Spin dynamics phenomena of a cerium(III) double-decker complex induced by intramolecular electron transfer

Kana Kobayashi, ${ }^{\text {a }}$ Michiyuki Suzuki, ${ }^{\text {a }}$ Tetsu Sato, ${ }^{\text {a }}$ Yoji Horii, ${ }^{\text {b }}$ Takefumi Yoshida, ${ }^{\text {c }}$ Brian. K. Breedlove, ${ }^{\text {a }}$ Masahiro Yamashita ${ }^{\text {a,d }}$ and Keiichi Katoh ${ }^{e}$
a.

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
b. Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya Higashimachi, Nara 630-8506, Japan
c. Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University, 930 Sakae-Dani, Wakayama, 640-8510, Japan.
d. School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P, R, China
e. Department of Chemistry, Graduate School of Science, Josai University, 1-1, Keyakidai, Sakaddo, Saitama 350-0295, Japan. E-mail: kkatoh@josai.ac.jp

Table of Contents:

Selected crystallographic data for $\mathrm{Ce}(\mathrm{obPc})_{2}$ and 1: Table S1 S4
Crystal structure of $\mathrm{Ce}(\mathrm{obPc})_{2}$:Figs. S1-1-3 S5
Crystal structure of 1 :Figs. S2-1-3 S7
PXRD of 1: Fig. S3 S8
Selected crystallographic data for $\mathrm{Ce}(\mathrm{Pc})_{2}$ and 2: Table S2 S9
Crystal structure of $\mathrm{Ce}(\mathrm{Pc})_{2}$: Fig. S4-1-2 S10
Crystal structure of 2: Fig. S5 S11
PXRD of 2: Fig. S6 S11
Cyclic voltammetry (CV) of $\mathrm{Ce}(\mathrm{obPc})_{2}$: Fig. S7-1. S12
Redox potential ($E_{1 / 2}$) of $\mathrm{Ce}(\mathrm{obPc})_{2}$ in expressed in volts (CV): Tables S3-1 S12
Differential pulse voltammetry (DPV) of $\mathrm{Ce}(\mathrm{obPc})_{2}$: Fig. S7-2 S13
Redox potential $\left(E_{1 / 2}\right)$ of $\mathrm{Ce}(\mathrm{obPc})_{2}$ in expressed in volts (DPV): Tables S3-2 S13
UV-vis-NIR data for $\mathrm{Ce}(\mathrm{obPc})_{2}$ and 1: Fig. S8-1. S14
UV-vis-NIR data for $\mathrm{Ce}(\mathrm{Pc})_{2}$ and 2: Fig. S8-2 S14
UV-vis-NIR data for $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{+}$: Fig. S8-3 S15
FT-IR spectra for $\mathrm{Ce}(\mathrm{obPc})_{2}$, 1, $\mathrm{Ce}(\mathrm{Pc})_{2}$, and 2: Figs. S9-1-4 S16
Schematic illustration of the intramolecular electron transfer in $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{Ce}(\mathrm{Pc})_{2}$: Fig. S10. S18
XANES spectra of $\mathrm{Ce}(\mathrm{obPc})_{2}, 1, \mathrm{Ce}(\mathrm{Pc})_{2}$: Figs. S11 S18 S18
Deconvolution analysis data for the $\mathrm{Ce}(\mathrm{Pc})_{2}$ based complexes in Fig. S11: Table S4-1-2 S19
Magnetic properties of $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{Ce}(\mathrm{Pc})_{2}$: Fig. S12 and S13 S20
M versus $H T^{-1}$ for powder samples of 2: Fig. S14 S21
The $M-H$ curve simulation: Fig. S15 S22
Wavefunction composition of the ${ }^{2} \mathrm{~F}_{5 / 2}$ states of $\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$: Table S5-1. S23
Wavefunction composition of the ${ }^{2} \mathrm{~F}_{5 / 2}$ states of [Ce(obPc) $)^{4}$: Table S5-2. S23
Calculated g-tensor for the Kramers doublets (KD): Table S5-3. S23
Ligand field parameters obtained from ab initio calculation: Table S6. S24
v and T dependence of ac measurements on 1 in $H_{d c}=$ zero and 250 Oe: Fig. S16-1 S25
v and T dependence of ac measurements on $\mathbf{2}$ in $H_{d c}=$ zero and 750 Oe: Fig. S16-2 S25
v dependence of ac measurements on 1 in $H_{d c}=50-3000$ Oe at 4 K : Fig. S17 S26
v dependence of ac measurements on $\mathbf{2}$ in $H_{d c}=$ zero -16 kOe at 4 K : Fig. S18 S26
Generalized Debye model: eqns. S1-S3 S27
$H_{d c}$ dependence of τ for 1 and 2 at 4 K.: Fig. S19 S27
Fitting parameters of $\mathbf{2}$ for spin dynamic properties: Table S7 S27
Ac measurements for 1 at $1.8-11 \mathrm{~K}$ in $H_{d c}=250$ Oe: Fig. S20 S28
Ac measurements for 2 at $1.8-11 \mathrm{~K}$ in $H_{d c}=750$ Oe: Fig. S21 S29
Ac measurements for 2 at 11-20 K in $H_{d c}=750$ Oe: Fig. S22. S30
An Arrhenius plot of 1 and 2: Fig. S23 S30
Magnetic axis of the ground doublet of $\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$and $\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$: Fig. S24 S31
Ligand field splitting of $\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$: Fig. S25-1 S31
Ligand field splitting of $\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$: Fig. S25-2 S32
Energy levels of ${ }^{2} \mathrm{~F}_{5 / 2}$ states: Table S7. S32
References S33

Table S1. Selected crystallographic data for $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]$ (1)

Complex	$\mathrm{Ce}(\mathrm{obPc})_{2}$	TBA[Ce(obPc) $\mathbf{2}^{\text {] (1) }}$
CCDC	2332889	2332908
Formula	$\mathrm{C}_{128} \mathrm{H}_{160} \mathrm{~N}_{16} \mathrm{O}_{16} \mathrm{Ce}$	$\begin{aligned} & \mathrm{C}_{128} \mathrm{H}_{160} \mathrm{~N}_{16} \mathrm{O}_{16} \mathrm{Ce} \\ & \mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N} \text { (counter cation) } \end{aligned}$
Formula weight	2495.64	2561.36
Temperature/K	153(2)	233(2)
Crystal dimension/mm	$0.15 \times 0.1 \times 0.05$	$0.283 \times 0.072 \times 0.049$
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	12/a
a / nm	46.5377(8)	33.8407(3)
b / nm	19.7134(4)	11.26360(10)
c / nm	214.1518(2)	36.7134(4)
$\alpha /$ deg	90	90
B/deg	114.724(2)	95.2860(10)
V/deg	90	90
Cell volume/nm ${ }^{3}$	11793.0(4)	13934.5(2)
z	4	4
F(000)	4904.0	5460.0
$\rho_{\text {calced }} / \mathrm{g} \mathrm{~cm}^{-3}$	1.306	1.221
μ / mm^{-1}	0.458	0.394
$\vartheta_{\text {max }} /$ deg	27.500	27.495
Total number of reflections	13554	15999
Number of reflections $>\sigma$ threshold	11693	14721
$R_{1}[1>2 \sigma(I)]$	0.0445	0.0368
$w R_{2}$ (all data)	0.1019	0.0987
Goodness of fit	1.100	1.079

(b)

Fig. S1-1 Crystal structure of $\mathrm{Ce}(\mathrm{obPc})_{2}$. (a) top view and (b) side view. H atom in complex omitted for clarity. Ce^{4+} : light orange, C: grey, and N : blue.

Fig. S1-2 Crystal packing of $\mathrm{Ce}(\mathrm{obPc})_{2}$ along the b-axis (side view). Hydrogens were omitted for clarity. Ce ${ }^{4+}$: light orange, C : grey, and N : blue.

Fig. S1-3 Diagram showing the disorder processing of $\mathrm{Ce}(\mathrm{obPc})_{2}$.

Fig. S2-1 Crystal packing of $\mathbf{1}$ in the unit cell (top view). TBA ${ }^{+}$and hydrogens were omitted for clarity. Ce ${ }^{3+}$: light blue, C : grey, and N : blue.

Fig. S2-2 Crystal packing of $\mathbf{1}$ along the b-axis (side view). TBA ${ }^{+}$and hydrogens were omitted for clarity. Ce^{3+} : light blue, C : grey, and N : blue.

Current level: 0.23

Fig. S2-3 Diagram showing the disorder processing of complex 1.

Fig. S3 PXRD pattern of $\mathbf{1}$ at 298 K . The microcrystalline PXRD and sim almost overlap, but some polymorphs are present (see main text).

Table S2. Selected crystallographic data for $\mathrm{Ce}(\mathrm{Pc})_{2}$ and $\operatorname{TBA}\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]$ (2) (This work)

Complex	$\mathrm{Ce}(\mathrm{Pc})_{2}$	$\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right](2)$
CCDC	1188924^{1}	148306^{2}
Formula	$\mathrm{C}_{64} \mathrm{H}_{32} \mathrm{~N}_{16} \mathrm{Ce}$	$\mathrm{C}_{64} \mathrm{H}_{32} \mathrm{~N}_{16} \mathrm{Ce}$ $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}$ (counter cation)
Formula weight	1165.18	1407.63
Temperature/K	100(2)	100(2)
Crystal dimension/mm	$0.3 \times 0.20 \times 0.10$	$0.22 \times 0.20 \times 0.10$
Crystal system	Monoclinic	Tetragonal
Space group	C2/c	P4/ncc
a / nm	18.7128(13)	16.8359(3)
b / nm	18.6702(9)	16.8359(3)
c / nm	15.5612(13)	22.4766(10)
α / deg	90	90
b/deg	114.369(9)	90
v/deg	90	90
Cell volume/nm ${ }^{3}$	4952.3(7)	6370.9(4)
Z	4	4
$F(000)$	2344.0	2900.0
$\rho_{\text {calced }} / \mathrm{g} \mathrm{~cm}^{-3}$	1.563	1.468
μ / mm^{-1}	0.983	0.778
$\vartheta_{\max } / \mathrm{deg}$	30.814	30.619
Total number of reflections	6948	4519
Number of reflections $>\sigma$ threshold	4936	3239
$R_{1}[I>2 \sigma(I)]$	0.0553	0.0539
$w R_{2}$ (all data)	0.1173	0.1278
Goodness of fit	1.030	1.071

Fig. S4-1 (a) Top and (b) side views of the crystal structure of $\mathrm{Ce}(\mathrm{Pc})_{2}$. H atom in complex omitted for clarity. Ce^{4+} : light orange, C : grey, and N : blue.

Fig. S4-2 Crystal packing of $\mathrm{Ce}(\mathrm{Pc})_{2}$ along the b-axis (side view). Hydrogens were omitted for clarity. Ce^{4+} : light orange, C : grey, and N : blue.

Fig. S5 Crystal packing of 2. Hydrogen atoms were omitted for clarity. Ce^{3+} : light blue, C: grey, and N : blue.

Fig. S6 PXRD pattern of $\mathbf{2}$ at 298 K . The microcrystalline PXRD pattern and the simulation almost overlap, but some polymorphs also appear (see main text).

Fig. S7-1 Cyclic voltammetry (CV) of $\mathrm{Ce}(\mathrm{obPc})_{2}$. Sample concentration 0.5 mM ; glassy carbon electrode vs. $\mathrm{Ag} / \mathrm{Ag}^{+}, 0.1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, v=100 \mathrm{mV} \mathrm{s}^{-1}, 298 \mathrm{~K}$. Potentials were referenced to a $\mathrm{Fc} / \mathrm{Fc}^{+}$internal standard.

Table S3-1 Redox potential ($E_{1 / 2}$) of $\mathrm{Ce}(\mathrm{obPc})_{2}$ in expressed in volts

Complex	$E_{1 / 2}^{\text {Red3 }}$	$E_{1 / 2^{\text {Red2 }}}$	$E_{1 / 2}^{\text {Red1 }}$	$E_{1 / 2}{ }^{\mathrm{O} \times 1}$	$E_{1 / 2}{ }^{0 \times 2}$
$\mathrm{Ce}(\mathrm{obPc})_{2}$	-2.050	-1.777	-0.646	-0.170	0.232
$\mathrm{~Tb}(\mathrm{obPc})_{2}$	-2.244	-1.832	-	-0.591	-0.178

Fig. S7-2 Differential pulse voltammetry (DPV) of $\mathrm{Ce}(\mathrm{obPc})_{2}$. Sample concentration 0.5 mM ; glassy carbon working electrode vs. $\mathrm{Ag} / \mathrm{Ag}^{+}, 0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, v=100 \mathrm{mV} \mathrm{s}{ }^{-1}, 294 \mathrm{~K}$, pulse width: 50 ms , period: 0.5 s . Potentials were referenced to a $\mathrm{Fc} / \mathrm{Fc}^{+}$internal standard.

Table S3-2. Redox potential (V) of $\mathrm{Ce}(\mathrm{obPc})_{2}$

Complex	$E_{1 / 2}{ }^{\text {Red3 }}$	$E_{1 / 2}{ }^{\text {Red2 }}$	$E_{1 / 2}$ Red1	$E_{1 / 2} \mathrm{O}^{\mathrm{Kx}}$	$E_{1 / 2}{ }^{\mathrm{O} \times 2}$
$\mathrm{Ce}(\mathrm{obPc})_{2}$	-2.033	-1.774	-0.640	-0.162	0.275
$\mathrm{~Tb}(\mathrm{obPc})_{2}$	-2.230	-1.818	-	-0.591	-0.186

Fig. S8-1 Electronic spectra of $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right](1)\left(1.0 \times 10^{-5} \mathrm{M}\right)$ in CHCl_{3} at 298 K .

Fig. S8-2 Electronic spectra of $\mathrm{Ce}(\mathrm{Pc})_{2}$ and $\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right](\mathbf{2})$ in CHCl_{3} at 298 K .

Fig. S8-3 Electronic spectra for $\mathrm{Ce}(\mathrm{obPc})_{2}\left(10^{-6} \mathrm{M}\right)$ in its neutral and oxidised forms in dichloromethane at 289 K . Oxidation was performed using phenoxathiine hexachloroantimonate (1.0 eq.) . The intervalence (IV) absorption band in the near-infrared region above 1200 nm suggests that there are π radicals on the Pc ligands in the $\left[\mathrm{Ce}^{4+}(\mathrm{Pc})^{{ }^{-}}(\mathrm{Pc})^{2-}\right]^{+}$unit. ${ }^{3}$

Fig. S9-1 FT-IR spectra for $\mathrm{Ce}(\mathrm{Pc})_{2}$ and $\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right](\mathbf{2})$ as KBr pellets at 298 K .

wavenumber/cm ${ }^{-1}$
Fig. S9-2 FT-IR spectra ($750-1500 \mathrm{~cm}^{-1}$) for $\mathrm{Ce}(\mathrm{Pc})_{2}$ and $\operatorname{TBA}\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right](\mathbf{2})$ as KBr pellets at 298 K . $※ 11300-1350$: pyrrole stretching. $※ 21370-1484 \mathrm{~cm}^{-1}$: isoindole stretching. ${ }^{4}$

Fig. S9-3 FT-IR spectra for $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right](1)$ as KBr pellets at 289 K .

Fig. S9-4 FT-IR spectra ($750-1500 \mathrm{~cm}^{-1}$) for $\mathrm{Ce}(\mathrm{obPc})_{2}$ and TBA[Ce(obPc) $\left.)_{2}\right]$ (1) as KBr pellets at 298 K . ※1 1300-1350: pyrrole stretching. $※ 21370-1484 \mathrm{~cm}^{-1}$: isoindole stretching. ${ }^{4}$

Fig. S10 Schematic illustration of the intramolecular electron transfer (IET) for neutral $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{Ce}(\mathrm{Pc})_{2}$ with the dynamic disorder (see main text).

Fig. 11 Ce LIII-edge XANES spectra of $\mathrm{Ce}(\mathrm{Pc})_{2}$ based complexes. (a) TBA[Ce(obPc) $)_{2}$ (1), (b) $\mathrm{Ce}(\mathrm{obPc})_{2}$, and (c) $\mathrm{Ce}(\mathrm{Pc})_{2}$. Deconvolution analysis was performed based on the literature. ${ }^{5,6}$ The solid lines show the results of estimating the components of Ce^{3+} and Ce^{4+} using a Gaussian function.

Table S4-1. Deconvolution analysis data of area ratio for the $\mathrm{Ce}(\mathrm{Pc})_{2}$ based complexes in Fig. S11

Peak	Position (E / eV)	$\mathrm{Ce}(\mathrm{obPc})_{2}$	$\mathrm{Ce}(\mathrm{Pc})_{2}$	$\mathbf{1}$
Pre-edge	5721	0.18	0.38	0.76
a	5726	1.0	1.0	9.6
b	5729	1.65	1.2	1.0
c	5736	2.63	2.26	1.3

Table S4-2. Deconvolution analysis data for the $\mathrm{Ce}(\mathrm{Pc})_{2}$-based complexes in Fig. S 11

Ce complex	method	Area ratio $\mathrm{Ce}^{3+}: \mathrm{Ce}^{4+}$	Percentage(\%) $\mathrm{Ce}^{3+}: \mathrm{Ce}^{4+}$	Net valence of Ce ion	Method Ref.
$\mathrm{TBA}\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]$	(A)	$10.4: 2.3$	$82: 18$	3.2	5
$(\mathbf{1})$	(B)	$10.6: 1.3$	$89: 11$	3.1	6
$\mathrm{Ce}(\mathrm{obPc})_{2}$	(A)	$1.2: 4.3$	$22: 78$	3.8	5
	(B)	$2.7: 5.3$	$51: 49$	3.5	6
$\mathrm{Ce}(\mathrm{Pc})_{2}$	(A)	$1.4: 3.9$	$26: 74$	3.7	5
	(B)	$2.6: 4.9$	$53: 47$	3.5	6

§ Methods for estimating the valence of Ce ion vary depending on the researcher. We used two methods to estimate the Ce valence of the $\mathrm{Ce}(\mathrm{Pc})_{2}$-based complexes. (A) The ratio was calculated assuming that Pre-edge and \mathbf{a} are derived from $\mathrm{Ce}^{3+}\left(4 \mathrm{f}^{1}\right)$, and \mathbf{b} and \mathbf{c} are derived from $\mathrm{Ce}^{4+}\left(4 \mathrm{f}^{0}\right) .{ }^{5}$ (B) The ratio was calculated assuming that \mathbf{a} and \mathbf{b} were derived from $\mathrm{Ce}^{3+}\left(4 f^{1}\right)$ and \mathbf{c} was derived from $\mathrm{Ce}^{4+}\left(4 \mathrm{f}^{0}\right) .{ }^{6}$

Fig. S12 In the magnetic measurements, while conducting the centering process to ascertain the precise position of the sample, response curves are procured. If the response curve manifests upward convexity, it signifies the paramagnetic nature of the sample. In contrast, the presence of downward convexity, even in strong magnetic field intensities and high temperatures nearing 2 K , denotes the diamagnetic character of the sample. Measurements of $\mathrm{Ce}(\mathrm{obPc})_{2}$ were executed at $300 \mathrm{~K}, 100 \mathrm{~K}, 20$ K , and 1.8 K in a 10 kOe dc magnetic field. In $\mathrm{Ce}(\mathrm{obPc})_{2}$, diamagnetic response curves were generated across all temperature regimes. Samples that were prepared using a Ce^{3+} precursor showed no traces of Ce^{3+} in the sample (see Experimental section in main text).

Fig. S13 $\mathrm{M}-\mathrm{H}$ curve for powder samples of $\mathrm{Ce}(\mathrm{Pc})_{2}$. It exhibits paramagnetic properties at 2 K . On the other hand, it exhibited diamagnetic properties above 10 K . Samples that were prepared using a Ce^{4+} precursor showed traces of Ce^{3+} in the sample (see Experimental section in main text). Thus, both $\mathrm{Ce}(\mathrm{obPc})_{2}$ and $\mathrm{Ce}(\mathrm{Pc})_{2}$ are in a $\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$ mixed valence state, with the paramagnetic signature observed for $\mathrm{Ce}(\mathrm{Pc})_{2}$ indicative of a higher ratio of Ce^{3+} in comparison to $\mathrm{Ce}(\mathrm{obPc})_{2}$ (Table S4).

Fig. S14 Reduced magnetization (M versus $H T^{-1}$) for powder samples of 2.

Fig. S15 As a supplement to Fig. 5, simulation results of the $M-H$ curve are presented. The simulation curve indicates that the yellow-green line represents 1 mol of Ce^{3+} using LFPs. The cyan line represents a radicals delocalized on Pc ligands using Brillouin function with $S=1 / 2$ (1 mol). The purple line, using LFPs with 0.86 mol of Ce^{3+}, reproduced the experimental data (see Fig. 5). This is effective when assuming $\mathrm{Ce}^{3+}: \mathrm{Ce}^{4+}=0.8: 0.2$ based on XANES spectrum analysis (Table S4-2) and attributing magnetic properties to the Ce^{3+} component.

On the other hand, the orange dashed line represents the result of simulation at $\left[\mathrm{Ce}^{3+}(\mathrm{obPc})^{2-}(\mathrm{obPc})^{2-}\right]^{-}:\left[\mathrm{Ce}^{4+}(\mathrm{obPc})^{2-}(\mathrm{obPc})^{*-3-}\right]^{-}=\mathrm{Ce}^{3+}$:radical $=0.8: 0.2$ based on XANES spectrum analysis, which fails to reproduce the experimental data (see Fig. 5). The experimental values can be nearly reproduced by the red line ($\mathrm{Ce}^{3+}:$ radical $=0.8: 0.1$). These simulations simply add together Ce^{3+} and radical components. Considering the XANES spectrum of the neutral species (Table S4-2) and the results of $M-H$ (Fig. S13), the magnetisation value of the radicals in the $\left[\mathrm{Ce}^{4+}(\mathrm{obPc})^{2-}(\mathrm{obPc})^{* 3-}\right]^{-}$unit resulting from intramolecular electron transfer (IET) are lower than the ratio obtained from XANES spectrum.

Table S5-1. Wavefunction composition (in \%) of the ${ }^{2} \mathrm{~F}_{5 / 2}$ states of $\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$

M_{J}	w.f. 1	w.f. 2	w.f. 3	w.f. 4	w.f. 5	w.f. 6
$-5 / 2$	98.5	0.0	0.0	1.5	0.0	0.0
$-3 / 2$	0.0	1.5	98.3	0.2	0.0	0.0
$-1 / 2$	0.0	0.0	0.0	0.0	86.5	13.5
$+1 / 2$	0.0	0.0	0.0	0.0	13.5	86.5
$+3 / 2$	1.5	0.0	0.2	98.3	0.0	0.0
$+5 / 2$	0.0	98.5	1.5	0.0	0.0	0.0

Table S5-2. Wavefunction composition (in \%) of the ${ }^{2} \mathrm{~F}_{5 / 2}$ states of $\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$

M_{J}	w.f. 1	w.f. 2	w.f. 3	w.f. 4	w.f. 5	w.f. 6
$-5 / 2$	96.0	3.2	0.6	0.0	0.0	0.2
$-3 / 2$	0.0	0.7	0.1	46.0	49.7	3.5
$-1 / 2$	0.1	0.0	53.2	0.1	3.1	43.5
$+1 / 2$	0.0	0.1	0.1	53.2	43.5	3.1
$+3 / 2$	0.7	0.0	46.0	0.1	3.5	49.7
$+5 / 2$	3.2	96.0	0.0	0.6	0.2	0.0

Table S5-3. Calculated g-tensor for the Kramers doublets (KD)

	$\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$			$\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$		
	g_{x}	g_{y}	g_{z}	g_{x}	g_{y}	g_{z}
KD1	0.61	0.61	3.96	0.40	0.51	4.01
KD2	0.89	0.89	1.50	0.42	1.31	3.18
KD3	2.52	2.52	0.80	0.63	1.30	3.16

Table S6. Ligand field parameters obtained from ab initio calculations

k	q	$B(k, q) / \mathrm{cm}^{-1}$	$B(k, q) / \mathrm{cm}^{-1}$
		$\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$	$\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$
2	-2	-0.0015308	14.097661
2	-1	-0.0084485	0.01661913
2	0	972.89188	1030.46862
2	1	0.003407	0.00347098
2	2	-0.0219653	-142.56892
4	-4	0.0004892	0.00217146
4	-3	-0.0013144	7.70871517
4	-2	-0.0031819	0.00198782
4	-1	-97.991263	14.937797
4	0	-148.20931	-185.40017
4	1	$-6.587 \mathrm{E}-05$	-0.0019471
4	2	0.0026363	-12.254691
4	3	0.0004801	-0.0015113
4	4	124.06587	-117.20673

Fig. S16-1 (a) Frequency (v) dependences of the (top) in-phase ($\chi_{\mathrm{M}}{ }^{\prime}$) and (bottom) out-of-phase ($\chi_{\mathrm{m}}{ }^{\prime \prime}$) ac magnetic susceptibilities of $\mathbf{1}$ in an $H_{d c}$ of zero Oe. (b) v dependences of the (top) in-phase ($\chi_{\mathrm{m}}{ }^{\prime}$) and (bottom) out-of-phase ($\chi_{\mathrm{m}}{ }^{\prime \prime}$) ac magnetic susceptibilities of $\mathbf{1}$ in an $H_{d c}$ of 250 Oe. The solid lines are guides only.

Fig. S16-2 (a) Frequency (v) dependences of the (top) in-phase ($\chi_{\mathrm{M}}{ }^{\prime}$) and (bottom) out-of-phase $\left(\chi_{\mathrm{M}}{ }^{\prime \prime}\right)$ ac magnetic susceptibilities of $\mathbf{2}$ in an $H_{d c}$ of zero Oe . (b) v dependences of the (top) in-phase ($\chi_{\mathrm{m}}{ }^{\prime}$) and (bottom) out-of-phase ($\chi_{\mathrm{m}}{ }^{\prime \prime}$) ac magnetic susceptibilities of $\mathbf{2}$ in an H_{dc} of 750 Oe . The solid lines are guides only.

Fig. S17 Frequency (v) dependences of the (a) in-phase ($\chi_{M}{ }^{\prime}$) and (b) out-of-phase ($\chi_{M}{ }^{\prime \prime}$) ac magnetic susceptibilities of 1 at 4 K in several dc magnetic fields. The solid lines were fitted by using eqns. S1-S3.

Fig. S18 Frequency (v) dependences of the (a) in-phase ($\chi_{M^{\prime}}$) and (b) out-of-phase $\left(\chi_{M}{ }^{\prime \prime}\right)$ ac magnetic susceptibilities of 2 at 4 K in several dc magnetic fields. The solid lines were fitted by using eqns. S1-S3.

Generalized Debye model (eqns. S1-S3) ${ }^{7}$

The real ($\chi_{\mathrm{M}}{ }^{\prime}$) and imaginary parts ($\chi_{\mathrm{m}}{ }^{\prime \prime}$) of the ac magnetic susceptibilities are determined by using eqns. S2 and S3, respectively.

$$
\begin{aligned}
& \chi_{\text {total }}(\omega)=\chi_{S}+\frac{\chi_{T}-\chi_{S}}{1+(i \omega \tau)^{1-\alpha}} \\
& \chi^{\prime}(\omega)=\chi_{S}+\left(\chi_{T}-\chi_{S}\right) \frac{1+(\omega \tau)^{1-\alpha} \sin (\pi \alpha / 2)}{1+2(\omega \tau)^{1-\alpha} \sin (\pi \alpha / 2)+(\omega \tau)^{2-2 \alpha}}
\end{aligned}
$$

$$
\chi^{\prime \prime}(\omega)=\left(\chi_{T}-\chi_{S}\right) \frac{(\omega \tau)^{1-\alpha} \cos (\pi \alpha / 2)}{1+2(\omega \tau)^{1-\alpha} \sin (\pi \alpha / 2)+(\omega \tau)^{2-2 \alpha}}
$$

Fig. S19 $H_{d c}$ dependence (zero-4000 Oe) of τ for $\mathbf{1}$ and $\mathbf{2}$ at 4 K .

Table S7. Optimised parameters of $\mathbf{2}$ in Fig. 6a

complex	\mathbf{a}_{1}	$\mathbf{a}_{\mathbf{2}}$	b	c
$\mathbf{2}$	55.187	0.0010259	$4.523 \mathrm{e}-14$	24.99

§ Optimized parameters for $\mathbf{1}$ are not listed because there is no data up to high magnetic fields and large error bars.

Fig. S20 Frequency (v) and temperature (T) dependences of the (a) in-phase ($\chi_{\mathrm{M}}{ }^{\prime}$) and (b) out-ofphase ($\chi_{\mathrm{m}}{ }^{\prime \prime}$) ac magnetic susceptibilities of $\mathbf{1}$ in an $H_{d c}$ of 250 Oe. The solid lines were fitted by using eqns. S1-S3. The semicircular Argand plots with the small α parameters (0.02-0.28) confirm that slow magnetic relaxation occurs via a single process.

(b)

Fig. S21 Frequency (v) and temperature (T) dependences of the (a) in-phase $\left(\chi_{M}{ }^{\prime}\right.$) and (b) out-ofphase ($\chi_{\mathrm{M}}{ }^{\prime \prime}$) ac magnetic susceptibilities of $\mathbf{2}$ in an $H_{d c}$ of 750 Oe. The solid lines were fitted by using eqns. S1-S3. The semicircular Argand plots with the small α parameters (0.002-0.28) confirm that slow magnetic relaxation occurs via a single process (> 3 K).

Fig. $\mathbf{S 2 2}$ Frequency (v) and temperature ($T=11-20 \mathrm{~K}$) dependences of the (a) in-phase ($\chi_{\mathrm{m}}{ }^{\prime}$) and (b) out-of-phase ($\chi_{\mathrm{M}}{ }^{\prime \prime}$) ac magnetic susceptibilities of $\mathbf{2} \mathrm{in}$ an H_{dc} of 750 Oe . The solid lines were fitted by using eqns. S1-S3.

Fig. S23 An Arrhenius plot of $\mathbf{1}$ (open square) and $\mathbf{2}$ (open circles), for which the τ values were obtained from χ_{M} " versus v plots. The solid lines were fitted by using $\tau^{-1}=C T^{m}$, respectively. See main text.

Fig. S24 Magnetic axis of the ground doublet of $\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$(left) and $\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$(right).

Fig. S25-1 Ligand field splitting of $\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$. The arrows indicate the relaxation pathway with the transition magnetic moment in units of μ_{B}.

Fig. S25-2 Ligand field splitting of $\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$. The arrows indicate the relaxation pathway with the transition magnetic moment in units of μ_{B}.

Table S7. Energy levels of ${ }^{2} \mathrm{~F}_{5 / 2}$ states

	Energy $/ \mathrm{cm}^{-1}$	Energy $/ \mathrm{cm}^{-1}$
	$\left[\mathrm{Ce}(\mathrm{Pc})_{2}\right]^{-}$	$\left[\mathrm{Ce}(\mathrm{obPc})_{2}\right]^{-}$
w.f. 1	0	0
w.f. 2	0	0
w.f. 3	921	955
w.f. 4	921	955
w.f. 5	958	1047
w.f. 6	958	1047

References

1 M. S. Haghighi, C. R. L. Teske and H. Honborg, Zeitschrift für Anorg. und Allg. Chemie, 1992, 608, 73-80.
2 H. Hückstädt, A. Tutaß, M. Göldner, U. Cornelissen and H. Homborg, Z. Anorg. Allg. Chem, 2001, 627, 485-497.
3 T. H. Tran-Thi, T. A. Mattioli, D. Chabach, A. D. Cian and R. Weiss, J. Phys. Chem., 1994, 98, 8279-8288.

4 F. Lu, M. Bao, C. Ma, X. Zhang, D. P. Arnold and J. Jiang, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 2003, 59, 3273-3286.
5 J. El Fallah, S. Boujana, H. Dexpert, A. Kiennemann, J. Majerus, O. Touret, F. Villain and F. Le Normand, J. Phys. Chem., 1994, 98, 5522-5533.
6 A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani, T. Jo and J. Petiau, Phys. Rev. B, 1987, 35, 806-812.
7 K. S. Cole and R. H. Cole, J. Chem. Phys., 1941, I, 341-351.

