Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material (ESI)

Table of contents

NMR Spectroscopic Data

Crystallographic Data

References

NMR Spectroscopic Data

Scheme 1 Numbering scheme of tribenzotriquinacene for NMR assignments.

Figure S1 ¹H NMR spectrum of a solution of 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (2) in CDCl₃ (500 MHz, 293 K).

Figure S2 ¹³C{¹H} NMR spectrum of a solution of 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (2) in CDCl₃ (126 MHz, 293 K).

Figure S3 ¹H NMR spectrum 2,3,6,7,10,11-hexabromo-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (3) in C_6D_6 (500 MHz, 293 K).

Figure S4 ¹³C{¹H} NMR spectrum 2,3,6,7,10,11-hexabromo-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**3**) in C₆D₆ (126 MHz, 293 K).

Figure S5 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((trimethylsilyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**4**) in C₆D₆ (500 MHz, 293 K).

Figure S6 ¹³C{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((trimethylsilyl)ethynyl)-4b,8b,12b-tripropyl-tribenzotriquinacene (4) in C₆D₆ (126 MHz, 293 K).

Figure S7 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((trimethylsilyl)ethynyl)-4b,8b,12b-tripropyl-tribenzotriquinacene (4) in C_6D_6 (99 MHz, 293 K).

Figure S8 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexaethynyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**5**) in C_6D_6 (500 MHz, 293 K).

in C₆D₆ (126 MHz, 293 K).

Figure S10 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyl-tribenzotriquinacene (**6**) in C_6D_6 (500 MHz, 293 K).

Figure S11 ¹¹B NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyl-tribenzotriquinacene (**6**) in C_6D_6 (126 MHz, 293 K).

 $[\]delta$ [ppm]

Figure S12 ¹³C{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (6) in C₆D₆ (160 MHz, 293 K).

Figure S13 ¹⁹F NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyl-tribenzotriquinacene (**6**) in C_6D_6 (126 MHz, 293 K).

Figure S14 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**) in C₆D₆ (500 MHz, 293 K).

Figure S15 ¹³C{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**) in C₆D₆ (126 MHz, 293 K).

B (s) -3.52

A (s) -3.26

Figure S16 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**) in C_6D_6 (99 MHz, 293 K).

Figure S17 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((trimethylstannyl)ethynyl)- 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (8) in C_6D_6 (500 MHz, 293 K).

Figure S18 ${}^{13}C{}^{1}H$ NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((trimethylstannyl)ethynyl)- 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (8) in C₆D₆ (126 MHz, 293 K).

Figure S19 ¹¹⁹Sn{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((trimethylstannyl)ethynyl)- 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (8) in C₆D₆ (187 MHz, 293 K).

Figure S20 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)- 4b,8b,12b-tri*n*-propyltribenzotriquinacene (9) in C₆D₆ (500 MHz, 293 K).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $\delta[{\rm ppm}]$

Figure S21 ¹³C{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**9**) in C₆D₆ (126 MHz, 293 K).

Figure S22 ¹¹B NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)- 4b,8b,12b-tri*n*-propyltribenzotriquinacene (9) in C₆D₆ (160 MHz, 293 K).

Figure S23 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**) in C₆D₆ (500 MHz, 293 K).

Figure S24 ¹³C{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**) in C₆D₆ (126 MHz, 293 K).

Figure S25 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**) in C₆D₆ (99 MHz, 293 K).

Figure S26 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((pentafluroethyl)stibanyl)ethynyl)- 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**11**) in C₆D₆ (500 MHz, 293 K).

Figure S27 ¹⁹F NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((pentafluroethyl)stibanyl)ethynyl)- 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**11**) in C₆D₆ (126 MHz, 293 K).

Figure S28 ¹³C{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((pentafluroethyl)stibanyl)ethynyl)- 4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**11**) in C₆D₆ (126 MHz, 293 K).

Figure S29 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**6**)·6 pyridine in CD_2Cl_2 (500 MHz, 293 K).

Figure S30 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**6**)·6 pyridine in C_6D_6 (500 MHz, 293 K).

Figure S31 ¹¹B NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**6**) \cdot 6 pyridine in C₆D₆ (160 MHz, 293 K).

-85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 δ [ppm]

Figure S32 ¹⁹F NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(bis(pentafluorophenyl)boryl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**6**)·6 pyridine in C_6D_6 (126 MHz, 293 K).

Figure S33 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**)·6 pyridine in C₆D₆ (300 MHz, 293 K).

Figure S34 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**)·6 pyridine in C₆D₆ (99 MHz, 293 K).

Figure S35 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**9**)·6 pyridine in CD₂Cl₂ (500 MHz, 293 K).

A (s) 7.07

Figure S36 ¹¹B NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri*n*-propyltribenzotriquinacene (**9**)-6 pyridine in CD₂Cl₂ (160 MHz, 293 K).

Figure S37 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-Hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri*n*-propyltribenzotriquinacene (**9**)-6 pyridine in C₆D₆ (300 MHz, 293 K).

Figure S38 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)·6 pyridine in C_6D_6 (500 MHz, 293 K).

Figure S39 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)·6 pyridine in C₆D₆ (500 MHz, 293 K).

Figure S40 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**)·3 pyrazine in C_6D_6 (500 MHz, 293 K).

Figure S41 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**)·3 pyrazine in C₆D₆ (99 MHz, 293 K).

Figure S42 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)·3 TMPDA in C_6D_6 (500 MHz, 293 K).

12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -5 δ [ppm]

Figure S43 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)·3 TMPDA in C₆D₆ (99 MHz, 293 K).

Figure S44 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**)·3 BisImi in THF-*d*8 (500 MHz, 293 K).

Figure S45 ²⁹Si{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)vinyl-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**7**)·3 BisImi in THF-*d*8 (99 MHz, 293 K).

Figure S46 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**9**)·3 BisPhos in C₆D₆ (500 MHz, 293 K).

Figure S47 ¹¹B NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri*n*-propyltribenzotriquinacene (9)·3 BisPhos in C₆D₆ (160 MHz, 293 K).

Figure S48 ³¹P{¹H} NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((benzo[*d*][1,3,2]dioxaborol-2-yl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (9)·3 BisPhos in C₆D₆ (202 MHz, 293 K).

Figure S49 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)·3 BisPhos in C₆D₆ (500 MHz, 293 K).

Figure S51 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)· 3 BisTriaz in THF-*d*8 (500 MHz, 293 K).

Figure S52 ¹H NMR spectrum of a solution of 2,3,6,7,10,11-hexakis(2-bis(bis(trimethylsilylmethyl)aluminyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**10**)·3 BisTriaz in THF-*d*8 (99 MHz, 293 K).

propyltribenzotriquinacene (11)·3 Bu₄NI in C₆D₆ (500 MHz, 293 K).

Fig S54 ¹⁹F NMR spectrum of a solution of 2,3,6,7,10,11-hexakis((pentafluroethyl)stibanyl)ethynyl)-4b,8b,12b-tri-*n*-propyltribenzotriquinacene (**11**)·3 Bu_4NI in C_6D_6 (126 MHz, 293 K).

Crystallographic data

Suitable crystals were obtained by slow evaporation of saturated solutions in *n*-hexane (**2**, **4**) or toluene (**3**), by cooling saturated solutions of toluene (**7**, **8**) or *n*-hexane (**10**) to -30° C or slowly grown from supersaturated solutions in benzene (**10**·3 BisPhos). The crystals were selected, coated with PARATONE-N oil, mounted on a glass fibre and transferred onto the goniometer of the diffractometer into a cold nitrogen gas stream, which immediately solidifies the oil. Data collection was performed on a Rigaku SuperNova diffractometer. Using Olex2¹ the structures were solved with the SHELXT² structure solution program and refined with the SHELXL³ refinement package.

CCDC 2325781-2325787 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/conts/retrieving.html

Figure S55 Molecular structure of **2** in the crystalline state. Displacements ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.565(2), C(2)-C(3) 1.523(2), C(3)-C(4) 1.395(2), C(4)-C(5) 1.394(2), C(2)-C(23) 1.541(2), C(23)-C(24) 1.524(2), C(24)-C(25) 1.529(2), C(1)-C(2)-C(3) 103.9(1), C(2)-C(3)-C(4) 127.9(1), C(3)-C(4)-C(5) 119.1(1).

Figure S56 Molecular structure of **2** in the crystalline state. Displacements ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.568(3), C(2)-C(3) 1.522(4), C(3)-C(4) 1.395(3), C(4)-C(5) 1.391(4), C(5)-C(6) 1.390(4), C(5)-Br(1) 1.890(3) C(6)-C(7) 1.395(4), C(7)-C(8) 1.385(4), C(8)-C(9) 1.518(3), C(9)-C(23) 1.540(3), C(23)-C(24) 1.527(4), C(24)-C(25) 1.526(4), C(1)-C(2)-C(3) 103.6(2), C(2)-C(3)-C(4) 127.6(2), C(3)-C(4)-C(5) 119.2(2), C(1)-C(9)-C(23) 115.1(2), C(4)-C(5)-Br(1) 118.1(2).

Figure S57 Molecular structure of **4** in the crystalline state. Displacements ellipsoids are drawn at 50% probability level. Hydrogen atoms and disordered parts are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)-C(2) 1.569(4), C(2)-C(3) 1.513(4), C(3)-C(4) 1.396(4), C(4)-C(5) 1.397(5), C(2)-C(23) 1.536(4), C(23)-C(24) 1.515(5), C(24)-C(25) 1.522(5), C(5)-C(32) 1.433(4), C(32)-C(33) 1.209(4), Si(1)-C(33) 1.850(3), Si(1)-C(34) 1.873(4), C(1)-C(2)-C(3) 103.5(2), C(2)-C(3)-C(4) 127.6(3), C(3)-C(4)-C(5) 120.2(3), C(4)-C(5)-C(32) 120.9(3), C(5)-C(32)-C(33) 178.5(3), C(32)-C(33)-Si(1) 174.1(3), C(33)-Si(1))-C(34) 107.8(2).

Figure S58 Molecular structure of **7** in the crystalline state. Displacement ellipsoids are drawn at 50% probability level. Methyl C atoms and H atoms as well as disordered atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)–C(2) 1.560(3), C(2)–C(3) 1.649(4), C(3)–C(4) 1.426(4), C(4)–C(5) 1.509(4), C(5)–C(32) 1.518(4), C(32)–C(33) 1.322(4), Al(1)–C(33) 2.001(4), Al(1)–C(34) 1.937(3), C(1)–C(2)–C(3) 105.3(2), C(2)–C(3)–C(4) 131.2(2), C(3)–C(4)–C(5) 124.6(2), C(4)–C(5)–C(32) 124.2(2), C(5)–C(32)–C(33) 124.9(3), C(32)–C(33)–Al(1) 121.4(3), C(33)–Al(1))–C(34) 116.4(2), C(33)–Al(1))–C(41) 124.2(2), C(3)–Al(1))–C(41) 119.4(2).

Figure S59 Molecular structure of 8 in the crystalline state. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles[°]: C(1)-C(2) 1.573(10), C(2)-C(3) 1.507(10), C(3)-C(4) 1.396(10), C(4)-C(5) 1.383(11),), C(2)-C(23) 1.576(11), C(23)-C(24) 1.516(11), C(24)-C(25) 1.531(12), C(5)-C(32) 1.419(11), C(32)-C(33) 1.209(11), Sn(1)-C(33) 2.125(8), Sn(1)-C(34) 2.128(9); C(1)-C(2)-C(3) 103.9(6), C(2)-C(3)-C(4) 128.1(7), C(3)-C(4)-C(5) 121.6(7), C(4)-C(5)-C(32) 121.8(7), C(5)-C(32)-C(33) 178.6(9), C(32)-C(33)-Sn(1) 173.5(8), C(33)-Sn(1))-C(34) 103.8(3).

Figure S60 Molecular structure of **10** in the crystalline state. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms and methyl C atoms as well as disordered parts are omitted for clarity. For further details, see the ESI.[†] Selected bond lengths [Å] and angles [°]: C(1)–C(2) 1.568(5), C(2)–C(3) 1.520(6), C(3)–C(4) 1.393(6), C(4)–C(5) 1.386(6), C(5)–C(32) 1.444(6), C(32)–C(33) 1.199(6), Al(1)–C(33) 1.903(5), Al(1)–C(34) 1.932(4), Al(1)–C(41) 1.945(5); C(1)–C(2)–C(3) 103.0(3), C(32)–C(33)–Al(1) 168.4(4), C(33)–Al(1)–C(34) 118.8(2), C(33)–Al(1)–C(41) 118.9(2), C(48)–C(49)–Al(2) 165.0(4). C(80)–C(81)–Al(4) 166.7(3), C(96)–C(97)–Al(5) 176.7(4), C(112)–C(113)–Al(6) 170.7(4).

Figure S61 Molecular structure of **10**·(3 BisPhos) in the crystalline state. Displacement ellipsoids are drawn at 50% probability level. Hydrogen atoms as well as the SiMe₃ groups are omitted and the TBTQ backbone is greyed out for clarity. Selected bond lengths [Å] and angles [°]: C(32)–C(33) 1.210(6), Al(1)–C(33) 1.973(7), Al(1)–C(34) 1.977(8), Al(1)–C(41) 2.025(10), Al(1)–P(1) 2.506(7), P(1)–C(130) 1.866(6), C(130)–Si(25) 1.890(6),); C(32)–C(33)–Al(1) 156.4(5), C(33)–Al(1)–P(1) 89.7(2), C(33)–Al(1)–C(34) 111.2(4), C(33)–Al(1)–C(41) 123.5(4), Al(1)–P(1)–C(128) 119.9(3), C(48)–C(49)–Al(2) 164.0(4). C(80)–C(81)–Al(4) 163.2(4), C(112)–C(113)–Al(6) 160.3(4).

Table S1 Crystallographic data of TBTQ compounds 2, 3, and 4.

	2 ^[a]	3 ^[b]	4 [c]
Empirical formula	C ₃₁ H ₃₄	C _{72.5} H ₆₈ Br ₁₂	C ₈₂ H ₁₀₂ Si ₆
<i>M</i> _r	406.58	1898.19	1256.17
<i>Т</i> [К]	100.0(1)	100.0(1)	100.0(1)
Crystal system	triclinic	monoclinic	monoclinic
Space group	$P\overline{1}$	P21/n	12/a
a [Å]	9.0140(4)	19.0157(3)	27.3971(4)
b [Å]	9.3643(3)	20.0868(4)	25.3293(3)
<i>c</i> [Å]	14.7850(5)	19.9871(3)	24.4731(3)
α [°]	99.294(3)	90	90
β [°]	104.180(3)	113.226(2)	99.9320(10)
γ [°]	93.662(3)	90	90
<i>V</i> [ų]	1187.09(8)	7015.6(2)	16728.6(4)
Ζ	2	4	8
$ ho_{calc}$ [g cm ⁻³]	1.137	1.797	0.998
μ [mm ⁻¹]	0.473	6.892	1.208
F(000) [e]	440	3692	5424
Crystal size [mm ³]	$0.12 \times 0.08 \times 0.02$	0.22 × 0.077 × 0.062	0.24 × 0.17 × 0.16
Radiation [Å]	Cu Kα (λ = 1.54184)	Μο Κα (λ = 0.71073)	Cu Kα (λ = 1.54184)
20 range for data collection [°]	6.272 to 152.684	3.004 to 64.402	4.784 to 153.436
Index ranges	$-11 \le h \le 11$, $-28 \le h \le 26$,		$-34 \le h \le 31,$
	$-6 \le k \le 11$, $-28 \le k \le 28$,		$-31 \le k \le 31,$
	− 18 ≤ <i>l</i> ≤ 18	–29 ≤ / ≤ 28	<i>−</i> 30 ≤ <i>l</i> ≤ 30
Reflections collected	9704	105349	166256
Independent reflections	4856 $[R_{int} = 0.0228,$	22899 $[R_{int} = 0.0485,$	17424 $[R_{int} = 0.0329,$
	R _{sigma} = 0.0333]	R _{sigma} = 0.0461]	R _{sigma} = 0.0144]
Reflections with $l > 2\sigma(l)$	4125	17003	15581
Data/restraints/parameters	4856/0/416	22899/164/801	17424/157/709
Goodness-of-fit on F ²	1.037	1.015	1.046
Final R indexes [$l > 2\sigma(l)$]	$R_1 = 0.0419, wR_2 = 0.1037$	$R_1 = 0.0388, wR_2 = 0.0732$	$R_1 = 0.0979$, w $R_2 = 0.2880$
Final R indexes [all data]	$R_1 = 0.0508$, w $R_2 = 0.1109$	$R_1 = 0.0661, wR_2 = 0.0818$	$R_1 = 0.1033, wR_2 = 0.2938$
Largest diff. peak/hole [<i>e</i> Å ⁻³]	0.35/-0.21	1.47/-1.05	0.81/-0.73
CCDC number	2325781	2325782 2325783	

[a] Hydrogen atoms were refined isotropically.

[b] Disorder of a half toluene molecule on an inversion centre. This toluene was included using the fragment database of Olex2. The anisotropic displacement parameters were restrained with ISOR.

[c] Disorder over two sites of C(39), C(40), C(41) (57:43), of C(54), C(55), C(56) (54:46) and of Si(6), C(59), C(60), C(61) (66:34). Displacement parameter were restrained with RIGU. Solvent molecules were disordered. A solvent mask was calculated, and 1258 electrons were found in a volume of 5420 Å³ in 2 voids. This is consistent with the presence of 2.5 C_6H_6 , 1 C_6H_6 per formula unit, which accounts for 1176.0 electrons.

	7 ^[a]	8	10 ^[b]	10· (3 BisPhos) ^[c]
Empirical formula	$C_{155}H_{300}AI_6Si_{24}$	$C_{89}H_{114}Sn_6$	C ₁₃₉ H ₂₈₄ Al ₆ Si ₂₄	$C_{181}H_{352}AI_6P_6Si_{27}$
M _r	2999.97	1895.94	2791.69	3634.73
T [K]	100.0(1)	100.0(1)	100.0(1)	100.0(1)
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	C2/c	P21/c	ΡĪ	ΡĪ
a [Å]	39.1993(6)	28.3182(9)	17.4659(5)	25.0396(4)
b [Å]	22.8491(2)	25.1639(5)	21.6812(6)	25.2861(5)
c [Å]	46.9723(7)	25.1299(7)	26.9593(8)	28.1063(5)
α [°]	90	90	105.168(2)	95.762(1)
β [°]	109.4807(16)	97.566(3)	93.414(2)	106.883(2)
γ[°]	90	90	105.343(2)	118.836(2)
V [ų]	39663.2(9)	17751.6(8)	9410.8(5)	14290.2(5)
Ζ	8	8	2	2
$ ho_{calc}$ [g cm ⁻³]	1.005	1.419	0.985	0.845
μ [mm ⁻¹]	1.991	1.701	0.225	0.203
F(000) [e]	13152	7584	3064	3968
Crystal size [mm ³]	$0.18 \times 0.1 \times 0.02$	$0.191 \times 0.096 \times 0.053$	$0.26 \times 0.21 \times 0.08$	$0.425 \times 0.228 \times 0.187$
Radiation [Å]	Cu Kα (λ = 1.54184)	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)
2 <i>O</i> range for data collection [°]	4.546 to 179.294	3.236 to 51.364	6.602 to 50.7	6.426 to 50.054
Index ranges	<i>–</i> 47 ≤ <i>h</i> ≤ 49,	$-34 \le h \le 34,$	$-21 \le h \le 21,$	–29 ≤ h ≤ 29,
-	$-28 \le k \le 19,$	$-30 \le k \le 30,$	$-26 \le k \le 26$,	$-30 \le k \le 30,$
	-60 ≤ / ≤ 60	-30 ≤ / ≤ 30	-32 ≤ / ≤ 32	-33 ≤ 1 ≤ 33
Reflections collected	171495	158656	158906	598233
Independent	40324 [$R_{int} = 0.0588$,	33709 [$R_{int} = 0.0848$,	34364 [$R_{int} = 0.0620$,	50346 [$R_{int} = 0.0805$,
reflections	R _{sigma} = 0.0372]	R _{sigma} = 0.0726]	R _{sigma} = 0.0655]	R _{sigma} = 0.0397]
Reflections with $I > 2\pi(I)$	33297	23036	24611	36173
20(1) Data (restraints (nare	40222/1514/1760	22700/0/1752	24264/1007/1047	F0246/21/1074
meters	40322/1514/1769	33709/0/1/53	34364/1907/1947	50346/31/1974
Goodness-of-fit on F ²	1.047	1.099	1.064	1.060
Final <i>R</i> indexes [1 >	$R_1 = 0.0705,$	$R_1 = 0.0593,$	$R_1 = 0.0755,$	$R_1 = 0.0831,$
2σ(/)]	$wR_2 = 0.1877$	$wR_2 = 0.1405$	$wR_2 = 0.1703$	$wR_2 = 0.2255$
Final R indexes [all	$R_1 = 0.0808,$	$R_1 = 0.1006,$	$R_1 = 0.1088,$	$R_1 = 0.1115,$
data]	$wR_2 = 0.1972$	$wR_2 = 0.1621$	$wR_2 = 0.1872$	$wR_2 = 0.2542$
Largest diff. peak/hole	0.97/-0.62	2.25/-1.27	1.94/-0.69	0.78/-0.48
[<i>e</i> Å ⁻³]				
CCDC number	2325784	2325785	2325786	2325787

Table S2 Crystallographic data of TBTQ compounds 7, 8, 10 and 10 (3 BisPhos) .

[a] A solvent mask was calculated and 1556 electrons were found in a volume of 7628 Å³ in 6 voids per unit cell. This is consistent with the presence of 4 toluene molecules per asymmetric unit which account for 1600 electrons per unit cell. Disorder of (Bis)₂Al-groups over two sites: Si(1), Si(2), C(35), C(36), C(38) C(40) (91:9); Si(3), C(42) to C(47) (61:39); C(93) to C(95) (78:22); Si(17); Si(18), C(98) to C(102) (59:41); Si(19), Si(20), C(106) to C(111) (68:32); C(123) to C(124) (63:47). Suitable constraints and restraints were used.

[b] Disorder of some parts of the molecule over two sites with a ratio of 63:37 Disorder of one hexane molecule over two sites with a ratio of 75 (C128–C133):25 (C140–C145).

[c] Disorder over to sites of Si(3) to Si(8), Si(25), Al(1), P(1), P(2), C(41) to C(47), C(50) to C(59), C(61), C(63), C(129), C(131) to C(136) (82:20), Si(12); C(77) to C(79) in ratio (90:10), Si(27), C(147), C(148) (88:12), Si(21), Si(22), C(114) to C(120) (80:20). The ADP's of the disordered atoms were constrained to be same in pairs. Solvent C₆H₆ was disordered and partially occupied, therefore a solvent mask was calculated and 433 electrons were found in a volume of 5445 Å³ in 4 voids per unit cell. This is consistent with the presence of 5 C₆H₆ per asymmetric unit which account for 420 electrons per unit cell.

References

- 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
- (a) G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122, (b) G. M. Sheldrick, Acta Crystallogr., Sect. A 2015, 71, 3–8.
- 3. G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.