Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Layered rare-earth hydroxides as multi-modal medical imaging probes: particle size optimisation and compositional exploration

Margarita Strimaite,^{a,b} Connor J. R. Wells,^c Timothy J. Prior,^d Daniel J. Stuckey,^b Jack A. Wells,^b Gemma L. Davies,^{c,e*} Gareth R. Williams^{a*}

^a UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK

^b UCL Centre for Advanced Biomedical Imaging, University College London, 72 Huntley Street, London, WC1E 6DD, UK

 $^{\rm c}$ Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK

^d Chemistry, School of Natural Sciences, University of Hull, Kingston Upon Hull, HU6 7RX, UK

^e School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

* authors for correspondence. Email: <u>g.davies.7@bham.ac.uk</u> (GLD); <u>g.williams@ucl.ac.uk</u> (GRW)

Particle size optimisation

Table S1 Summary of reaction parameters generated using the JMP Pro 14 software, and precursor solution volumes for all samples. Sample names are designated as T-X-Y-Z, where T = temperature during synthesis, X = incubation time, and Y = fill volume, and Z = replicate number (if applicable).

a 1	-		Total	Volume of	Volume of
Sample	Temperature	Incubation	Volume	IDCI ₃ .6H ₂ O	NaCI/NaOH
name	(°C)	time (h)	(ml)	solution (ml)	solution (ml)
90-8-10	90	8	10	7.5	2.5
90-4-18-1	90	4	18	13.5	4.5
90-4-18-2	90	4	18	13.5	4.5
90-4-18-3	90	4	18	13.5	4.5
90-4-18-4	90	4	18	13.5	4.5
90-4-18-5	90	4	18	13.5	4.5
90-4-18-6	90	4	18	13.5	4.5
100-10-10	100	10	10	7.5	2.5
100-10-18	100	10	18	13.5	4.5
100-24-10	100	24	10	7.5	2.5
100-24-18	100	24	18	13.5	4.5
140-4-10	140	4	10	7.5	2.5
140-8-18	140	8	18	13.5	4.5
200-10-10	200	10	10	7.5	2.5
200-10-18	200	10	18	13.5	4.5
200-24-10	200	24	10	7.5	2.5
200-24-18	200	24	18	13.5	4.5

Figure S1 Representative XRD patters for LTbH synthesised according to the previously reported method (at 150 °C),¹ and at 90, 100, and 140 °C; attempted LTbH synthesis at 200 °C yielded an orthorhombic Tb(OH)₂Cl phase. The LTbH system is indexed to the orthorhombic Pca2₁ space group.

Figure S2 Observed X-ray diffraction pattern for phase obtained at 200 °C (above), and simulated pattern for Pnma $Tb(OH)_2CI$ based on the prototype $Lu(OH)_2CI$ (below). Observed and simulated patterns are for Mo K α 1 radiation. The phase obtained at 200 °C can be indexed using the primitive orthorhombic cell a = 12.6008(6) Å, b = 3.6638(2) Å, c = 6.2506(3) Å. This is consistent with the Pnma phases $Ln(OH)_2CI$ (Ln = Tm, Yb, Lu) reported previously.² This previous report identified a monoclinic form of $Ln(OH)_2CI$, but it is clear that a second form exists, orthorhombic $Ln(OH)_2CI$.

Figure S3 SEM image of orthorhombic Tb(OH)₂Cl phase produced when attempting LTbH-Cl synthesis at 200 °C

Table S2 Summary of average particle sizes from SEM images, hydrodynamic diameters, and polydispersity indexes of materials made under different conditions. Note: none of the above were measured for samples synthesised at 200 °C, as material morphology was not suitable for theranostic applications. Hydrodynamic diameter and polydispersity measurements were conducted only for size-optimised samples.

Sample	Size by SEM (nm)	Particles measured	Hydrodynamic diameter (nm)	Polydispersity index
90-8-10	206 ± 80	293	n/a	n/a
90-4-18-1	162 ± 85	460	199 ± 3	0.15 ± 0.04
90-4-18-2	151 ± 56	472	196 ± 2	0.18 ± 0.02
90-4-18-3	159 ± 52	515	199 ± 2	0.17 ± 0.03
90-4-18-4	146 ± 49	398	194 ± 6	0.15 ± 0.05
90-4-18-5	147 ± 47	849	194 ± 1	0.18 ± 0.04
90-4-18-6	152 ± 61	840	201 ± 2	0.20 ± 0.02
100-10-10	293 ± 126	391	n/a	n/a
100-10-18	308 ± 128	246	n/a	n/a
100-24-10	307 ± 127	247	n/a	n/a
100-24-18	344 ± 130	205	n/a	n/a
140-4-10	312 ± 135	251	n/a	n/a
140-8-18	413 ± 209	227	n/a	n/a
200-10-10	n/a	n/a	n/a	n/a
200-10-18	n/a	n/a	n/a	n/a
200-24-10	n/a	n/a	n/a	n/a
200-24-18	n/a	n/a	n/a	n/a

Table S3 Statistical analysis of the particle sizes measured by SEM. One-way analysis of variance (ANOVA) was used to determine the statistical significance (at the p = 0.05 level) in the difference of means for particle size measurements. A Fisher's LSD (if sample means had unequal variance) post hoc test was used to determine which sample means differed significantly. Samples which share a group number are not statistically different. * Data from previously published work.¹

Sample	Mean particle size (nm)		Groups	of statisti	ical equiv	alence	
Previous work*	670	1					
90-8-10	206		2				
90-4-18-1	162			3			
90-4-18-2	151			3			
90-4-18-3	159			3			
90-4-18-4	146			3			
90-4-18-5	147			3			
90-4-18-6	152			3			
100-10-10	293				4		
100-10-18	308				4	5	
100-24-10	307				4	5	
100-24-18	344					5	
140-4-10	312				4	5	
140-8-18	413						6

Figure S4 XRD patterns for the replicates of LTbH synthesised at the optimised conditions (90 °C, 4-hour incubation time, 18 ml fill volume). The LTbH system is indexed to the orthorhombic $Pca2_1$ space group.

Figure S5 Superimposed hydrodynamic diameter data from DLS experiments on all size-optimised LTbH samples (each sample suspension was prepared once and measured in triplicate).

Application of optimised synthetic method to other LRHs (R = Pr, Nd, Gd, Dy, Er, Yb)

Table S4 A summary of (010) reflection positions and refined unit cell parameters of LRH materials. (R = Pr, Nd, Gd, Dy, Er, Yb). Note: LYbH was not phase pure, data shown is for most abundant phase.

Material	20 / °	a / Å	b/Å	c / Å
LPrH	10.24	12.49 ± 0.02	8.60 ± 0.01	7.14 ± 0.01
LNdH	10.24	12.54 ± 0.02	8.70 ± 0.01	7.02 ± 0.02
LGdH	10.50	12.71 ± 0.02	8.42 ± 0.01	7.047 ± 0.01
LDyH	10.52	12.52 ± 0.02	8.37 ± 0.02	7.05 ± 0.02
LErH	10.58	12.60 ± 0.01	8.41 ± 0.00	7.12 ± 0.00
LYbH	10.58	12.56 ± 0.03	8.38 ± 0.01	7.02 ± 0.03

Figure S6 Thermograms of the various LRH materials (R = Pr, Nd, Gd, Dy, Er, Yb).

Table S5 Summary of observed (and calculated) values for elemental analysis and TGA data
--	--

Material	%С	%Н	Mass loss % (H ₂ O)
LPrH-Cl	1.24 (1.30)	1.53 (1.70)	4.77 (4.34)
LNdH-Cl	1.22 (1.24)	1.77 (1.97)	8.15 (7.24)
LGdH-Cl	0.42 (0.39)	1.59 (1.84)	6.83 (6.78)
LDyH-Cl	0.44 (0.39)	1.56 (1.53)	6.45 (5.74)
LErH-Cl	0.24 (0.25)	1.64 (1.68)	6.35 (5.62)
LYbH-Cl	0.07 (0.06)	1.63 (1.63)	6.03 (5.48)

Application of optimised synthetic method to generate mixed Gd/Tb LRH systems

Figure S7 Thermograms of mixed LRH materials with varying composition (R = Gd/Tb).

Figure S8 Representative SEM image used for EDXS analysis (sample LGd_{1.41}Tb_{0.59}H-Cl). Gadolinium and terbium atoms detected are shown in red and green respectively; yellow indicates sites which are either Gd or Tb.

Sample	% C	% H	Mass loss % (H ₂ O)
LGd _{1.41} Tb _{0.59} H-Cl	0.30 (0.28)	1.62 (1.78)	6.14 (6.22)
LGd _{0.88} Tb _{1.12} H-Cl	0.30 (0.28)	1.60 (1.78)	6.18 (6.21)
LGd _{0.41} Tb _{1.59} H-Cl	0.35 (0.32)	1.58 (1.74)	5.94 (5.83)

Table S6 Summary of observed (and calculated) values for elemental analysis and TGA data.

Figure S9 Observed (crosses), calculated (upper line), and difference (lower line) profiles for Rietveld refinement of LGdH-Cl. Tick marks show the positions of allowed reflections.

Figure S10 Observed (crosses), calculated (upper line), and difference (lower line) profiles for Rietveld refinement of LTbH-Cl. Tick marks show the positions of allowed reflections.

Table S7 Rietveld refinement details for LGdH-Cl, LGd_{1.41}Tb_{0.59}H-Cl, and LTbH-Cl. The initial model employed was the structure of layered ytterbium hydroxychloride, LYbH-Cl (ICSD No. 419745).³

	Orthorhombic, space group <i>Pca</i> 2 ₁						
LGdH-Cl	2540 points, 23	2540 points, 23 parameters, χ ² = 1.44, R(F) = 4.33 %, Rwp = 11.07 %					
	a/Å b/Å c/Å V/Å ³						
	12.8648(8)	12.8648(8) 8.4310(5) 7.2934(4) 791.06(6)					
LGd _{1.41} Tb _{0.59} H-Cl	2540 points, 23	2540 points, 23 parameters, χ ² = 1.44, R(F) = 5.16 %, Rwp = 10.69 %					
	a/Å b/Å c/Å V/Å ³						
	12.8043(7) 8.4191(4) 7.2571(3) 782.32(5)						
	, , , , , , , , , , , , , , , , ,						
LTbH-Cl	2473 points, 17 parameters, χ ² = 1.14, R(F) = 11.95 %, Rwp = 11.95 %						
	a/Å b/Å c/Å V/Å ³						
	12.8150(19)	8.4288(12)	7.2625(9)	784.47(15)			

$$\chi^{2} = \frac{1}{N} \sum_{i} \frac{(y_{c,i} - y_{o,i})^{2}}{\sigma^{2}[y_{o,i}]} = \frac{\sum_{i} |F_{o}| - |F_{c}|}{\sum_{i} |F_{o}|} = \frac{\left[\frac{\sum_{i} w_{i}(y_{c,i} - y_{o,i})^{2}}{\sum_{i} w_{i}y_{o,i}^{2}}\right]^{1/2}}{\sum_{i} w_{i}y_{o,i}^{2}}$$

Figure S11 Layout of MR imaging phantom consisting of a dilution series of $LGd_{1.41}Tb_{0.59}H$ in water in a section of a well plate (each well is 300 μ l in volume, filled with 300 μ l of suspension at the indicated concentration (in mg/ml). Note: suspensions 8, 9, and 10 were excluded from analysis due to low signal change relative to water.

Figure S12 Representative T_1 -weighted images of $LGd_{1.41}Tb_{0.59}H$ phantom (shown in Figure S11) at various inversion times.

$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	•••	• • •	$\bullet \bullet \bullet$	
		•••	•••	•••	
7 0020 mg	•	• •	• •	• •	• •
7.9920 ms	15.9840 ms	23.9760 ms	31.3680 ms	39.9600 ms	47.9520 ms
• •	• •	• •	• •	• •	• •
55.9440 ms	63.9360 ms	71.9280 ms	79.9200 ms	87.9120 ms	95.9040 ms
• •	• •	• •	• •	• •	• •
103.8960 ms	111.8880 ms	119.8800 ms	127.8720 ms	135.8640 ms	143.8560 ms
• •	• •	• •	• •	• •	• •
151.8480 ms	159.8400 ms	167.8320 ms	175.8240 ms	183.8160 ms	191.8080 ms
199 8000 ms	207 7920 ms	215 7940 mg	222 7760 mg	221 7960 mc	239 7600 mg
155.0000 ms	201.1320 113	213.7640 1115	223.1100 1115	231.7600 IIIS	239.7000 ms
0.17.7500	055 7440				
247.7520 ms	255.7440 ms				

Figure S13 Representative T_2 -weighted images of $LGd_{1.41}Tb_{0.59}H$ phantom (shown in Figure S11) at various echo times.

References

- Strimaite, M. et al. Layered terbium hydroxides for simultaneous drug delivery and imaging. Dalt. Trans. 50, 10275–10290 (2021).
- Zehnder, R. *et al.* Investigation of the Structural Properties of an Extended Series of Lanthanide Bis-hydroxychlorides Ln(OH)2Cl (Ln = Nd-Lu, except Pm and Sm). *Inorg. Chem.* 49, 4781-4790 (2010).
- Poudret, L., Prior, T. J., McIntyre, L. J. & Fogg, A. M. Synthesis and crystal structures of new lanthanide hydroxyhalide anion exchange materials, Ln2(OH)5X·1.5H2O (X = Cl, Br; Ln = Y, Dy, Er, Yb). *Chemistry of Materials* 20, 7447–7453 (2008).