SUPPLEMENTARY INFORMATION

Novel Ternary AgIICoIIIF5 Fluoride: Synthesis, Structure and Magnetic Characteristics

Daniel Jezierski^{1*}, Zoran Mazej^{2*}, Wojciech Grochala^{1*}

Contents

SI.I Overview of the A^{II}B^{III}F₅ fluoride family

SI.II Structural data for AgCoF₅

SI.III Comparison of Rietveld fits for C2/c and C2/m space groups

SI.IV Magnetic data

SI.IV Experimental and theoretical phonon frequencies of AgCoF₅

SI.V Results of superexchange calculations

SI.VI References

SI.I Overview of the A^{II}B^{III}F₅ fluoride family

	Compound	Mangetic GS*	T _t [K]	REF	STRUCTURE
TM-TM	CrTiF₅	Fi	26	[1]	C2/c (Cr ₂ F ₅ - type)
	CrVF₅	Fi	40	[1]	<i>C</i> 2/ <i>c</i> (Cr ₂ F ₅ - type)
	MnCrF₅	AF	6	[2]	C2/c
	CdMnF₅	n.d.	n.d.	[3]	C2/c
	CaFeF₅	AF	21	[4]	P21/c
	CaCrF₅	Р		[5]	C2/c
	CaTiF₅	Р		[6]	12/c
	CaMnF₅	n.d.	n.d.	[3]	C2/c
Σ	BaFeF₅	AF	35	[7]	/4
 Ц	BaTiF₅	n.d.	n.d.	[6]	I4/m
	BaVF₅	AF	20	[8]	/4
	SrVF₅	AF	2	[4]	P2 ₁ /c
	SrCrF₅	Р		[8]	/4
	SrFeF ₅	n.d.	n.d.	[9]	P21/c
	CrAlF₅	Р		[1]	C2/c (Cr ₂ F ₅ - type)
PI-IIVI	MnAlF₅	Р		[10]	ORTORHOMBIC
	alpha-CaAlF₅			[5]	C2/c
⊢	beta-CaAlF₅			[11]	P21/c
ц Ц	SrAlF ₅			[7]	/4
A	$PbTF_5$ (T = Al, Ga)			[12]	n. d.
	$BaInF_5$			[13]	n. d.
OTHER	Mn(Al,Fe)F₅	Fi	18-34	[10]	ORT

* Fi – ferrimagnetic, AF – antiferromagnetic, P – paramagnetic; n.d. stands for not determined

SI.II Structural data for AgCoF₅

Figure SI1. Rietveld refinement of the X-ray pattern for the powder from the first synthetic approach. GoF = 1.15, Rp = 0.98, wRp = 1.36

Figure SI2. Rietveld refinement of the X-ray pattern for the powder from the second synthetic approach. GoF = 1.66, Rp = 1.12, wRp = 1.68.

Table SI1. Unit cell parameters of AgF_2 and $AgCoF_5$ obtained from Rietveld refinement of two samples 1 (**S1**) and sample 2 (**S2**).

S	Dhasa	Parameters					Molar	Uncertainty	Fittin	g param	neters
	Plidse	a [Å]	b [Å]	c [Å]	V [ų]	β [°]	ratio	[%]	GoF	Rp	wRp
1	AgF_2	5.546	5.831	5.091	164.636	90	0.04	3	1 66	1 1 2	1 6 9
1	$AgCoF_5$	7.274	7.628	7.529	375.552	115.98	0.96	4	1.00	1.12	1.00
2	AgF_2	5.550	5.836	5.095	165.026	90	0.44	8	1 1 5	0.00	1 26
2	$AgCoF_5$	7.280	7.635	7.536	376.507	115.98	0.56	7	1.15	0.98	1.36

Space group	<i>C</i> 2/ <i>c</i> (15)	Temperature	298K	Radiation	Co Kα
Unit cell [Å]	a = 7.274414 (2), <i>b</i> = 7.627744(2)	, <i>c</i> = 7.529471 (2)	$\alpha = \gamma = 90^{\circ}$	β =115.976(4)°
Atom	x	У	Z	U _{iso} [Ų]	Occupancy
Со	0.000	0.000	0.000	0.003 (14)	1
Ag	0.000	0.500	0.000	0.010 (13)	1
F1	0.000	-0.038 (5)	0.250	0.019 (18)	1
F2	0.793 (18)	0.513 (6)	0.624 (18)	0.007 (15)	1
F3	-0.028 (3)	0.235 (2)	0.448 (3)	0.013 (15)	1

Table SI2. Structural details of AgCoF₅ with atomic positions.

It is important to note that the exact determination the positions of the fluorine atoms is a major challenge, even when analyzing single-crystal samples. The structural data of $AgCoF_5$ were determined using the powder X-ray diffraction technique on polycrystalline samples. This approach was supported by incorporating computational methods at various stages of the structure determination process. It is therefore essential to bear in mind that the positional data of the light atoms may exhibit subtle degrees of approximation.

Table SI3. Structural parameters of AgCoF₅ from experimental and various theoretical methods.

Methods	a [Å]	b [Å]	c [Å]	V [ų]	β [°]
Rietveld	7.274 (2)	7.628(2)	7.529(2)	375.580(19)	115.976(4)
DFT+U (U = 5 eV)	7.187	7.643	7.535	375.305	114.948
DFT+U (U = 8 eV)	7.157	7.607	7.508	370.475	115.003
SCAN	7.269	7.749	7.586	382.619	116.431
HSE06	7.201	7.661	7.527	376.855	114.819

Table SI4. Bond lengths and angles in the AgCoF₅ structure: Rietveld and theoretical methods. These theoretical calculations are based on idealized conditions ($p,T \rightarrow 0$), which leads to some inherent discrepancies compared to experimental data obtained under ambient conditions.

Methods	dM-M [Å]	dM-F [001] [Å]	dM-F (001) [Å]	Bond angle [°]
	Co-Ag: 3.637(10),	Ag E: 2 E(2/12)	Ag-F: 2.090(16),	Co-F-Co: 162.0(3)° [001];
Piotvold	3.814(10)	Ag-r. 2.302(12)	2.052(16)	Ag-F-Ag: 107.6(5)° [001]
Rietvelu	Ag-Ag and Co-Co:	$C_{0} = 1.005(6)$	Co-F: 1.827(16),	Co-F-Ag: 158.9(12)° [010];
	3.765(10)	CO-F. 1.905(0)	1.921(13)	130.1(8)° [100];
	Co Ag: 2 502 2 922	A a E · 2 E 97	Ag E: 2 071 2 056	Co-F-Co: 158.9° [001];
DFT+U	CU-Ag. 5.595, 5.622	Ag-r. 2.307	Ag-F. 2.071, 2.050	Ag-F-Ag: 107.9° [001]
(U = 5 eV)	Ag-Ag and Co-Co:	Co E: 1 016	Co E. 1 916 1 042	Co-F-Ag: 158.9° [010];
	3.768	CO-F. 1.910	CO-F. 1.010, 1.945	127.9° [100];
				Co-F-Co: 158.9° [001];
DFT+U	CO-Ag: 3.579, 3.803	Ag-r: 2.5/1	Ag-r: 2.053, 2.043	Ag-F-Ag: 108.4° [001]
(U = 8 eV)	Ag-Ag and Co-Co:	Co E: 1 011	Co E: 1 917 1 042	Co-F-Ag: 158.6° [010];
	3.754	CO-F. 1.911	CO-F. 1.017, 1.945	127.7° [100];
	Co Ag: 2 625 2 974	Ag E: 2 562		Co-F-Co: 162.4° [001];
SCAN	CU-Ag. 5.055, 5.074	Ag-r. 2.305	Ag-F. 2.001, 2.005	Ag-F-Ag: 109.1° [001]
SCAN	Ag-Ag and Co-Co:			Co-F-Ag: 164.1° [010];
	3.793	CO-F. 1.919	CO-F. 1.820, 1.920	130.1° [100];
				Co-F-Co: 160.2° [001];
	CO-Ag: 3.000, 3.831	Ag-r: 2.008	Ag-F: 2.070, 2.059	Ag-F-Ag: 106.9° [001]
HSEUD	Ag-Ag and Co-Co:			Co-F-Ag: 159.6° [010];
	3.763	CO-L: 1.910	CU-F: 1.822, 1.928	129.1° [100];

SI.III Comparison of Rietveld fits for C2/c and C2/m space groups

Figure SI3. Comparison between experimental diffractogram of **S1** (black line), model diffractogram for AgCoF₅ structure in C2/c (green line) and C2/m structure (blue line). Asterisks indicate the positions of potential reflexes originating from AgF₂ impurities (or may constitute shoulder of the one from AgCoF₅).

Table SI5. Structure and fitting parameters of $AgCoF_5$ from the very first cycle of Rietveld refinement process of C2/c and C2/m structures, based on experimental diffractogram from **S1**.

AgCoF₅			Paramet		Fitting parameters			
group space	a [Å]	b [Å]	C [Å]	V [ų]	β [°]	GoF	Rp	wRp
C2/c (Z = 4)	7.276	7.629	7.531	375.803	115.981	2.56	1.63	2.59
C2/m (Z = 2)	7.276	7.629	3.765	187.886	115.981	2.91	1.88	2.95

Figure SI4. AgCoF₅ in C2/c (left) and C2/m (right, 1x1x2 supercell) space group. The unit cell is drawn as a solid line.

SI.IV Experimental and theoretical phonon frequencies of AgCoF₅

Table SI6. Phonon vibration frequencies and their symmetries from DFT+U computations and band positions identified in IR and Raman spectra for $AgCoF_5$. Darkened columns indicate bands that are not observable due to symmetry constraints (forbidden by selection rules). Band intensities are categorized as follows: vs - very strong, s - strong, m - medium, w - weak, vw - very weak, sh - shoulder. "Silent" in shaded columns refers to non-active bands. "---" indicates the absence of the corresponding band in the experimental spectra. The indication "n.d." refers to band positions outside the spectroscopes' measurement range. Positions in cm⁻¹.

#	DFT+U	Symmetry	IR	RAMAN	#	DFT+U	Symmetry	IR	RAMAN
1	570	Bg		591vs	22	219	A _u	si	lent
2	555	A _u	si	ilent	23	215	B _u	218m	
3	551	B _u	548sh		24	215	A _u	si	lent
4	534	Ag			25	193	A _u	si	lent
5	519	B _u	510vs		26	182	B _u	177m	
6	471	B _g		491m	27	178	A _u	si	lent
7	469	A _u	si	ilent	28	176	Bg		173sh
8	452	B _u	452vs		29	165	B _u		
9	393	A _u	si	ilent	30	156	A _u	si	lent
10	391	Ag		393sh	31	139	B _u	141vw	
11	376	B _g		367sh	32	110	Ag		114vs
12	352	B _u	356s		33	102	Bg		100sh
13	348	A _u	si	ilent	34	98	A _u	si	lent
14	314	A _u	si	ilent	35	95	B _u	92w	
15	303	B _u			36	79	Ag		n.d.
16	284	Bg		282sh	37	64	A _u	si	lent
17	274	Ag		273sh	38	56	B _u	n.d.	
18	266	Ag		259m	39	45	B _g		n.d.
19	245	B _u	253m		40	-1	B _u		
20	242	Bg		241sh	41	-1	A _u		
21	220	Ag		223vw	42	-2	B _u		

Table SI7 Combination vibrations and overtones observed in the spectra in Figure 5. Positions in cm^{-1.}

IR [cm⁻¹]	RAMAN [cm⁻¹]	ASSIGNEMENT
110		111 B _u -> 45 + 56 (IR _{Bu} +R _{Bg})
272		291 (B _u) -> 177 + 114 (IR _{Bu} + R _{Ag})
630		624 (B _u) -> 510 + 114 (IR _{Bu} + R _{Ag})
	802	808 (A _g) -> 452 + 356 (IR _{Bu} +IR _{Bu})
	1074	1082 (A _g) -> 591 + 491 (R _{Bg} + R _{Bg})
	1229	Overtone ($2 \cdot B_g = 2 \cdot 591 \text{ cm}^{-1}$)

SI.V Magnetic data

Figure SI5. Magnetization curves at 30 K, 50 K, 180 K for **S1** as a function of the applied field (left) and first derivatives of the sample magnetization $(-d\chi/dT)$ as a function of T dependence on the left, measured at different fields.

Figure SI6. Magnetization for AgF_2 (left) and S1 (right) – mainly $AgCoF_5$ with AgF_2 traces at 30 kOe vs temperature [K].

A simple subtraction of the contribution of AgF_2 to the overall magnetic response of the sample does not eliminate the feature at 163 K (see **Figure SI6**), which is characteristic of the magnetic transition in silver(II) difluoride, from the susceptibility plot. This leads to considerable complications when analyzing the measurement results and makes it impossible to fit a magnetic model. In addition, there are many other complications, including: 1) different magnetic spins for magnetic ions; 2) lowdimensionality of magnetic interactions.

Figure SI7. Magnetic susceptibility at 10k Oe of sample 1 (S1) after subtracting the contribution of

0.05 mol% (left) and 0.15 mol% (right) of AgF_2 to overall magnetic response.

SI.VI Results of superexchange calculations

Figure SI8. Superexchange paths (top) and six possible spin states for AgCoF₅. The fluorine atoms have been omitted for clarity. Blue and red arrows indicate opposite spin directions. AFM2 is the spin state with the lowest energy.

Method	J ^b _{1(Co-Ag)} [010]	J ^a _{2(Co-Ag)} [100]	Jc _{3(Co-Co)} [001]	J ^c _{4(Ag-Ag)} [001]	J_{5(Ag-Co)} [101]	Mag mome	netic nts [µ _B]
	[meV]	[meV]	[meV]	[meV]	[meV]	Ag	Со
DFT+U (U _{Ag} =5 eV)	-47.74	-6.53	-8.28	-1.11	-1.23	+/-3.22	+/-0.58
DFT+U (U _{Ag} =8 eV)	-39.25	-6.52	-8.21	-0.37	-1.36	+/-3.24	+/-0.66
SCAN	-62.02	-4.77	-10.28	-1.34	-1.91	+/-3.09	+/-0.54
HSE06	-39.49	-6.74	-7.96	0.70	-0.52	+/-3.47	+/-0.73

Table SI8. Superexchange constants determined with the DFT+U, SCAN and HSE06 methods.

SI.VII References

- [1] A. Tressaud, J. M. Dance, J. Ravez, J. Portier, P. Hagenmuller, J. B. Goodenough, *Materials Research Bulletin* **1973**, *8*, 1467–1477.
- [2] G. Ferey, R. Pape, Acta Cryst. **1978**, 1084–1091.
- [3] U. Müller, R. Hoppe, Z. Anorg. Allg. Chem. 1990, 583, 205–208.
- [4] J. Graulich, W. Massa, D. Babel, Z. anorg. allg. Chem. 2003, 629, 365–367.
- [5] K. K. Wu, I. D. Brown, *Materials Research Bulletin* **1973**, *8*, 593–598.
- [6] S. M. Eicher, J. E. Greedan, *Journal of Solid State Chemistry* **1984**, *52*, 12–21.
- [7] R. Von Der Mühll, S. Andersson, J. Galy, *Acta Crystallogr B Struct Crystallogr Cryst Chem* **1971**, *27*, 2345–2353.
- [8] R. Georges, J. Ravez, R. Olazcuaga, P. Hagenmuller, Journal of Solid State Chemistry 1974, 9, 1–5.
- [9] R. von der Mühll, F. Daut, J. Ravez, *Journal of Solid State Chemistry France* **1973**, *8*, 206–212.
- [10] A. Tressaud, J. M. Parenteau, J. M. Dance, J. Portier, P. Hagenmuller, 1973, 8.
- [11] M. Body, G. Silly, C. Legein, J.-Y. Buzaré, F. Calvayrac, P. Blaha, *Journal of Solid State Chemistry* **2005**, *178*, 3655–3661.
- [12] J. Ravez, M. Darriet, R. Von der Mühll, P. Hagenmuller, *Journal of Solid State Chemistry* **1971**, *3*, 234–237.

[13] J. Grannec, J. Ravez, C. R. Acad. Sc. Série C **1970**, 270, 2059–2061.