Supporting information

Structural insight and in silico prediction of pharmacokinetic parameters of alkaline earth metals compounds: strontium and barium with non-steroidal anti-inflammatory drug nimesulide

Malgorzata Rybczyńska ${ }^{1}$ and Artur Sikorski ${ }^{1, *}$

[^0]e-mail corresponding author: artur.sikorski@ug.edu.pl

Synthesis

Nimesulide, strontium hydroxide and barium hydroxide were delivered from SigmaAldrich and used without preliminary purification. Melting points were determined on a Büchi M-565 (Flawil, Switzerland) capillary apparatus and were uncorrected.

Compound 1

Nimesulide ($0.050 \mathrm{~g}, 0.162 \mathrm{mmol}$) and strontium hydroxide ($0.020 \mathrm{~g}, 0.162 \mathrm{mmol}$) were dissolved in 20 mL of an ethanol/water mixture ($1: 1 \mathrm{v} / \mathrm{v}$) and heated for 20 min to dissolve the sample. The solution was allowed to evaporate at room temperature for a few days to give yellow crystals of compound 2 (m.p. $=244^{\circ} \mathrm{C}$).

Compound 2

Nimesulide ($0.050 \mathrm{~g}, 0.162 \mathrm{mmol}$) and barium hydroxide ($0.028 \mathrm{~g}, 0.162 \mathrm{mmol}$) were dissolved in 20 mL of an ethanol/water mixture ($1: 1 \mathrm{v} / \mathrm{v}$) and heated for 20 min to dissolve the sample. The solution was allowed to evaporate at room temperature for a few days to give orange crystals of compound $\mathbf{1}$ (m.p. $=221^{\circ} \mathrm{C}$).

Single-Crystal X-Ray Diffraction (SCXRD) measurements

SCXRD data were collected on an Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer MoK ${ }^{\left(\lambda_{\mathrm{Mo}}=0.71073\right.} \AA \AA, \mathrm{T}=293(2) \mathrm{K}$) (Table 1S, Fig. S1)[1]. CrysAlis RED software [1] (ver. 1.171.41.16a) was used to reduce diffraction data. SHELX package [2] (ver. 2017/1) was used to solve and refine received structures. Interactions were calculated using PLATON (ver. 181115) [3]. PLUTO-78 [4], ORTEPII [5] and Mercury [6] (ver. 2020.2.0) programs were used for preparing graphics. The benzene rings and nitro group in one nimesulide anion in compound 1 have disordered orientations with refined site-occupancy factors of the disordered parts of 0.610(7) and 0.390(7) (the disordered benzene rings were refined as rigid ideal hexagons with $\mathrm{d}(\mathrm{C}-\mathrm{C})=1.39 \AA \AA$ and constrained with isotropic displacement parameters). All H atoms bound to aromatic C atoms were placed geometrically and refined using a riding model with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93$ \AA and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})\left(\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA\right.$ and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for methyl group). H atoms bound to O atoms from water molecules were located on a Fourier difference map and refined with restraints (DFIX command) with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{O})$.
Full crystallographic details the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (deposition No. CCDC 2332827 and CCDC 2332828 for compounds 1 and 2 respectively) and they may be obtained from www: http://www.ccdc.cam.ac.uk, e-mail: deposit@ccdc.cam.ac.uk or The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK.

2
Figure 1S. Asymmetric unit in the crystals of compounds $\mathbf{1}$ and $\mathbf{2}$ showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 25% probability level. H atoms are shown as small spheres of arbitrary radius ($\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is represented by dashed lines, whereas $\mathrm{O}-\mathrm{H} \cdots \pi$ interactions by dotted line). In the figure of asymmetric unit of compound $\mathbf{1}$, the disordered part of the nimesulide anion A is shown with unfilled lines.

References

[1] CrysAlis CCD and CrysAlis RED. Version 1.171.36.24. Oxford Diffraction Ltd. (Yarnton, 2012).
[2] Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71(1), 3-8.
[3] Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7-13.
[4] Johnson, C. K. ORTEP II. Report ORNL-5138. ORNL (Oak Ridge, 1976).
[5] Motherwell, S.; Clegg. S. PLUTO-78. Program for Drawing and Molecular Structure. UC (Cambridge, 1978).
[6] Macrae, C. F. et al. Mercury CSD 2.0-New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41(2), 466-470.

Table 1S. Crystal data and structure refinement for compounds 1 and 2.

Compound	1	2
Chemical formula	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{~S}_{2} \mathrm{Sr}$	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Ba}$
Formula weight/g. mol^{-1}	756.26	787.97
Crystal system	monoclinic	monoclinic
Space group	P2 $1_{1} / \mathrm{n}$	12/a
a/Å	34.835(5)	26.2150(11)
b/Å	7.2995(5)	7.9077(3)
c/Å	14.2995(17)	31.5526(17)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	114.459(17)	113.318(6)
$\gamma /{ }^{\circ}$	90	90
$\mathrm{V} / \mathrm{A}^{3}$	3309.7(8)	6006.6(5)
Z	4	8
T/K	291(2)	291(2)
$\lambda_{\text {Mo }} / \AA$	0.71073	0.71073
$\rho_{\text {cald }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.518	1.743
F(000)	1544	3152
μ / mm^{-1}	1.823	1.531
θ range/ ${ }^{\circ}$	3.39-25.00	3.33-25.00
Completeness $\theta / \%$	99.7	99.8
Reflections collected	24319	19993
Reflections	5813	5286
unique	$\left[\mathrm{R}_{\text {int }}=0.1311\right]$	[$\mathrm{R}_{\text {int }}=0.0501$]
Data/restraints/parameters	5813/480/580	5286/4/420
Goodness of fit on F^{2}	0.986	1.020
Final R_{1} value ($1>2 \sigma(\mathrm{I})$)	0.0567	0.0358
Final $w \mathrm{R}_{2}$ value ($1>2 \sigma(\mathrm{I})$)	0.1029	0.0682
Final R_{1} value (all data)	0.1351	0.0521
Final wR_{2} value (all data)	0.1295	0.0734
CCDC number	2332827	2332828

Table 2S. Hydrogen-bond and X-H $\cdots \pi$ interactions geometry in the crystals of compounds 1 and $2\left(A \AA,{ }^{\circ}\right)$.

Compound	D-H..A	$d(\mathrm{D}-\mathrm{H})$ [Å]	$d(H \cdots A)[\AA]$	$d(\mathrm{D} \cdots \mathrm{A})$ [Å]	$\angle D-H \cdots A$ (${ }^{\circ}$)
1	O1W-H1WA \cdots N7A	0.90(6)	1.98(6)	2.816(7)	153(6)
	O1W-H1WB \cdots O20B ${ }^{\text {i }}$	0.89(9)	2.21(7)	2.930(8)	138(8)
	O2W-H2WA \cdots O21A ${ }^{\text {ii }}$	0.89(6)	2.18(7)	2.989(9)	151(7)
	O2W-H2WB...O10A ${ }^{\text {iii }}$	0.88(7)	1.98(6)	2.840(6)	167(6)
	O3W-H3WA…O10A ${ }^{\text {iii }}$	0.90(5)	1.86(5)	2.731(7)	161(5)
	O3W-H3WB \cdots N7B ${ }^{\text {iv }}$	0.89(6)	1.90(5)	2.780(6)	170(5)
	C5B-H5B $\cdots \mathrm{Cg} 1 \mathrm{~B}^{\text {i }}$	0.93	2.78	3.641(9)	154
Symmetry code: (i)1/2-x,1/2+y,3/2-z; (ii)-x,-1-y,-z; (iii)x,-1+y,z; (iv)1/2-x,-1/2+y,1/2-z.					
2	O1W-H1WA \cdots O10A $^{\text {i }}$	0.89(3)	2.27(4)	2.994(4)	139(3)
	O1W-H1WB \cdots O12B ${ }^{\text {ii }}$	0.89(4)	2.58(4)	3.240(4)	132(3)
	O1W-H1WB $\cdot \cdots$ N7B ${ }^{\text {ii }}$	0.89(4)	2.01(4)	2.849(4)	158(4)
	O2W-H2WB \cdots N7A	0.88(5)	2.03(5)	2.893(5)	168(7)
	C11B-H11C..O20A ${ }^{\text {iii }}$	0.96	2.58	3.511(6)	163
	C14B-H14B \cdots O10A ${ }^{\text {iv }}$	0.93	2.58	3.492(5)	168
	O2W-H2WA $\cdots{ }^{\text {Cg }}$ 2A ${ }^{\text {V }}$	0.89(3)	2.51	3.159(5)	130(5)
	C15A-H15A \cdots Cg1A ${ }^{\text {iv }}$	0.93	2.96	3.807(5)	153

Symmetry code: (i)-x,-1/2+y,1/2-z; (ii)1/2-x,3/2-y,1/2-z; (iii)x,3/2-y,-1/2+z; (iv)1/2+x,2-y,z; (v) $x, 1+y,-z$.

Cg represents the centre of gravity of the rings as follows: $\operatorname{Cg} 1 \mathrm{~A}$ ring C1A/C2A/C3A/C4A/C5A/C6A, Cg2A ring C13A/C14A/C15A/C16A/C17A/C18A, Cg1B ring C1B/C2B/C3B/C4B/C5B/C6B, Cg2B ring C13B/C14B/C15B/C16B/C17B/C18B.

Table 3S. S-O $\cdots \pi$ and $N-\mathrm{O} \cdots \pi$ interactions geometry in the crystals of compounds 1 and $\mathbf{2}\left({ }^{\circ},{ }^{\circ}\right)$.

Compound	$\mathbf{X - Y} \cdots \mathrm{A}$	$d(\mathrm{X}-\mathrm{Y})$ [${ }^{\text {] }}$]	$d(\mathrm{Y} \cdots \mathrm{A})$ [A$]$	$d(\mathrm{X} \cdots \mathrm{A})[\mathrm{A}]$	$\angle \mathrm{X}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
1	S8A-010A \cdots Cg2B ${ }^{\text {V }}$	1.453(4)	3.612(5)	4.391(4)	113.1(2)
	N19A-021A \cdots Cg1A ${ }^{\text {vi }}$	1.232(9)	3.458(11)	3.710(19)	94.5(13)
	N19B-O21B $\cdots \mathrm{Cg} 2 A^{\text {vii }}$	1.198(8)	3.008(15)	3.871(15)	128.5(6)
Symmetry code: (v)1/2-x,3/2+y,1/2-z; (vi)-x,-y,-z; (vii)1/2-x,-1/2+y,3/2-z. .					
2	N19A-O21A \cdots Cg2B ${ }^{\text {vi }}$	1.218(5)	3.215(6)	3.683(6)	102.9(3)
Symmetry code: (vi)1/2-x,1+y,1-z.					

Table 4S. $\pi-\pi$ interactions geometry in the crystals of compounds $\mathbf{1}$ and $\mathbf{2}\left({ }^{\circ},{ }^{\circ}\right)$.

Compoun d	CgI	CgJ	$\text { Cgl } \cdots \operatorname{CgJ}^{a}$ [Å]	Dihedral angle ${ }^{\text {b }}{ }^{\circ}{ }^{\circ}$]	Interplanar distance ${ }^{\text {[}}$ Å]	Offset ${ }^{\text {d }}$ [Å]
1	Cg1A	Cg1A ${ }^{\text {ii }}$	3.903(8)	0.0(6)	3.479(5)	1.770
Symmetry code: (ii)-x,-1-y,-z.						
2	Cg2A	$\mathrm{Cg} 2 \mathrm{i}^{\text {vi }}$	3.684(3)	5.9(2)	3.513(2)	1.770
	Cg1B	Cg1Bii	3.962(2)	0.0(2)	3.283(2)	2.218
Symmetry code: (ii)1/2-x,3/2-y,1/2-z; (vii) 1.2-x,y,1-z.						

${ }^{\mathrm{a}} \mathrm{Cg} \cdots \mathrm{Cg}-$ distance between ring centroids.
${ }^{\mathrm{b}}$ Dihedral angle - angle between the mean planes of Cgl and CgJ .
Interplanar distance - perpendicular distance from Cg l to ring J.
dOffset - perpendicular distance from ring I to ring J.

Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The ATR-FTIR spectra were acquired using a Perkin Elmer Spectrum $2^{\text {TM }}$ instrument (Perkin Elmer, Waltham, USA) equipped with attenuated total reflectance (ATR) accessory. The spectra were recorded at room temperature in the spectral range from 4000 to $500 \mathrm{~cm}^{-1}$ at a resolution of $4 \mathrm{~cm}^{-1}$ averaging 16 scans for each measurement.

Figure 2S. ATR-FTIR spectra of studied compounds in the range of 4000-500 cm^{-1}.

Nimesulide, ATR-FTIR (cm^{-1}): 3278 (vNH), 1589-1487 ($\mathrm{vC}=\mathrm{C}$), 1514 and 1316 ($\mathrm{vas}_{\text {as }}$ and $\mathrm{v}_{\text {sym }} \mathrm{NO}_{2}$), 1335 and 1150 ($\mathrm{v}_{\text {as }}$ and $\mathrm{v}_{\text {sym }} \mathrm{SO}_{2}$), 1282-1069 ($\mathrm{vC-N}$ and $\mathrm{vC}-\mathrm{O}$).

Compound 1, ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 1582-1486\left(\mathrm{vC}=\mathrm{C}\right.$ and $\left.\mathrm{vas}_{\mathrm{as}} \mathrm{NO}_{2}\right), 1329\left(\mathrm{vas} \mathrm{SO}_{2}\right.$ and/or $\left.\mathrm{v}_{\text {sym }} \mathrm{NO}_{2}\right)$, 1150 (low-intensity band, $\mathrm{v}_{\text {sym }} \mathrm{SO}_{2}$), 1293-1083 ($\mathrm{vC}-\mathrm{N}$ and $\mathrm{vC}-\mathrm{O}$).

Compound 2, ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 1582-1472$ ($\mathrm{vC}=\mathrm{C}$ and $\mathrm{v}_{\mathrm{as}} \mathrm{NO}_{2}$), 1341 and 1150 (low-intensity bands or shoulders, $\mathrm{v}_{\mathrm{as}} \mathrm{SO}_{2}$ and $\left.\mathrm{v}_{\text {sym }} \mathrm{SO}_{2}\right), 1323\left(\mathrm{v}_{\text {sym }} \mathrm{NO}_{2}\right), 1293-1081(\mathrm{vC}-\mathrm{N}$ and $\mathrm{vC}-\mathrm{O})$.

ADMET analysis

The web-service SWISS-ADME tool by the Swiss Institute of Bioinformatics (http://www.swissadme.ch/) was used to calculate physicochemical descriptors, important for drug discovery [1]. Compounds were analyzed to predict ADME (absorption, distribution, metabolism, and excretion) parameters. The web-service ProTOX II was used for the prediction of the toxicity of the title compounds [2]. For the ADME analysis, the inputs for compounds $\mathbf{1}$ and $\mathbf{2}$ were measured crystal structures. For both structures, we have generated the SMILE code and implemented it for analysis.

Table 5S. ADME diagrams for nimesulide and compounds 1 and 2.

${ }^{a}$ - parameter for lipophilicity calculations [3]; ${ }^{b}$ - molecular weight [g/mol]; ${ }^{c}$ - topological polar surface area [\AA^{2}] [4]; ${ }^{d}$ - estimated solubility [5]; e - ratio of $s p^{3}$ hybridized carbons over the total amount of carbons in molecule; ${ }^{f}$ - number of rotatable bonds.
a) $\# \odot O \circ$

SMLLES $[0-][\mathrm{N}+]=0) \operatorname{ciccc}(\mathrm{C}(1) \mathrm{Oc} 1 \mathrm{ccccc} 1) \mathrm{NS}(=0)=0) \mathrm{C}$

	Physicochemical Properties
Formula	C13H12N2O5S
Molecular weight	$308.31 \mathrm{~g} / \mathrm{mol}$
Num. heavy atoms	21
Num. arom. heavy atoms	12
Fraction Csp3	0.08
Num. rotatable bonds	5
Num. H-bond acceptors	5
Num. H-bond donors	1
Molar Refractivity	80.05
TPSA O	$109.60 \mathrm{~A}^{2}$

Log $P_{\text {olw }}$ (iLOGP) © $\quad 1.78$
$\log P_{\text {olw }}$ (XLOGP3) O $^{2} \quad 2.60$
$\log P_{\mathrm{o} / \mathrm{w}}$ (WLOGP) 3.65
$\log P_{\text {o/w }}$ (MLOGP) ${ }^{\text {O }} \quad 1.73$
$\log P_{\text {o/w }}($ SILICOS-IT) $9 \quad-0.62$
Consensus Log $P_{\text {olw }}$ © $\quad 1.83$

b) Molecule 1

	Water Solubility
Log S (ESOL) ${ }^{\text {P }}$	-6.41
Solubility	$2.95 \mathrm{e}-04 \mathrm{mg} / \mathrm{ml} ; 3.89 \mathrm{e}-07 \mathrm{~mol} / \mathrm{l}$
Class -	Poorly soluble
$\log S$ (Ali) ${ }^{\text {e }}$	-7.78
Solubility	$1.26 \mathrm{e}-05 \mathrm{mg} / \mathrm{ml} ; 1.66 \mathrm{e}-08 \mathrm{~mol} / \mathrm{l}$
Class ${ }^{\text {e }}$	Poorly soluble
Log S (SILICOS-IT) ©	-4.38
Solubility	$3.12 \mathrm{e}-02 \mathrm{mg} / \mathrm{ml} ; 4.13 \mathrm{e}-05 \mathrm{mol/}$
Class ${ }^{\text {P }}$	Moderately soluble
	Pharmacokinetics
Gl absorption ©	Low
BBB permeant ${ }^{\circ}$	No
P-gp substrate ${ }^{\text {(}}$	No
CYP1A2 inhibitor ${ }^{\text {e }}$	No
CYP2C19 inhibitor ${ }^{\text {P }}$	No
CYP2C9 inhibitor ${ }^{\text {(}}$	Yes
CYP2D6 inhibitor ${ }^{\text {e }}$	No
CYP3A4 inhibitor -	No
Log K_{p} (skin permeation) ${ }^{\text {(}}$	$-8.49 \mathrm{~cm} / \mathrm{s}$
	Druglikeness
Lipinski ${ }^{\text {e }}$	No; 2 violations: $\mathrm{MW}>500, \mathrm{NorO}>10$
Ghose ${ }^{\text {P }}$	No; 4 violations: $M W>480$, WLOGP>5.6, MR>130, \#atoms>70
Veber ${ }^{(1)}$	No; 1 violation: TPSA>140
Egan ${ }^{-}$	No; 2 violations: WLOGP>5.88, TPSA>131.6
Muegge ${ }^{\text {- }}$	No; 3 violations: $M W>600$, $T P S A>150, H-$ acc>10
Bioavailability Score ${ }^{\text {(}}$	0.17
	Medicinal Chemistry
PAINS ${ }^{\text {a }}$	0 alert
Brenk ${ }^{\text {a }}$	2 alerts: nitro_group, oxygennitrogen_single_bond
Leadlikeness ©	No; 2 violations: $\mathrm{MW}>350$, Rotors>7
Synthetic accessibility ${ }^{\text {e }}$	4.66

Figure 3S. ADME analysis for nimesulide (a) and for compounds $\mathbf{1}$ (b) and $\mathbf{2}$ (c).

References

[1] Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
[2] Tetko, I. V.; Bruneau, P.; Mewes, H. W.; Rohrer, D. C.; Poda, G. I. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov. Today 2006, 11, 700-707.
[3] Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Lai, L. Computation of Octanol-Water Partition Coefficients by Guiding an Additive Model with Knowledge. Journal of Chemical Information and Modeling 2007, 47(6), 2140-2148.
[4] Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. Journal of Medicinal Chemistry 2000, 43(20), 3714-3717.
[5] Delaney, J. S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. Journal of Chemical Information and Computer Sciences 2004, 44(3), 1000-1005.

[^0]: ${ }^{1}$ Faculty of Chemistry of the University of Gdansk, Wita Stwosza 63 Str., 80-308 Gdansk, Poland

