Guest water-induced structural transformation and spin-crossover variation of a two-dimensional Hofmann-type compound

Zhi-Kun Liu,^{a†} Ke Sun,^{a†} Jin-Peng Xue,^a Zi-Shuo Yao,^{a*} Jun Tao^{a*}

^aKey Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.

[†]*These authors contributed equally to this work.*

E-mail: taojun@bit.edu.cn; zishuoyao@bit.edu.cn

Table of Contents

1. Materials and methods
2. Synthesis4
3. Additional Tables
Table S1. Crystal structure and refinement details for compound $1 \cdot H_2O$
Table S2. Crystal structure and refinement details for compound 1
Table S3. The Fe–N bond lengths in compounds $1 \cdot H_2O$ and $1 \dots 7$
Table S4. The π ··· π , hydrogen-bonding interaction distances and Fe···Fe distances7
4. Additional Figures
Fig. S1 PXRD patterns of compounds 1·H ₂ O and 18
Fig. S2 TGA curves of $1 \cdot H_2 O$ and $1 \dots 8$
Fig. S3 HS fraction (γ_{HS}) and normalized $\partial(\chi_M T)$ versus T plots of $1 \cdot H_2 O$ and $1 \dots 9$
Fig. S4 DSC curves of $1 \cdot H_2 O$ and 1 upon cooling and warming
Fig. S5 Adjacent layers showing interlayer ligand $\pi \cdots \pi$ interactions for $1 \cdot H_2O$ and $1 \dots 9$
Fig. S6 The asymmetric unit of compound 1 , and 3D Stacked Layers10
Fig. S7 FT-IR spectra of $1 \cdot H_2 O$ and $1 \cdot \dots \cdot 10$
Fig. S8 The Fe…Fe distances in the 2D [FePt(CN) ₄] _n layer10
Fig. S9 The asymmetric unit of compound $1 \cdot H_2O$ 11
Fig. S10 The asymmetric unit of compound 1 11
5 References

1. Materials and methods

All reagents and materials were purchased commercially and were used without further purification.

The C, H and N elemental analyses were performed on a EUROVECTER EA3000 analyzer. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 Advance Diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å). IR spectra were recorded in the range of 4000–400 cm⁻¹ on a Thermo IS5 spectrometer with KBr pellets. Differential scanning calorimetry (DSC) measurements were conducted in an aluminum closed pan on a PerkinElmer DSC 8000. Thermogravimetric (TG) analyses were performed under a nitrogen atmosphere on a TG-DTA 6200 instrument with a heating rate of 10 °C min⁻¹.

Magnetic measurements

Magnetic susceptibilities were determined on a Quantum Design MPMS XL7 magnetometer with a scan rate of 2 K min⁻¹. A field of 5000 Oe was applied in the measured temperature range. Magnetic data were corrected for the sample holder and diamagnetic contributions.

Single-crystal X-ray crystallography

Single-crystal X-ray diffraction (SCXRD) data were collected using a Rigaku Oxford XtaLAB PRO diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods and further refined by full-matrix least-squares techniques on F^2 with SHELXL.¹ Non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were generated geometrically and refined isotropically. The ligand locates in special positions of mirror symmetry, we have used Olex2² to refine the disordered ligands. For $1 \cdot H_2O$, in these heavy-atom structures as it was not possible to see clear electron-density peaks in difference maps which would correspond with acceptable locations for the H atoms bonded to water oxygen O5, the refinements were completed with no allowance for these water H atoms in the models.

CCDC 2257410–2257415 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing

data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

2. Synthesis

Preparation of 4-(o-nitrobenzyl)imino-1,2,4-triazole) (o-NTrz)

The ligands were synthesized according to the reported literature procedures.³

Preparation of [Fe^{II}(o-NTrz)₂Pt^{II}(CN)₄]·H₂O (1·H₂O)

An aqueous solution (5.0 mL) of FeSO₄·7H₂O (14.0 mg, 0.05 mmol) and ascorbic acid (5.0 mg) was placed at the bottom of the test tube (inner diameter 1.2 cm, length 14.4 cm) and a mixture of methanol and water (v/v = 2:1, 4 mL) was added as a buffer solvent followed by freshly prepared methanol solution (5.0 mL) *o*-NTrz (21.7 mg, 0.1 mmol) and K₂[Pt(CN)₄]·3H₂O (5.0 mg, 0.01 mmol) into layers. The tubes were sealed and left to stand in an undisturbed environment and brown flaky crystals were collected after 3 weeks. Yield: ~30% based on K₂[Pt(CN)₄]. Elemental analyses (%) calcd for C₂₂H₁₆FeN₁₄O₅Pt (**1**·H₂**O**): C, 32.73; H, 2.00; N, 24.29. Found: C, 32.69; H, 2.00; N, 23.63. IR (KBr pellet, cm⁻¹): 3627 (w), 3141 (w), 3092 (w), 2359 (w), 2173 (s), 1523 (s), 1352 (m), 1215 (w), 1166 (w), 1050 (s), 952 (w), 846 (w), 664 (m), 609 (m), 423 (w).

Preparation of [Fe^{II}(o-NTrz)₂Pt^{II}(CN)₄] (1)

The brown flake crystals $1 \cdot H_2 O$ were heated under vacuum at 373 K for more than 12 h to obtain dehydrated samples 1. Elemental analyses (%) calcd for $C_{22}H_{14}FeN_{14}O_4Pt$ (1): C, 33.48; H, 1.79; N, 24.84. Found: C, 33.51; H, 1.82; N, 24.89. IR (KBr pellet, cm⁻¹): 3626 (w), 3145 (w), 3087 (w), 2357 (m), 2174 (m), 1523 (m), 1356 (m), 1211 (w), 1161 (w), 1053 (m), 954 (w), 855 (w), 672 (w), 609 (w), 456 (w).

3. Additional Tables

	1·H ₂ O				
T / K	280	240	150		
Empirical formula	$C_{22}H_{16}FeN_{14}O_5Pt$	$C_{22}H_{16}FeN_{14}O_5Pt$	$C_{22}H_{16}FeN_{14}O_5Pt$		
Molecular weight	807.43	807.43	807.43		
Crystal system	monoclinic	monoclinic	monoclinic		
Space group	C2/m	C2/m	C2/m		
a/Å	26.6222(8)	26.2662(9)	26.1950(7)		
b/Å	7.2969(2)	7.1043(3)	6.9648(2)		
$c/{ m \AA}$	15.1034(4)	14.8621(5)	14.6878(4)		
$lpha/^{\circ}$	90	90	90		
$eta / ^{\circ}$	100.271(3)	100.454(3)	100.680(2)		
γ/°	90	90	90		
Volume/Å ³	2886.96(14)	2727.28(18)	2633.27(13)		
Ζ	4	4	4		
$ ho_{ m calc} { m g/cm}^3$	1.858	1.966	2.037		
μ/mm^{-1}	5.402	5.719	5.923		
F(000)	1560.0	1560.0	1560.0		
Goodness-of-fit on F^2	1.059	1.087	1.066		
Final <i>R</i> indexes [$I \ge 2\sigma(I)$]	$R_1 = 0.0240,$ $wR_2 = 0.0612$	$R_1 = 0.0302,$ $wR_2 = 0.0701$	$R_1 = 0.0432,$ $wR_2 = 0.1112$		
Final R indexes [all data]	$R_1 = 0.0309,$ $wR_2 = 0.0642$	$R_1 = 0.0364,$ $wR_2 = 0.07256$	$R_1 = 0.0524,$ $wR_2 = 0.1170$		
CCDC no.	2257412	2257411	2257410		

Table S1. Crystal structure and refinement details for compound $1 \cdot H_2O$ at 280, 240, 150 K.

		1	
T / K	293	250	180
Empirical formula	$C_{22}H_{14}FeN_{14}O_4Pt$	$C_{22}H_{14}FeN_{14}O_4Pt$	$C_{22}H_{14}FeN_{14}O_4Pt$
Molecular weight	789.41	789.41	789.41
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/m	C2/m	C2/m
a/Å	26.4601(9)	26.2968(16)	26.0552(11)
b/Å	7.2922(3)	7.2061(4)	7.0129(2)
$c/{ m \AA}$	15.0392(6)	14.9288(9)	14.6062(5)
$lpha/^{\circ}$	90	90	90
$eta /^{\circ}$	98.267(4)	98.444(6)	99.248(4)
$\gamma^{/\circ}$	90	90	90
Volume/Å ³	2871.69(19)	2798.3(3)	2634.19(16)
Ζ	4	4	4
$ ho_{ m calc} { m g/cm}^3$	1.826	1.874	1.991
μ/mm^{-1}	5.426	5.569	5.915
F(000)	1520.0	1520.0	1520.0
Goodness-of-fit on F^2	0.968	1.076	1.062
Final <i>R</i> indexes $[I \ge 2\sigma$ (<i>I</i>)]	$R_1 = 0.0316,$ $wR_2 = 0.0813$	$R_1 = 0.0352,$ $wR_2 = 0.0916$	$R_1 = 0.0358,$ $wR_2 = 0.0920$
Final <i>R</i> indexes [all data]	$R_1 = 0.0441,$ $wR_2 = 0.0922$	$R_1 = 0.0446,$ $wR_2 = 0.0989$	$R_1 = 0.0452,$ $wR_2 = 0.1017$
CCDC no.	2257415	2257414	2257413

Table S2. Crystal structure and refinement details for compound 1 at 293, 250, 180 K.

 $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|, wR_2 = [\Sigma w (Fo^2 - Fc^2)^2] / \Sigma w (Fo^2)^2]^{1/2}$

		1·H ₂ O			1	
<i>T /</i> K	280	240	150	293	250	180
Fe1–N1 (Å)	2.134(3)	1.934(3)	1.929(5)	2.131(5)	2.027(5)	1.930(5)
Fe1–N2 (Å)	2.182(3)	1.971(4)	1.964(6)	2.189(6)	2.076(8)	1.957(7)
Fe2–N7 (Å)	2.127(3)	2.112(3)	1.927(5)	2.129(5)	2.110(5)	1.928(5)
Fe2–N8 (Å)	2.221(4)	2.197(5)	1.987(6)	2.209(6)	2.172(8)	1.980(7)
Fe1-N _{ave} (Å)	2.158(3)	1.953(4)	1.947(6)	2.160(6)	2.052(1)	1.944(1)
Fe2–N _{ave} (Å)	2.174(4)	2.155(4)	1.957(6)	2.169(5)	2.141(6)	1.954(6)
Fe1–N≡C (°)	177.1(3)	178.7(3)	176.7(54)	172.1(3)	174.2(6)	176.6(9)
Fe2–N≡C (°)	170.1(3)	170.0(3)	172.1(4)	169.5(6)	169.6(0)	173.0(8)

Table S3. The Fe–N bond lengths in compounds $1 \cdot H_2O$ and 1 at different temperatures.

Table S4. The $\pi \cdots \pi$, hydrogen-bonding interaction distances and Fe \cdots Fe distances for $1 \cdot H_2O$ and 1.

		1·H ₂ O			1	
<i>T /</i> K	280	240	150	293	250	180
$\pi \cdots \pi$ interations (Å)	3.783(1)/ 3.927(1)	3.760(1)/ 3.818(1)	3.676(1)/ 3.861(1)	3.774(9)/ 3.899(0)	3.785(4)/ 3.840(0)	3.703(9)/ 3.813(4)
O5–N3 (Å)	2.910(6)	2.842(8)	2.78 5(9)			
d1 (Å)	7.297(2)	7.104(3)	6.965(2)	7.292(2)	7.206(1)	7.012(9)
d2 (Å)	7.552(2)	7.431(3)	7.344(2)	7.519(6)	7.464(4)	7.303(1)

4. Additional Figures

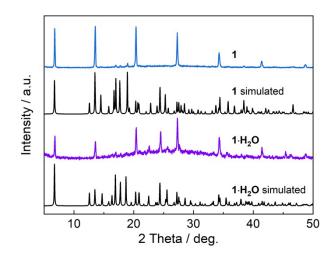


Fig. S1 PXRD patterns of compounds $1 \cdot H_2O$ and 1.

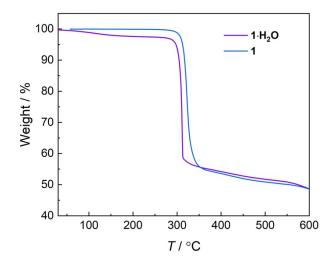
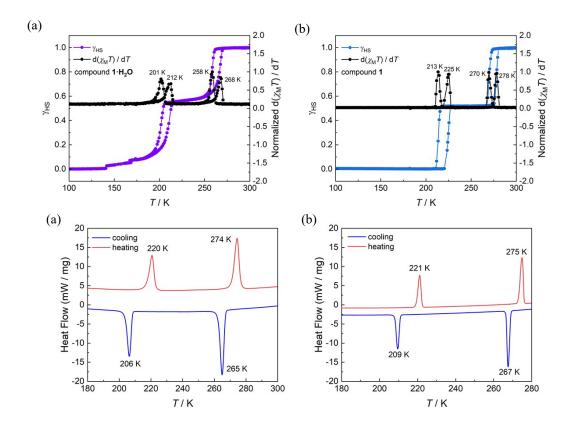



Fig. S2 TGA curves of $1 \cdot H_2O$ and 1. The variation of guest water molecules was supported by the TGA measurements. The mass loss of around 2.42 % for $1 \cdot H_2O$ is proximal to the calculated value of 2.24 % for a single water molecule. In contrast, no significant weight reduction was observed in the crystal of 1.

Fig. S3 HS fraction (γ_{HS}) and normalized $\partial(\chi_M T)$ versus T plots of $1 \cdot H_2 O$ (a) and 1 (b).

Fig. S4 DSC curves of $1{\cdot}H_2O$ (a) and 1 (b) upon cooling and warming.

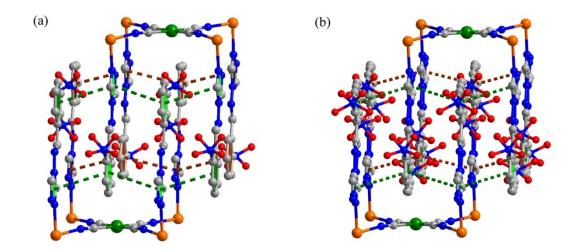


Fig. S5 Adjacent layers showing interlayer ligand $\pi \cdots \pi$ interactions for $1 \cdot H_2 O$ (a) and 1 (b). The interlayer $\pi \cdots \pi$ interactions in SCO compounds stabilize the structure, allowing the large rearrangement of the structure in response to the dehydration of the crystals.

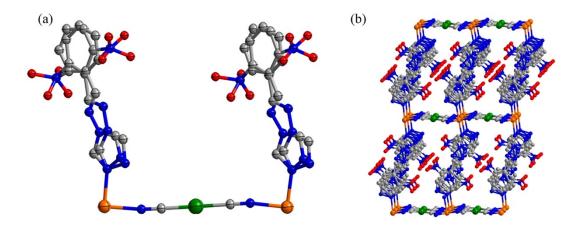


Fig. S6 (a) The asymmetric unit of compound 1 at 293 K. (b) 3D Stacked Layers. Hydrogen atoms are omitted for clarity.

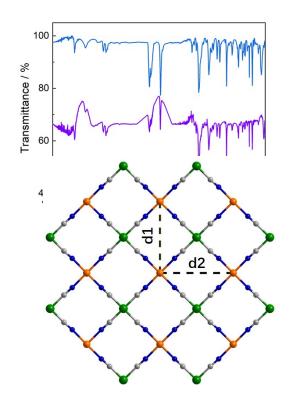


Fig. S7 FT-IR spectra of $1 \cdot H_2O$ and 1.

Fig. S8 The Fe···Fe distances in the 2D $[FePt(CN)_4]_n$ layer.

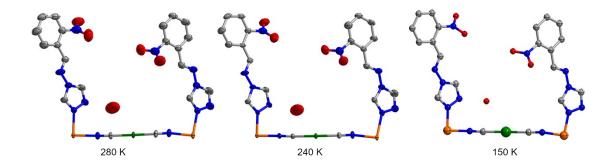
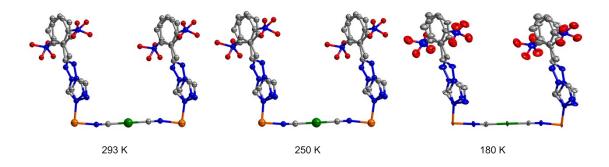



Fig. S9 The asymmetric unit of compound $1 \cdot H_2O$, showing thermal ellipsoids at 50% probability level. (Hydrogen atoms are omitted for clarity, baby blue is the disordered; C: dark grey; N: blue; Fe: orange; O: red; Pt: green.)

Fig. S10 The asymmetric unit of compound **1**, showing thermal ellipsoids at 50% probability level. (Hydrogen atoms are omitted for clarity, baby blue is the disordered; C: dark grey; N: blue; Fe: orange; O: red; Pt: green.)

5 References

- J. E. Clements, P. R. Airey, F. Ragon, V. Shang, C. J. Kepert and S. M. Neville, *Inorg. Chem.*, 2018, 57, 14930–14938.
- 2 G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.
- 3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.