{7n}N1'$	100 64(9)
	7n-01\//	2.005(2)	01_7n_01M	20 25/01
6		2.113(2)	01-2n-01W 01-7n-01W/	00.55(9) 00 65(0)
				90.03(9) 97.01(10)
				07.21(10)
				92.79(10)

Table S1Selected bond lengths (Å) and angles (°) of coordination spheres for 1-6.

Table S2Hydrogen bonds distances (Å) and angles (°) for 4-6.

Comp.	D-H····Aª	D-H distance	H···A distance	D-H···A distance	Angle (°)
4	01W-H1WA…01	0.90	1.80	2.681(5)	164.2

	O1W-H1WB…O2	0.84	1.87	2.655 (5)	153.2
-	O1W-H1WA…O1	0.91	1.82	2.700 (5)	161.7
2	O1W-H1WB…O2	0.85	1.86	2.665(5)	156.5
6	01W-H1WA…01	0.94	1.82	2.706(3)	156.3
	O1W-H1WB…O2	0.91	1.80	2.674(3)	160.3

^(a)D, donor atom; H, hydrogen atom; A, acceptor atom.

S2. Infrared spectroscopy

Fig. S1 Infrared spectra of 5-npic and compounds **1-6** in solid state in the range 4000-400 cm⁻¹ at room temperature.

5-npic	1	2	3	4	5	6
				3219	3232	3238
3090	3082	3080	3111	3082	3082	3082
3078			3082			
1728	1635	1629	1655	1664	1668	1670
1699	1587	1595				
1601	1568	1568	1610	1601	1604	1604
1520	1518	1518	1512	1523	1525	1525
1348	1398	1394	1329	1334	1335	1336
1288	1342	1346	1267	1267	1269	1267
1236	1261	1267	1226	1222	1234	1230
1018	1020	1022	1026	1022	1030	1024
792	823	823	833	815	823	810
	5-npic 3090 3078 1728 1699 1601 1520 1348 1288 1236 1018 792	5-npic 1 3090 3082 3078 - 1728 1635 1699 1587 1601 1568 1520 1518 1348 1398 1288 1342 1236 1261 1018 1020 792 823	5-npic123090308230803078-172816351629169915871595160115681568152015181518134813981394128813421346123612611267101810201022792823823	5-npic 1 2 3 3090 3082 3080 3111 3078 3082 3080 3111 3078 3082 3082 3082 1728 1635 1629 1655 1699 1587 1595 - 1601 1568 1568 1610 1520 1518 1518 1512 1348 1398 1394 1329 1288 1342 1346 1267 1236 1261 1267 1226 1018 1020 1022 1026 792 823 823 833	5-npic 1 2 3 4 3090 3082 3080 3111 3082 3078 3082 3080 3111 3082 3078 3082 3080 3111 3082 1728 1635 1629 1655 1664 1699 1587 1595 - - 1601 1568 1568 1610 1601 1520 1518 1518 1512 1523 1348 1398 1394 1329 1334 1288 1342 1346 1267 1267 1236 1261 1267 1222 1018 1020 1022 1026 1022 792 823 823 833 815	5-npic1234530903082308031113082308230783080311130823082172816351629165516641668169915871595160115681568161016011604152015181518151215231525134813981394132913341335128813421346126712671269123612611267122612221234101810201022102610221030792823823833815823

Table S3IR bands (cm⁻¹) in the range 4000-400 cm⁻¹ of 5-npic and compounds 1-6.

S3. Photophysical properties

Fig. S2 UV-vis absorption spectra in water (left) and emission spectra (right) of the ligand (black), compound **2** (red) and compound **6** (blue). Stokes shift estimated using the average value of the two bands at 283 and 248 nm of the absorption spectra and the main band at 485 nm of the emission spectra.

Fig. S3 Optimized conformations of 5-npic acid at the CAM-B3LYP/6-31G** level of theory in water solution.

Table S4Energy (in Hartrees) of the three 5-nitropicolinic acid conformers, energy difference (ΔE ,
kcal/mol) with respect to the most stable conformer and dipole moment (μ , in Debye) calculated at the
CAM-B3LYP/6-31G** level of theory in the gas phase and water solution.

Phase	Conformer	Energy	ΔE	μ
	1	-641.089791	4.03	4.10
Gas	2	-641.092370	2.42	2.47
	3	-641.096220	0.00	1.15
	1	-641.103986	3.07	5.31
Water	2	-641.104914	2.48	2.88
	3	-641.108871	0.00	1.55

Fig. S4 Experimental absorption spectrum of 5-npic along with the oscillator strength of the vertical electronic transitions calculated at the TD-CAM-B3LYP/6-31G** level of theory in water solution. The bottom axis refers to the experimental absorption spectrum and the top axis to the calculated electronic transitions.

Fig. S5 Molecular orbital representation (isocontour plots 0.02 a.u.) of the electronic transition $S_0 \rightarrow S_4$ calculated at the CAM-B3LYP/6-31G** level of theory in water solution for the **conformer 3** of the ligand.

Table S5Experimental absorption wavelength (λ_{ab}^{exp}), theoretical vertical electronic transitions ($\lambda_{vert-ab}^{calc}$), oscillator strength (f), and the main molecular orbital contributions (\geq 15%) calculated at theCAM-B3LYP/6-31G** level of theory in water solution for the **conformer 3** of the ligand.

λ_{ab}	$\lambda_{vert-ab}$			
eV (nm)	eV (nm)	Transition	f	Contribution (%)
	4.01 (309)	$S_0 \rightarrow S_1$	0.00	HOMO-3 → LUMO (80%)
4.38 (283)	4.98 (249)	$S_0 \rightarrow S_4$	0.25	HOMO-1 → LUMO (88%)
5.00 (248)	5.48 (226)	$S_0 \rightarrow S_6$	0.14	HOMO-4 → LUMO (69%)
	6.32 (196)	$S_0 \rightarrow S_8$	0.03	HOMO-5 → LUMO (33%)
5.93 (209)	6.66 (186)	$S_0 \rightarrow S_{10}$	0.30	HOMO-6 → LUMO (50%)

Table S6Experimental emission (λ_{emis}^{exp}), theoretical transition ($\lambda_{vert-emis}^{calc}$), and oscillatorstrength (f) for the S1 \rightarrow S0 (\geq 15%) calculated at the CAM-B3LYP/6-31G** level of theory in the gas phaseand water solution for the **conformer 3** of the ligand.

Dhara	^A emis	∧vert – emis	T		
Phase	eV (nm)	eV (nm)	Transition	J	Contribution (%)
Gas	2.56 (485)	2.03 (610)	$S_1 \rightarrow S_0$	0.00	LUMO → HOMO (86%)
Water	2.56 (485)	2.37 (523)	$S_1 \rightarrow S_0$	0.00	LUMO → HOMO (92%)

Table S7Experimental absorption wavelength (λ_{ab}^{exp}), theoretical vertical electronic transitions ($\lambda_{vert - ab}^{calc}$), oscillator strength (f), and the main molecular orbital contributions (\geq 15%) calculated at theCAM-B3LYP-D3/6-31G**+LANL2DZ level of theory in water solution for **6** (LANL2DZ for Zn, 6-31G** for C,H, N, and O).

λ_{ab}	$\lambda_{vert-ab}$	ΔE	Transition	f	Contribution (%)
eV (nm)	eV (nm)	(eV)	Transition	J	
1 20 (202)	1 59 (271)	0 17	c \c	0.20	HOMO-8→LUMO (43%)
4.38 (285)	4.38 (271)	0.17	$3_0 \rightarrow 3_7$	0.20	HOMO-4 →LUMO (41%)
1 09 (240)	4 02 (251)	0.05	c \c	0.27	HOMO-6→ LUMO+1 (52%)
4.96 (249)	4.95 (251)	-0.05	$3_0 \rightarrow 3_{11}$	0.27	HOMO-3→ LUMO+1 (27%)
5.79 (214)	7.52 (165)	1.73	$S_0 \rightarrow S_{66}$	0.93	HOMO-6 → LUMO+5 (20%)

Table S8 Experimental absorption wavelength (λ_{ab}^{exp}) , theoretical vertical electronic transitions ($\lambda_{vert-ab}^{calc}$), oscillator strength (*f*), and the main molecular orbital contributions (\geq 15%) calculated at the ONIOM(CAM-B3LYP-D3:PM6) level of theory in the gas phase for **6** (LANL2DZ for Zn, 6-31G** for C, H, N, and O).

λ_{abs}^{exp} eV (nm)	λ _{vert – ab} calc eV (nm)	Transition	f	% Contribution
4.38 (283)	4.58 (271)	$S_0 \rightarrow S_9$	0.10	HOMO-3 [→] LUMO+1 (29%), HOMO-2→LUMO (38%)
4.98 (249)	5.13(242)	$S_0 \rightarrow S_{15}$	0.38	HOMO-7→LUMO+1 (27%), HOMO-6→LUMO (36%)
	5.69(218)	$S_0 \rightarrow S_{24}$	0.17	HOMO-2→LUMO+2 (20%)
5.79 (214)	6.66 (186)	$S_0 \rightarrow S_{43}$	0.40	HOMO-15→LUMO+1 (20%), HOMO-14→LUMO (22%), HOMO-7→LUMO+3 (18%), HOMO-6→LUMO+2 (20%)

Table S9Experimental absorption wavelength (λ_{ab}^{exp}), theoretical vertical electronic transitions ($\lambda_{vert - ab}^{calc}$), oscillator strength (f), and the main molecular orbital contributions (\geq 15%) calculated at theCAM-B3LYP-D3/6-31G** level of theory for **2** (LANL2DZ for Cd, 6-31G** for C, H, N, and O).

Fragmant	λ _{abs}	$\lambda_{vert-ab}$	Transition	4	% Contribution	
Fragment	eV (nm)	eV (nm)	Transition	J	% Contribution	
		4.67 (266)	$S_0 \rightarrow S_{45}$	0.05	HOMO-8 → LUMO+1 (18%)	
	4.38(283)	4.84 (256)	$S_0 \rightarrow S_{57}$	0.16	HOMO-11 → LUMO+3 (23%),	
flcd					HOMO-9 → LUMO+3 (25%)	
iicu	4.98 (249)	4.88 (254)	$S_0 \rightarrow S_{60}$	0.22	HOMO-18 → LUMO (24%)	
	5.79(214)	5.26 (236)	$S_0 \rightarrow S_{76}$	0.11	HOMO-22 → LUMO+1 (27%)	
					HOMO-21 → LUMO+1 (24%)	
		4.32 (287)	$S_0 \rightarrow S_{52}$	0.01	< 15%	
		4.61 (269)	$S_0 \rightarrow S_{87}$	0.02	HOMO-8 → LUMO+10 (53%)	
face		4.67 (266)	$S_0 \rightarrow S_{95}$	0.04	< 15%	
1400	4.38(283)	4.84 (256)	$S_0 \rightarrow S_{132}$	0.17	< 15%	
	4.98 (249)	4.92 (252)	$S_0 \rightarrow S_{147}$	0.12	< 15%	
	5.79(214)	5.32(233)	$S_0 \rightarrow S_{238}$	0.09	HOMO-51 → LUMO+4 (29%)	

S4. Cytotoxicity in cancer cell lines

Fig. S6 Effect of **2** and **4** on cell proliferation in B16-F10 murine melanoma cells after 72 h of treatment in a range of concentration from 0 to 100 μ g·mL⁻¹. Each point represents the mean value ± SD of at least two independent experiments performed in triplicate.

S5. Chemical stability in solution

Fig S7. Powder X-ray diffraction patterns of complexes **1-6** after 72 h in PBS solution (black lines) compared to the original ones (blue lines). The patterns are registered from 5° to 60° with a step size of 0.02° and scan rate of 40 s *per* step.

S6. Cytotoxic mechanism

Fig. S8 Diagrams of annexin V/PI flow cytometry: Q1 (necrotic cells), Q2 (late apoptotic cells), Q3 (Viable cells), Q4 (early apoptotic cells).

S7. Anti-inflammatory studies

Compound	IC ₂₀ (µg∙mL ⁻¹)	IC ₅₀ (µg∙mL ⁻¹)	IC ₈₀ (µg∙mL ⁻¹)
L	47.43 ± 2.41	55.85 ± 0.88	66.46 ± 0.63
1	86.99 ± 5.89	134.38 ± 19.10	165.91 ± 11.46
2	1.96 ± 0.11	21.68 ± 0.06	74.86 ± 0.51
3	67.67 ± 4.15	86.90 ± 0.12	105.16 ± 4.96
4	39.85 ± 11.19	56.48 ± 3.69	71.88 ± 2.32
5	47.67 ± 2.33	59.32 ± 2.54	74.32 ± 3.40
6	29.05 ± 1.06	33.25 ± 0.57	38.76 ± 0.29

Table S10Growth-inhibitory effects of ligand and compounds 1-6 on RAW 264.7 monocyte/macrophage murine cells.

S8. Elemental analysis

Compound	Formula	Yield ^a (%)	Theoretical / Experimental (%)			
			С	Н	N	
1	$C_{12}H_6MnN_4O_8$	97	37.04 / 36.96	1.55 / 1.79	14.40 / 14.68	
2	$C_{12}H_6CdN_4O_8$	92	32.27 / 32.24	1.35 / 1.56	12.54 / 12.63	
3	$C_{12}H_6CuN_4O_8$	75	36.23 / 35.72	1.52 / 1.70	14.09 / 14.32	
4	$C_{12}H_{10}CoN_4O_{10}$	93	33.58 / 33.62	2.35 / 2.64	13.05 / 13.37	
5	$C_{12}H_{10}NiN_4O_{10}$	80	33.60 / 33.51	2.35 / 2.72	13.06 / 13.20	
6	$C_{12}H_{10}ZnN_4O_{10}$	77	33.08 / 32.79	2.31 / 2.56	12.86 / 12.95	

Table S11Elemental analyses (weight, %) of all obtained compounds.

^a Yield based on metal

S9. Single-crystal X-ray crystallographic data

	1	2	3	4	5	6		
Formula	$C_{12}H_6MnN_4O_8$	$C_{12}H_6CdN_4O_8$	$C_{12}H_6CuN_4O_8$	C ₁₂ H ₁₀ CoN ₄ O ₁₀	$C_{12}H_{10}NiN_4O_{10}$	$C_{12}H_{10}ZnN_4O_{10}$		
CCDC	2295415	2295418	2295419	2295416	2295417	2295420		
M _r (g∙mol ⁻¹)	389.15	446.61	397.75	429.17	428.95	435.61		
Т (К)	296.15	296.15	296.15	100.00	100.00	293(2)		
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic		
Space group	P21	P21	P2₁/c	P2₁/n	P2₁/n	P2₁/n		
a (Å)	10.4325(17)	10.5242(0)	6.4800(8)	5.0247(5)	5.0700(7)	5.0950(3)		
b (Å)	5.3198(7)	5.4425(4)	10.0354(12)	25.069(3)	24.784(4)	25.1353(16)		
c (Å)	12.7174(15)	12.4602(13)	10.6890(11)	6.4693(7)	6.4982(13)	6.5334(4)		
α (°)	90	90	90	90	90	90		
β (°)	108.111(4)	107.135(3)	106.370(4)	111.501(4)	111.764(6)	110.793(3)		
γ (°)	90	90	90	90	90	90		
V (ų)	670.83(16)	662.02(11)	666.92(13)	758.20(15)	758.3(2)	782.20(8)		
Z	2	2	2	2	2	2		
ρ(g·cm⁻³)	1.927	2.175	1.981	1.880	1.879	1.850		
μ (mm⁻¹)	1.044	1.660	1.697	1.202	1.350	1.638		
GoF on F ²	1.014	0.997	1.045	1.260	1.169	1.047		
R ₁ ª [I>2σ(I)]	0.0543	0.0387	0.0280	0.0566	0.0654	0.0570		
R ₁ ^a [all data]	0.0799	0.0475	0.0323	0.1128	0.1532	0.1027		
wR₂ ^b [I>2σ(I)]	0.0992	0.0725	0.0784	0.1366	0.1547	0.0846		
wR ₂ ^b [all data]	0.1125	0.0771	0.0805	0.1934	0.2380	0.0955		
${}_{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} _{,b} wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}$								

Table S12Crystallographic data and structure refinement details.

S10. Theoretical calculations

Fig. S9 Molecular representation of **2**: (a) schematic representation of the coordination compound; (b) **f4Cd** fragment containing four Cd atoms, and (c) **f1Cd** fragment containing one Cd atom.

Fig. S11 (a) ONIOM model cluster of compound **6.** (b) The active molecule (in red) is treated as high level (CAM-B3LYP-D3/6-31G**+LANL2DZ) and the surrounding molecules (in blue) as low level (PM6).