Supplementary material

Influence of proline and hydroxyproline as antimicrobial and anticancer peptide components on the silver(I) ion activity: structural and biological evaluation with a new theoretical and experimental SAR approach

Gabriela Kuzderová,^a Simona Sovová,^{b,c} Michaela Rendošová,^a Róbert Gyepes,^d Danica Sabolová, ^b Ivona

Kožárová, ^c Ľudmila Balážová, ^e Mária Vilková, ^f Martin Kello, ^g Alan Liška, ^h and Zuzana Vargová^{*a}

^aDepartment of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic

^bDepartment of Biochemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic

^cDepartment of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak republic

^dDepartment of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00 Prague, Czech Republic

^eDepartment of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic

^fNMR Laboratory, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic

^gDepartment of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovak Republic

^hDepartment of Molecular Electrochemistry and Catalysis, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3/2155, 182 23 Praha 8, Czech Republic

	AgPro	АдНур
Empirical formula	$C_{10}H_{18}Ag_2N_4O_{10}$	$C_{10}H_{18}Ag_2N_4O_{12}$
Formula weight	570.02	602.02
Temperature [K]	120(2)	120(2)
Wavelength [Å]	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁
Unit cell dimensions	<i>a</i> = 5.4739(1)	a = 5.5261(4)
[Å, °]	<i>b</i> = 11.0228(3)	<i>b</i> = 11.2082(8)
	<i>c</i> = 13.9383(4)	c = 14.0565(12)
	$\alpha = 90$	$\alpha = 90$
	$\beta = 98.0410(10)$	$\beta = 97.992(3)$
	$\gamma = 90$	$\gamma = 90$
Volume [Å ³]	832.74(4)	862.17(11)
Ζ	2	2
Calculated density [g.cm-3]	2.273	2.319
Absorption coefficient [mm ⁻¹]	2.414	2.346
<i>F</i> (000)	560	592
Crystal size [mm ³]	0.437 x 0.070 x 0.066	0.171 x 0.162 x 0.058
θ range for data collection [°]	2.365 - 29.980	2.333 - 26.489
Index ranges	-6≤ <i>h</i> ≤7, -15≤ <i>k</i> ≤15, -19≤ <i>l</i> ≤18	-6≤ <i>h</i> ≤6, -14≤ <i>k</i> ≤14, -17≤ <i>l</i> ≤17
Reflections collected/unique	21750 / 4834	31594 / 3526
Data / restraints / parameters	4834 / 0 / 251	3526 / 17 / 267
Completeness to theta = 25.242° [%]	99.9	99.6
Max. and min. transmission	0,86 and 0.66	0.88 and 0.72
Goodness-of-fit on F^2	1.036	1.108

Table S1 Crystal data and structure refinement for silver(I) complexes.

Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0152; wR2 = 0.0329	R1 = 0.0351; wR2 = 0.1062
R indices (all data)	R1 = 0.0156; wR2 = 0.0331	R1 = 0.0358; wR2 = 0.1071
Largest diff. peak and hole [e.Å-3]	0.544, -0.426	2.396, -1.008

Table S2 Bond distances (Å) and angles (°) for \mathbf{AgPro}

Bond distances			
Ag(1)—O(2)	2.2210(18)	C(5)—H(5B)	0.9900
Ag(1)—O(3)	2.2334(18)	O(3)—C(6)	1.262(3)
$Ag(1) - O(1)^{i}$	2.4230(15)	O(4)—C(6)	1.249(3)
Ag(1)—O(8)	2.592(2)	C(6)—C(7)	1.523(3)
Ag(1)— $Ag(2)$	2.8375(3)	C(7)—N(2)	1.504(3)
Ag(2) - O(4)	2.2748(18)	C(7) - C(8)	1.535(4)
Ag(2) - O(1)	2.3605(17)	C(7) - H(7)	1.0000
$Ag(2) - O(3)^{ii}$	2.3887(17)	N(2) - C(10)	1.506(4)
O(1) - C(1)	1.251(3)	N(2) - H(2NA)	0.85(4)
O(2) - C(1)	1.256(3)	N(2) - H(2NB)	0.83(3)
C(1) - C(2)	1.522(3)	C(8) - C(9)	1.522(4)
C(2) - N(1)	1.508(3)	C(8)—H(8A)	0.9900
C(2) - C(3)	1.547(4)	C(8) - H(8B)	0.9900
C(2) - H(2)	1.0000	C(9) - C(10)	1.507(4)
N(1) - C(5)	1.494(4)	C(9) - H(9A)	0.9900
N(1)— $H(1NA)$	0.97(4)	C(9) - H(9B)	0.9900
N(1) - H(1NB)	0.77(4)	C(10) - H(10A)	0.9900
C(3) - C(4)	1.526(4)	C(10) - H(10B)	0.9900
C(3) - H(3A)	0.9900	N(3)—O(5)	1.241(3)
C(3) - H(3B)	0.9900	N(3) - O(7)	1.256(3)
C(4) - C(5)	1.529(4)	N(3)—O(6)	1.259(3)
C(4)— $H(4A)$	0.9900	N(4)—O(9)	1.234(3)
C(4) - H(4B)	0.9900	N(4) - O(10)	1.255(3)
C(5) - H(5A)	0.9900	N(4)—O(8)	1.272(3)
Bond angles			
O(2) - Ag(1) - O(3)	165.63(7)	C(4) - C(5) - H(5A)	111.3
$O(2) - Ag(1) - O(1)^{i}$	112.77(6)	N(1) - C(5) - H(5B)	111.3
$O(3) - Ag(1) - O(1)^{i}$	81 20(6)	C(4) - C(5) - H(5B)	111.3
O(2) - Ag(1) - O(8)	91 55(7)	H(5A) - C(5) - H(5B)	109.2
O(3) - Ag(1) - O(8)	82.06(7)	C(6) - O(3) - Ag(1)	124 81(16)
$O(1)^{i} - Ag(1) - O(8)$	101.08(7)	$C(6) - O(3) - Ag(2)^{i}$	120.01(10) 130.33(15)
O(2) Ag(1) Ag(2)	90.03(5)	$A_{\sigma}(1) \longrightarrow O(3) \longrightarrow A_{\sigma}(2)^{i}$	101.98(7)
O(3) - Ag(1) - Ag(2)	77.04(5)	C(6) - O(4) - Ag(2)	116 45(16)
$O(1)^{i} - Ag(1) - Ag(2)$	154 63(5)	O(4) - C(6) - O(3)	126.8(2)
O(8)—Ag(1)—Ag(2)	88.75(5)	O(4) - C(6) - C(7)	118.6(2)
O(4) - Ag(2) - O(1)	152.80(8)	O(3) - C(6) - C(7)	114.6(2)
$O(4) - Ag(2) - O(3)^{ii}$	113.16(6)	N(2) - C(7) - C(6)	110.30(19)
$O(1) - Ag(2) - O(3)^{ii}$	79.40(6)	N(2) - C(7) - C(8)	104.7(2)
O(4) Ag(2) Ag(1)	85 08(5)	C(6) - C(7) - C(8)	1115(2)
O(1) Ag(2) Ag(1)	75 21(4)	N(2) - C(7) - H(7)	110.1
$O(3)^{ii}$ Ag(2) Ag(1)	150.92(5)	C(6) - C(7) - H(7)	110.1
$C(1) \longrightarrow O(1) \longrightarrow Ag(2)$	100.92(0)	C(0) = C(7) = H(7)	110.1
$C(1) = O(1) = Ag(1)^{ii}$	128(04(15))	((3) - ((/) - H(/))	
	128.04(15) 128.13(16)	C(8) = C(7) = H(7) C(7) = N(2) = C(10)	108.4(2)
$Ag(2) - O(1) - Ag(1)^{ii}$	128.04(15) 128.13(16) 97.36(6)	C(8) - C(7) - H(7) C(7) - N(2) - C(10) C(7) - N(2) - H(2NA)	108.4(2) 107(2)
$Ag(2) - O(1) - Ag(1)^{ii}$ $C(1) - O(2) - Ag(1)^{ii}$	128.04(15) 128.13(16) 97.36(6) 117.15(16)	C(8) - C(7) - H(7) C(7) - N(2) - C(10) C(7) - N(2) - H(2NA) C(10) - N(2) - H(2NA)	108.4(2) 107(2) 109(2)
$\begin{array}{c} C(1) & O(1) & Ag(1) \\ Ag(2) & O(1) & Ag(1) \\ C(1) & O(2) & Ag(1) \\ O(1) & C(1) & O(2) \end{array}$	128.04(15) 128.13(16) 97.36(6) 117.15(16) 127.1(2)	C(8) - C(7) - H(7) $C(7) - N(2) - C(10)$ $C(7) - N(2) - H(2NA)$ $C(10) - N(2) - H(2NA)$ $C(7) - N(2) - H(2NB)$	108.4(2) 107(2) 109(2) 114(2)
$\begin{array}{c} C(1) - O(1) - Ag(1)^{ii} \\ Ag(2) - O(1) - Ag(1)^{ii} \\ C(1) - O(2) - Ag(1) \\ O(1) - C(1) - O(2) \\ O(1) - C(1) - C(2) \end{array}$	128.04(15) 128.13(16) 97.36(6) 117.15(16) 127.1(2) 115.8(2)	C(8) - C(7) - H(7) $C(7) - N(2) - C(10)$ $C(7) - N(2) - H(2NA)$ $C(10) - N(2) - H(2NA)$ $C(7) - N(2) - H(2NB)$ $C(10) - N(2) - H(2NB)$	108.4(2) 107(2) 109(2) 114(2) 111(2)
$\begin{array}{c} C(1) - O(1) - Ag(1)^{ii} \\ Ag(2) - O(1) - Ag(1)^{ii} \\ C(1) - O(2) - Ag(1) \\ O(1) - C(1) - O(2) \\ O(1) - C(1) - O(2) \\ O(2) - C(1) - C(2) \\ O(2) - C(1) - C(2) \end{array}$	128.04(15) $128.13(16)$ $97.36(6)$ $117.15(16)$ $127.1(2)$ $115.8(2)$ $117.0(2)$	C(8) - C(7) - H(7) $C(7) - N(2) - C(10)$ $C(7) - N(2) - H(2NA)$ $C(10) - N(2) - H(2NB)$ $C(7) - N(2) - H(2NB)$ $C(10) - N(2) - H(2NB)$ $H(2NA) - N(2) - H(2NB)$	108.4(2) 107(2) 109(2) 114(2) 111(2) 108(3)
$\begin{array}{l} Ag(2) \longrightarrow O(1) \longrightarrow Ag(1)^{ii} \\ C(1) \longrightarrow O(2) \longrightarrow Ag(1)^{ii} \\ C(1) \longrightarrow O(2) \longrightarrow Ag(1) \\ O(1) \longrightarrow C(1) \longrightarrow O(2) \\ O(1) \longrightarrow C(1) \longrightarrow O(2) \\ O(2) \longrightarrow C(1) \longrightarrow C(2) \\ O(2) \longrightarrow C(1) \longrightarrow C(2) \\ N(1) \longrightarrow C(2) \longrightarrow C(1) \end{array}$	128.04(15) $128.13(16)$ $97.36(6)$ $117.15(16)$ $127.1(2)$ $115.8(2)$ $117.0(2)$ $111.2(2)$	C(8) - C(7) - H(7) $C(7) - N(2) - C(10)$ $C(7) - N(2) - H(2NA)$ $C(10) - N(2) - H(2NB)$ $C(10) - N(2) - H(2NB)$ $H(2NA) - N(2) - H(2NB)$ $C(9) - C(8) - C(7)$	108.4(2) 107(2) 109(2) 114(2) 111(2) 108(3) 103.6(2)

N(1) - C(2) - C(3)	105.0(2)	C(9)—C(8)—H(8A)	111.0
C(1) - C(2) - C(3)	111.1(2)	C(7)—C(8)—H(8A)	111.0
N(1)—C(2)—H(2)	109.8	C(9)—C(8)—H(8B)	111.0
C(1) - C(2) - H(2)	109.8	C(7)—C(8)—H(8B)	111.0
C(3) - C(2) - H(2)	109.8	H(8A)—C(8)—H(8B)	109.0
C(5) - N(1) - C(2)	107.4(2)	C(10) - C(9) - C(8)	102.9(2)
C(5)—N(1)—H(1NA)	110(2)	C(10)—C(9)—H(9A)	111.2
C(2)—N(1)—H(1NA)	107(2)	C(8)—C(9)—H(9A)	111.2
C(5)—N(1)—H(1NB)	113(3)	C(10)—C(9)—H(9B)	111.2
C(2)—N(1)—H(1NB)	112(3)	C(8)—C(9)—H(9B)	111.2
H(1NA) - N(1) - H(1NB)	108(4)	H(9A)—C(9)—H(9B)	109.1
C(4) - C(3) - C(2)	105.0(2)	N(2) - C(10) - C(9)	103.2(2)
C(4)—C(3)—H(3A)	110.7	N(2)—C(10)—H(10A)	111.1
C(2) - C(3) - H(3A)	110.7	C(9)—C(10)—H(10A)	111.1
C(4)—C(3)—H(3B)	110.7	N(2)—C(10)—H(10B)	111.1
C(2)—C(3)—H(3B)	110.7	C(9)—C(10)—H(10B)	111.1
H(3A) - C(3) - H(3B)	108.8	H(10A)—C(10)—H(10B)	109.1
C(3) - C(4) - C(5)	102.4(2)	O(5)—N(3)—O(7)	120.6(2)
C(3)—C(4)—H(4A)	111.3	O(5)—N(3)—O(6)	120.5(3)
C(5) - C(4) - H(4A)	111.3	O(7)—N(3)—O(6)	118.9(2)
C(3)—C(4)—H(4B)	111.3	O(9)—N(4)—O(10)	120.9(2)
C(5)—C(4)—H(4B)	111.3	O(9)—N(4)—O(8)	120.6(2)
H(4A) - C(4) - H(4B)	109.2	O(10)—N(4)—O(8)	118.5(2)
N(1)—C(5)—C(4)	102.4(2)	N(4) - O(8) - Ag(1)	109.77(15)
N(1)—C(5)—H(5A)	111.3		

Symmetry codes: (i) x+1,y,z; (ii) x-1,y,z

Table S3 Possible hydrogen bonds (Å, °) for ${\bf AgPro}$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)—H(1NA)N(3) ⁱⁱⁱ	0.97(4)	2.55(4)	3.462(3)	156(3)
N(1)—H(1NA)O(6) ⁱⁱⁱ	0.97(4)	1.94(4)	2.903(3)	170(3)
N(1)—H(1NA)O(7) ⁱⁱⁱ	0.97(4)	2.54(4)	3.265(3)	131(3)
N(1)—H(1NB)O(7) ^{iv}	0.77(4)	2.11(4)	2.845(3)	160(4)
N(2)—H(2NA)O(4)	0.85(4)	2.16(4)	2.674(3)	119(3)
N(2)—H(2NA)O(10) ^v	0.85(4)	2.24(4)	2.905(3)	135(3)
N(2)—H(2NB)O(8)vi	0.83(3)	2.03(3)	2.815(3)	156(3)
N(2)—H(2NB)O(10) ^{vi}	0.83(3)	2.52(3)	2.979(3)	116(3)

Symmetry codes: (iii) -x,y-1/2,-z; (iv) -x+1,y-1/2,-z; (v) -x+1,y+1/2,-z+1; (vi) -x+2,y+1/2,-z+1

Table S4 Bond distances (Å) and angles (°) for \mathbf{AgHyp}

Bond distances			
Ag(1)—O(4)	2.184(6)	N(1)—H(1B)	0.86(4)
Ag(1)—O(1)	2.215(6)	O(4)—C(6)	1.259(12)
Ag(1)—O(5) ⁱⁱ	2.522(8)	C(6)—O(5)	1.224(11)
Ag(1)— $Ag(2)$	2.8756(9)	C(6)—C(7)	1.518(12)
Ag(2)—O(5)	2.309(7)	C(7)—N(2)	1.514(11)
Ag(2)—O(2)	2.318(6)	C(7)—C(8)	1.530(11)
$Ag(2) - O(1)^{i}$	2.381(6)	C(7)—H(7)	1.0000
Ag(2)—O(7)	2.595(8)	C(8)—C(9)	1.525(12)
O(1)—C(1)	1.262(10)	C(8)—H(8A)	0.9900
C(1)—O(2)	1.242(11)	C(8)—H(8B)	0.9900
C(1) - C(2)	1.533(11)	C(9)—O(6)	1.423(10)
C(2) - N(1)	1.498(11)	C(9—C(10)	1.520(12)
C(2)—C(3)	1.518(12)	C(9)—H(9)	1.0000
C(2)—H(2)	1.0000	O(6)—H(6)	0.83(4)

C(3)—C(4)	1.529(12)	C(10)—N(2)	1.519(11)
C(3)—H(3A)	0.9900	C(10)—H(10A)	0.9900
C(3)—H(3B)	0.9900	C(10)—H(10B)	0.9900
C(4)—O(3)	1.431(13)	N(2)—H(2A)	0.9100
C(4) - C(5)	1.533(13)	N(2)—H(2B)	0.9100
C(4)—H(4)	1.0000	N(3)—O(8)	1.232(11)
O(3)—H(3)	0.81(4)	N(3)—O(7)	1.255(11)
C(5) - N(1)	1.506(12)	N(3)—O(9)	1.260(11)
C(5)—H(5A)	0.9900	N(4) - O(10)	1.248(11)
C(5)—H(5B)	0.9900	N(4) - O(11)	1.257(11)
N(1) - H(1A)	0.87(4)	N(4) - O(12)	1.259(11)
Bond angles			
O(4)— $Ag(1)$ — $O(1)$	165.6(2)	C(5)—N(1)—H(1A)	102(8)
$O(4) - Ag(1) - O(5)^{ii}$	111.9(2)	C(2) - N(1) - H(1B)	119(8)
$O(1) - Ag(1) - O(5)^{ii}$	79.1(2)	C(5) - N(1) - H(1B)	101(8)
O(4)— $Ag(1)$ — $Ag(2)$	86.76(18)	H(1A) - N(1) - H(1B)	107(10)
O(1) - Ag(1) - Ag(2)	79.32(17)	C(6) - O(4) - Ag(1)	120.8(6)
$O(5)^{ii}$ Ag(1) Ag(2)	147.64(16)	O(5) - C(6) - O(4)	127.1(8)
O(5) - Ag(2) - O(2)	150.6(2)	O(5) - C(6) - C(7)	116.2(8)
$O(5) - Ag(2) - O(1)^{i}$	80.3(2)	O(4) - C(6) - C(7)	116.6(7)
$O(2) - Ag(2) - O(1)^{i}$	112.1(2)	C(6) - O(5) - Ag(2)	128.1(7)
O(5) - Ag(2) - O(7)	96.0(2)	$C(6) - O(5) - Ag(1)^{i}$	126.9(6)
O(2) - Ag(2) - O(7)	92.1(2)	$Ag(2) - O(5) - Ag(1)^{i}$	96.8(2)
$O(1)^{i}$ Ag(2) - O(7)	136.9(2)	N(2) - C(7) - C(6)	111.9(7)
O(5) - Ag(2) - Ag(1)	76.73(19)	N(2) - C(7) - C(8)	104.0(7)
O(2) - Ag(2) - Ag(1)	80.03(16)	C(6) - C(7) - C(8)	117.5(7)
$O(1)^{i}$ - Ag(2) - Ag(1)	147.65(16)	N(2) - C(7) - H(7)	107.6
O(7) - Ag(2) - Ag(1)	68.66(17)	C(6) - C(7) - H(7)	107.6
C(1) - O(1) - Ag(1)	124.1(5)	C(8) - C(7) - H(7)	107.6
$C(1) - O(1) - Ag(2)^{ii}$	132.2(5)	C(9) - C(8) - C(7)	102.5(7)
$Ag(1) - O(1) - Ag(2)^{ii}$	103.7(2)	C(9) - C(8) - H(8A)	111.3
O(2) - C(1) - O(1)	127.1(8)	C(7) - C(8) - H(8A)	111.3
O(2) - C(1) - C(2)	117.7(7)	C(9) - C(8) - H(8B)	111.3
O(1) - C(1) - C(2)	115.0(7)	C(7) - C(8) - H(8B)	111.3
C(1) - O(2) - Ag(2)	113.6(5)	H(8A) - C(8) - H(8B)	109.2
N(1) - C(2) - C(3)	102.8(7)	O(6) - C(9) - C(10)	111.4(7)
N(1) - C(2) - C(1)	110.7(7)	O(6) - C(9) - C(8)	107.6(7)
C(3) - C(2) - C(1)	110.0(7)	C(10) - C(9) - C(8)	102.3(7)
N(1) - C(2) - H(2)	111.0	O(6) - C(9) - H(9)	111.7
C(3) - C(2) - H(2)	111.0	C(10) - C(9) - H(9)	111.7
C(1) - C(2) - H(2)	111.0	C(8) - C(9) - H(9)	111.7
C(2) - C(3) - C(4)	103.7(7)	C(9) - O(6) - H(6)	109(7)
C(2) - C(3) - H(3A)	111.0	N(2) - C(10) - C(9)	104.2(7)
C(4) - C(3) - H(3A)	111.0	N(2) - C(10) - H(10A)	110.9
C(2) - C(3) - H(3B)	111.0	C(9) - C(10) - H(10A)	110.9
C(4) - C(3) - H(3B)	111.0	N(2) - C(10) - H(10B)	110.9
H(3A) - C(3) - H(3B)	109.0	C(9)—C(10)—H(10B)	110.9
O(3) - C(4) - C(3)	107.2(8)	H(10A) - C(10) - H(10B)	108.9
O(3) - C(4) - C(5)	111.9(8)	C(7) - N(2) - C(10)	107.7(7)
C(3) - C(4) - C(5)	103.1(7)	C(7) - N(2) - H(2A)	110.2
O(3) - C(4) - H(4)	111.4	C(10) - N(2) - H(2A)	110.2
C(3) - C(4) - H(4)	111.4	C(7) - N(2) - H(2B)	110.2
C(5) - C(4) - H(4)	111.4	C(10) - N(2) - H(2B)	110.2
C(4) - O(3) - H(3)	110(10)	H(2A) - N(2) - H(2B)	108.5
N(1) - C(5) - C(4)	105.4(7)	O(8) —N(3) —O(7)	120.6(9)
N(1) - C(5) - H(5A)	110.7	O(8) —N(3) —O(9)	121.2(9)
C(4) - C(5) - H(5A)	110.7	O(7) - N(3) - O(9)	118.2(8)
N(1) - C(5) - H(5B)	110.7	N(3) - O(7) - Ag(2)	98.9(6)
C(4) - C(5) - H(5B)	110.7	O(10) - N(4) - O(11)	120.4(8)
H(5A) - C(5) - H(5B)	108.8	O(10) - N(4) - O(12)	119.1(8)
C(2) - N(1) - C(5)	108.8(7)	O(11) - N(4) - O(12)	120.5(8)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3)O(12) ⁱⁱⁱ	0.81(4)	2.08(9)	2.792(10)	146(13)
N(1)-H(1A)N(4) ^{iv}	0.87(4)	2.51(6)	3.340(11)	159(10)
N(1)-H(1A)O(10) ^{iv}	0.87(4)	2.21(7)	3.029(12)	155(11)
N(1)-H(1A)O(11) ^{iv}	0.87(4)	2.38(9)	3.016(10)	130(9)
N(1)-H(1B)N(4) ^v	0.86(4)	2.61(8)	3.347(11)	145(10)
N(1)-H(1B)O(10) ^v	0.86(4)	2.30(9)	2.939(12)	132(10)
N(1)-H(1B)O(12) ^v	0.86(4)	2.20(8)	2.914(11)	141(10)
O(6)-H(6)O(9) ^{viii}	0.83(4)	1.96(5)	2.773(9)	168(10)
N(2)-H(2A)O(6) ⁱⁱ	0.91	1.99	2.773(10)	144
N(2)-H(2B)O(3)viii	0.91	1.98	2.823(10)	154

Table S5 Possible hydrogen bonds (Å, °) for AgHyp

Symmetry codes: (ii) x-1,y,z; (iii) x,y+1,z; (iv) -x+1,y+1/2,-z+1; (v) -x,y+1/2,-z+1; (viii) x+1,y-1,z

Table S6 IR spectral data assignments (cm⁻¹) for complexes AgPro and AgHyp and their appropriate ligands Pro and Hyp.

	Pro	AgPro	Нур	АдНур
v(OH)	-	-	3270	3261
$v(\mathrm{NH}_2^+) + v(\mathrm{CH}_2)$	3330-2875	3300-2872	3200-2820	3200-2850
$\delta({ m NH_2^+})$	1605	1595	1635	1632
$v_{\rm as}(\rm COO^{-})$	1552	1561	1574	1569
$v_{s}(COO^{-})$	1447	1418	1392	1413
$\Delta(v_{as} - v_s)$	-	143	-	156
$\delta(CH_2)_{sciss}$	1472	1471	-	-
V3	-	1450, 1360	-	1444, 1365
v_4	-	767, 754	-	753, 720
Δv_3	-	90	-	79
Δv_4	-	13	-	33
$\omega(CH_2)$	1375	1335	1358	1361
$v(NO_3)$	-	1288	-	1318
V _{ring}	1032, 913	1033, 925	1029, 919	1025, 920
v(ČCN)	847	853, 821	882, 843	821
$\delta_{ m ring}$	639	671	613	694
$\rho(\tilde{C}OO^{-})$	447	467	460	483

Table S7 Concentrations, absorbance at 600 nm and standard deviations for complexes AgPro and AgHyp

AgPro	Bac	Bacillus		omonas	Staphylococcus		
- igi i u	cer	eus	aerug	inosa	aureus		
o[mM]		mean of diff.		mean of		mean of	
c[mwi]	$A_{600} \pm SD$	± SE	$A_{600} \pm SD$	diff. ± SE	$A_{600} \pm SD$	diff. ± SE	
0.5	0.273 ± 0.030	0.280±0.03	0.064 ± 0.009	0.949±0.021	0.103 ± 0.019	0.963±0.027	
0.25	0.323 ± 0.032	$0.230{\pm}0.03$	0.049 ± 0.004	0.963 ± 0.021	0.099 ± 0.020	$0.967 {\pm} 0.027$	
0.125	0.383 ± 0.026	$0.170{\pm}0.03$	0.055 ± 0.018	0.957±0.021	0.085 ± 0.023	$0.982{\pm}0.027$	
0.063	0.412 ± 0.019	0.141 ± 0.03	0.069 ± 0.002	0.944 ± 0.021	0.845 ± 0.025	$0.221 {\pm} 0.027$	
0.031	0.410 ± 0.021	$0.143{\pm}0.03$	0.977 ± 0.026	0.036±0.021	0.985 ± 0.029	$0.081{\pm}0.027$	
0.016	0.419 ± 0.027	$0.134{\pm}0.03$	0.987 ± 0.047	0.026±0.021	1.012 ± 0.037	$0.055 {\pm} 0.027$	
0.008	0.437 ± 0.041	0.117±0.03	1.013 ± 0.076	0.026±0.021	1.028 ± 0.035	$0.038 {\pm} 0.027$	

AgHyp	Bacillus cereus		Pseudo aerug	monas inosa	Staphylococcus aureus		
c[mM]	$A_{600} \pm SD$	mean of diff. ± SE	A ₆₀₀ ± SD mean diff. ± SE		$A_{600} \pm SD$	mean of diff. ± SE	
0.5	0.043 ± 0.002	0.510±0.028	0.05 ± 0.001	0.963±0.022	0.075 ± 0.003	0.991±0.04	
0.25	0.053 ± 0.006	$0.501 {\pm} 0.028$	0.089 ± 0.013	0.923 ± 0.022	0.101 ± 0.036	0.966 ± 0.04	
0.125	0.047 ± 0.001	$0.507 {\pm} 0.028$	0.075 ± 0.006	$0.937 {\pm} 0.022$	0.137 ± 0.055	$0.929{\pm}0.04$	
0.063	0.048 ± 0.002	0.506 ± 0.028	0.083 ± 0.009	0.929 ± 0.022	0.614 ± 0.041	0.453 ± 0.04	
0.031	0.356 ± 0.031	$0.031 {\pm} 0.028$	0.863 ± 0.049	0.150 ± 0.022	0.795 ± 0.075	0.272 ± 0.04	
0.016	0.503 ± 0.033	$0.050{\pm}0.028$	0.953 ± 0.053	0.059 ± 0.022	0.812 ± 0.074	0.255±0.04	
0.008	0.512 ± 0.003	0.041 ± 0.028	1.027 ± 0.045	0.014±0.022	0.906 ± 0.085	$0.160{\pm}0.04$	

Table S8 Effect of the level of theory used on the predicted difference $\Delta_{21}(\log P)$ in the 2^N and $1^N \log P$ values. Except from XTB, PM7 (see the footnote), 3-21G was chosen as the basis set, CPCM as the solvation model. The calculated equilibrium constants for the mutual isomeric interconversion $1^O \rightarrow 1^N$, $2^O \rightarrow 2^N$ are provided as well.

Lovel of	Complex AgPro			Complex AgHyp			diff. Δ_{21}
theory	$\log K^{\rm w} \\ (1^{\rm O} \rightarrow 1^{\rm N})$	$\frac{\log K^{\rm oc}}{(1^{\rm O} \rightarrow 1^{\rm N})}$	log P	$\log K^{\rm w}$ (2° \rightarrow 2 ^N)	$\log K^{\rm oc} \\ (2^{\rm O} \rightarrow 2^{\rm N})$	log P	$-(\log P)$
experiment			-1.46			-1.16	0.30
XTB ^{a)}	4.49	3.63	-0.41	2.33	1.68	-0.98	-0.57
PM7 ^{b)}	6.32	5.43	-2.42	4.75	3.85	-2.92	-0.50
HF	1.41	1.03	-2.46	-0.52	-0.93	-2.80	-0.34
X3LYP	2.96	2.70	-1.87	1.59	1.23	-2.21	-0.35
O3LYP	1.38	1.09	-1.96	0.19	-0.20	-2.37	-0.41
BLYP	2.66	2.32	-1.79	1.69	1.51	-1.88	-0.09
LC-BLYP	3.41	4.09	-0.91	2.46	2.09	-2.28	-1.37
B3LYP	3.44	2.62	-2.42	1.41	1.05	-2.22	0.20
CAM- B3LYP	3.69	3.17	-2.14	1.92	1.48	-2.30	-0.16
B3LYP+GD3	3.94	3.83	-1.72	2.79	2.44	-2.21	-0.48
M06	3.91	3.15	-2.69	2.32	1.87	-2.36	0.33
M06HF	6.07	5.36	-2.47	5.09	4.84	-2.34	0.13
M06-2X	4.49	4.23	-2.06	2.65	2.28	-2.46	-0.40
wB97	3.47	3.28	-1.95	2.02	1.49	-2.54	-0.59
wB97X	3.42	3.09	-2.01	2.06	1.51	-2.56	-0.55
wB97XD	4.40	4.11	-2.04	2.94	2.42	-2.52	-0.48
MP2	1.90	1.71	-2.03	0.79	0.53	-2.35	-0.32

^{a)} XTB/GFN2 with the ALPB solvation model

^{b)} PM7 with the CPCM solvation model

Table S9 Effect of the basis set used on the predicted difference $\Delta_{21}(\log P)$ in the 2^N and $1^N \log P$ values. In all cases, B3LYP functional together with CPCM as the solvation model was utilized. The calculated equilibrium constants for the mutual isomeric interconversion $1^O \rightarrow 1^N$, $2^O \rightarrow 2^N$ are provided as well.

	Complex AgPro			C	diff. Δ_{21}		
Basis set	$\log K^{\rm w} \\ (1^{\rm O} \rightarrow 1^{\rm N})$	$\log K^{\rm oc} \\ (1^{\rm O} \rightarrow 1^{\rm N})$	log P	$\log K^{\rm w}$ (2° \rightarrow 2 ^N)	$\log K^{\rm oc}$ $(2^{\rm O} \rightarrow 2^{\rm N})$	log P	$(\log P)$
experiment			-1.46			-1.16	0.30
STO-3G	7.04	6.78	-0.85	6.22	6.05	-0.88	-0.03
CEP-4G	6.70	6.64	-1.68	6.75	6.30	-2.03	-0.36
3-21G	3.44	2.62	-2.42	1.41	1.05	-2.22	0.20
6-31G* a)	2.85	2.13	-2.57	1.21	0.48	-2.81	-0.24
6-311+G* a)	6.34	6.05	-2.84	4.30	3.60	-3.12	-0.29

^{a)} 3-21G basis set was set for the silver(I) atom.

Table S10 Effect of the chosen implicit solvation model on the predicted difference $\Delta_{21}(\log P)$ in the 2^N and $1^N \log P$ values. In all cases, B3LYP functional together with 3-21G basis set was used. The calculated equilibrium constants for the mutual isomeric interconversion $1^O \rightarrow 1^N$, $2^O \rightarrow 2^N$ are provided as well.

Solvation model	Complex AgPro			Complex AgHyp			diff. Δ_{21}
	log <i>K</i> ^w (1°→1 ^N)	log <i>K</i> ^{oc} (1 ⁰ →1 ^N)	log P	log <i>K</i> ^w (2°→2 ^ℕ)	log <i>K</i> ^{oc} (2 ^o →2 ^N)	log P	(log <i>P</i>)
experiment			-1.46			-1.16	0.30
CPCM	3.44	2.62	-2.42	1.41	1.05	-2.22	0.20
IEFPCM	3.32	2.47	-2.86	1.35	0.74	-2.98	-0.12
SMD	2.40	2.91	-3.41	1.26	1.45	-4.80	-1.38

Figure S1 IR spectra of free ligands (black lines) and silver(I) complexes AgPro (pink line) and AgHyp (violet line)

Figure S2 Thermogravimetric curves for studied silver(I) complexes measured in the air atmosphere in the temperature range of 25–600 °C.

Figure S3 ¹H NMR (600 MHz, DMSO-d₆) and ¹³C NMR (150 MHz, DMSO-d₆) spectra of complex AgHyp.

Figure S4 ¹H,¹H-COSY and ¹H,¹H-NOESY (DMSO-d₆) spectra of complex AgHyp.

Figure S5 ¹H,¹³C-HSQC and ¹H,¹³C-HMBC (DMSO-d₆) spectra of complex AgHyp.

5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 3.6 3.5 3.4 3.3 3.2 2.7 2.6 2.5 2.4 2.3 2.2 2.1 f1 [ppm]

Figure S6 Time-dependent ¹H NMR spectra of AgPro (pink lines) and AgHyp (violet lines) complexes recorded in 1% DMSO-*d*₆/D₂O.

Figure S7 Fluorescence quenching spectra of BSA in presence of AgHyp. Inset: The corresponding Stern–Volmer plot for AgHyp and BSA at 293.15 K.

Figure S8 Fluorescence quenching spectra of BSA in presence of AgHyp. Inset: The corresponding Stern–Volmer plot for AgHyp and BSA at 303.15 K.

Figure S9 Fluorescence quenching spectra of BSA in presence of AgHyp. Inset: The corresponding Stern–Volmer plot for AgHyp and BSA at 308.15 K.

Figure S10 Fluorescence quenching spectra of BSA in presence of AgPro. Inset: The corresponding Stern–Volmer plot for AgPro and BSA at 293.15 K.

Figure S11 Fluorescence quenching spectra of BSA in presence of AgPro. Inset: The corresponding Stern–Volmer plot for AgPro and BSA at 303.15 K.

Figure S12 Fluorescence quenching spectra of BSA in presence of AgPro. Inset: The corresponding Stern–Volmer plot for AgPro and BSA at 308.15 K.

Figure S13 (A) Plot of $\log[(F_0 - F) / F]$ vs. $\log[AgPro]$ at different temperatures. (B) Van't Hoff diagram of the AgPro complex interaction with BSA.

Figure 14 (A) Plot of log $[(F_0 - F) / F]$ vs. log[AgHyp] at different temperatures. (B) Van't Hoff diagram of the AgHyp complex interaction with BSA.