Supporting information

Structural insight and in silico prediction of pharmacokinetic parameters of alkaline earth metals compounds: strontium and barium with non-steroidal anti-inflammatory drug nimesulide

Malgorzata Rybczyńska¹ and Artur Sikorski^{1,*}

¹ Faculty of Chemistry of the University of Gdansk, Wita Stwosza 63 Str., 80-308 Gdansk, Poland

e-mail corresponding author: artur.sikorski@ug.edu.pl

Synthesis

Nimesulide, strontium hydroxide and barium hydroxide were delivered from Sigma-Aldrich and used without preliminary purification. Melting points were determined on a Büchi M-565 (Flawil, Switzerland) capillary apparatus and were uncorrected.

Compound 1

Nimesulide (0.050 g, 0.162 mmol) and strontium hydroxide (0.020 g, 0.162 mmol) were dissolved in 20 mL of an ethanol/water mixture (1:1 v/v) and heated for 20 min to dissolve the sample. The solution was allowed to evaporate at room temperature for a few days to give yellow crystals of compound **2** (m.p. = 244° C).

Compound 2

Nimesulide (0.050 g, 0.162 mmol) and barium hydroxide (0.028 g, 0.162 mmol) were dissolved in 20 mL of an ethanol/water mixture (1:1 v/v) and heated for 20 min to dissolve the sample. The solution was allowed to evaporate at room temperature for a few days to give orange crystals of compound **1** (m.p. = 221° C).

Single-Crystal X-Ray Diffraction (SCXRD) measurements

SCXRD data were collected on an Oxford Diffraction Gemini R ULTRA Ruby CCD diffractometer MoK α (λ_{Mo} =0.71073 Å, T=293(2) K) (Table 1S, Fig. S1)[1]. CrysAlis RED software [1] (ver. 1.171.41.16a) was used to reduce diffraction data. SHELX package [2] (ver. 2017/1) was used to solve and refine received structures. Interactions were calculated using PLATON (ver. 181115) [3]. PLUTO-78 [4], ORTEPII [5] and Mercury [6] (ver. 2020.2.0) programs were used for preparing graphics. The benzene rings and nitro group in one nimesulide anion in compound **1** have disordered orientations with refined site-occupancy factors of the disordered parts of 0.610(7) and 0.390(7) (the disordered benzene rings were refined as rigid ideal hexagons with d(C–C) = 1.39 Å and constrained with isotropic displacement parameters). All H atoms bound to aromatic C atoms were placed geometrically and refined using a riding model with d(C–H) = 0.93 Å and U_{iso}(H) = 1.2U_{eq}(C) (d(C–H) = 0.96 Å and U_{iso}(H) = 1.5U_{eq}(C) for methyl group). H atoms bound to O atoms from water molecules were located on a Fourier difference map and refined with restraints (DFIX command) with U_{iso}(H) = 1.5U_{eq}(O).

Full crystallographic details the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre (deposition No. CCDC 2332827 and CCDC 2332828 for compounds **1** and **2** respectively) and they may be obtained from www: http://www.ccdc.cam.ac.uk, e-mail: deposit@ccdc.cam.ac.uk or The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK.

Figure 1S. Asymmetric unit in the crystals of compounds **1** and **2** showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 25% probability level. H atoms are shown as small spheres of arbitrary radius (O–H…N hydrogen bond is represented by dashed lines, whereas O–H… π interactions by dotted line). In the figure of asymmetric unit of compound **1**, the disordered part of the nimesulide anion A is shown with unfilled lines.

References

[1] CrysAlis CCD and CrysAlis RED. Version 1.171.36.24. Oxford Diffraction Ltd. (Yarnton, 2012).

[2] Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71(1), 3–8.

[3] Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13.

[4] Johnson, C. K. ORTEP II. Report ORNL-5138. ORNL (Oak Ridge, 1976).

[5] Motherwell, S.; Clegg. S. PLUTO-78. Program for Drawing and Molecular Structure. UC (Cambridge, 1978).

[6] Macrae, C. F. et al. Mercury CSD 2.0-New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41(2), 466–470.

Compound	1	2
Chemical formula	$C_{26}H_{28}N_4O_{13}S_2Sr$	$C_{26}H_{26}N_4O_{12}S_2Ba$
Formula weight/g·mol⁻¹	756.26	787.97
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ /n	/2/a
a/Å	34.835(5)	26.2150(11)
b/Å	7.2995(5)	7.9077(3)
c/Å	14.2995(17)	31.5526(17)
α/°	90	90
β/°	114.459(17)	113.318(6)
γ/°	90	90
V/Å ³	3309.7(8)	6006.6(5)
Z	4	8
T/K	291(2)	291(2)
λ_{Mo}/A	0.71073	0.71073
ρ _{calc} /g·cm ^{−3}	1.518	1.743
F(000)	1544	3152
µ/mm ⁻¹	1.823	1.531
θ range/°	3.39 - 25.00	3.33 - 25.00
Completeness θ/%	99.7	99.8
Reflections collected	24319	19993
Reflections	5813	5286
unique	[R _{int} =0.1311]	[R _{int} =0.0501]
Data/restraints/parameters	5813/480/580	5286/4/420
Goodness of fit on <i>F</i> ²	0.986	1.020
Final R ₁ value (I>2 σ (I))	0.0567	0.0358
Final wR ₂ value (I> $2\sigma(I)$)	0.1029	0.0682
Final R ₁ value (all data)	0.1351	0.0521
Final wR ₂ value (all data)	0.1295	0.0734
CCDC number	2332827	2332828

 Table 1S. Crystal data and structure refinement for compounds 1 and 2.

Compound	D–H…A	d(D–H) [Å]	<i>d</i> (H…A) [Å]	d(D…A) [Å]	∠D–H…A (°)
1	O1W–H1WA…N7A	0.90(6)	1.98(6)	2.816(7)	153(6)
	O1W–H1WB…O20B ⁱ	0.89(9)	2.21(7)	2.930(8)	138(8)
	O2W–H2WA…O21A ⁱⁱ	0.89(6)	2.18(7)	2.989(9)	151(7)
	O2W–H2WB…O10A ⁱⁱⁱ	0.88(7)	1.98(6)	2.840(6)	167(6)
	O3W–H3WA…O10A ⁱⁱⁱ	0.90(5)	1.86(5)	2.731(7)	161(5)
	O3W–H3WB…N7B ^{iv}	0.89(6)	1.90(5)	2.780(6)	170(5)
	C5B–H5B…Cg1B ⁱ	0.93	2.78	3.641(9)	154
Symmetry	/ code: (i)1/2-x,1/2+y,3/	2-z; (ii)-x,-1-y	,-z; (iii)x,-1+y,z	; (iv)1/2-x,-1/2	2+y,1/2-z.
2	O1W–H1WA…O10A ⁱ	0.89(3)	2.27(4)	2.994(4)	139(3)
	O1W–H1WB…O12B ⁱⁱ	0.89(4)	2.58(4)	3.240(4)	132(3)
	O1W–H1WB…N7B ⁱⁱ	0.89(4)	2.01(4)	2.849(4)	158(4)
	O2W–H2WB…N7A	0.88(5)	2.03(5)	2.893(5)	168(7)
	C11B–H11C…O20A ⁱⁱⁱ	0.96	2.58	3.511(6)	163
	C14B–H14B…O10A ^{iv}	0.93	2.58	3.492(5)	168
	O2W–H2WA…Cg2A [∨]	0.89(3)	2.51	3.159(5)	130(5)
	C15A–H15A…Cg1A ^{iv}	0.93	2.96	3.807(5)	153
Symmetry c	ode: (i)-x,-1/2+y,1/2-z; (ii)1/2-x,3/2-y	,1/2-z; (iii)x,3/	2-y,-1/2+z; (iv)	1/2+x,2-y,z;
		(v)x,1+y,-z	2.		

Table 2S. Hydrogen-bond and X–H··· π interactions geometry in the crystals of compounds **1** and **2** (Å,°).

Cg represents the centre of gravity of the rings as follows: Cg1A ring C1A/C2A/C3A/C4A/C5A/C6A, Cg2A ring C13A/C14A/C15A/C16A/C17A/C18A, Cg1B ring C1B/C2B/C3B/C4B/C5B/C6B, Cg2B ring C13B/C14B/C15B/C16B/C17B/C18B.

Table 3S. S–O… π and N–O… π interactions geometry in the crystals of compounds 1 and 2 (Å,°).

Compound	Х–Ү…А	d(X–Y) [Å]	d(Y…A) [Å]	d(X…A) [Å]	∠X–H…A (°)
1	S8A–O10A…Cg2B ^v	1.453(4)	3.612(5)	4.391(4)	113.1(2)
	N19A–O21A…Cg1A ^{vi}	1.232(9)	3.458(11)	3.710(19)	94.5(13)
	N19B–O21B…Cg2A ^{vii}	1.198(8)	3.008(15)	3.871(15)	128.5(6)
Symmetry code: (v)1/2-x,3/2+y,1/2-z; (vi)-x,-y,-z; (vii)1/2-x,-1/2+y,3/2-z.					
2	N19A–O21A…Cg2B ^{vi}	1.218(5)	3.215(6)	3.683(6)	102.9(3)
Symmetry code: (vi)1/2-x,1+y,1-z.					

Table 4S. $\pi - \pi$ interactions geometry in the crystals of compounds **1** and **2** (Å,°).

Compoun d	Cgl	CgJ	Cgl····CgJª [Å]	Dihedral angle ^b [°]	Interplanar distanceº [Å]	Offset ^d [Å]	
1	Cg1A	Cg1A ⁱⁱ	3.903(8)	0.0(6)	3.479(5)	1.770	
	Symmetry code: (ii)-x,-1-y,-z.						
2	Cg2A	Cg2A ^{vi}	3.684(3)	5.9(2)	3.513(2)	1.770	
	Cg1B	Cg1B ⁱⁱ	3.962(2)	0.0(2)	3.283(2)	2.218	
Symmetry code: (ii)1/2-x,3/2-y,1/2-z; (vii) 1.2-x,y,1-z.							

^aCg···Cg – distance between ring centroids.

^bDihedral angle – angle between the mean planes of CgI and CgJ.

^cInterplanar distance – perpendicular distance from Cgl to ring J.

^dOffset – perpendicular distance from ring I to ring J.

Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy (ATR–FTIR)

The ATR-FTIR spectra were acquired using a Perkin Elmer Spectrum 2^{TM} instrument (Perkin Elmer, Waltham, USA) equipped with attenuated total reflectance (ATR) accessory. The spectra were recorded at room temperature in the spectral range from 4000 to 500 cm⁻¹ at a resolution of 4 cm⁻¹ averaging 16 scans for each measurement.

Figure 2S. ATR-FTIR spectra of studied compounds in the range of 4000–500 cm⁻¹.

Nimesulide, ATR-FTIR (cm⁻¹): 3278 (vNH), 1589–1487 (vC=C), 1514 and 1316 (v_{as} and $v_{sym}NO_2$), 1335 and 1150 (v_{as} and $v_{sym}SO_2$), 1282–1069 (vC–N and vC–O).

Compound **1**, ATR-FTIR (cm⁻¹): 1582–1486 (vC=C and $v_{as}NO_2$), 1329 ($v_{as}SO_2$ and/or $v_{sym}NO_2$), 1150 (low-intensity band, $v_{sym}SO_2$), 1293–1083 (vC–N and vC–O).

Compound **2**, ATR-FTIR (cm⁻¹): 1582–1472 (vC=C and $v_{as}NO_2$), 1341 and 1150 (low-intensity bands or shoulders, $v_{as}SO_2$ and $v_{sym}SO_2$), 1323 ($v_{sym}NO_2$), 1293–1081 (vC–N and vC–O).

ADMET analysis

The web-service SWISS-ADME tool by the Swiss Institute of Bioinformatics (http://www.swissadme.ch/) was used to calculate physicochemical descriptors, important for drug discovery [1]. Compounds were analyzed to predict ADME (absorption, distribution, metabolism, and excretion) parameters. The web-service ProTOX II was used for the prediction of the toxicity of the title compounds [2]. For the ADME analysis, the inputs for compounds 1 and 2 were measured crystal structures. For both structures, we have generated the SMILE code and implemented it for analysis.

compound	ADME diagram	XLOGP3 ª	MW ^b	TPSA °	LOG S (ESOL) ^d	F. Csp ^{3 e}	NRB ^f
nimesulide	FLEX NSATU INSOLU	2.60	308.31	109.60	-3.48	0.08	5
1	FLEX NSATU NSATU NSOLU	3.42	756.27	222.83	-6.41	0.08	10
2	FLEX INSATU INSOLU	3.90	787.96	213.60	-6.92	0.08	10

Table 5S. ADME diagrams for nimesulide and compounds 1 and 2.

 a^{a} – parameter for lipophilicity calculations [3]; b^{b} – molecular weight [g/mol]; c^{c} – topological polar surface area [Å²] [4]; a^{d} – estimated solubility [5]; e^{c} – ratio of sp³ hybridized carbons over the total amount of carbons in molecule; f^{f} – number of rotatable bonds.

a) **#⊙⊘**

SMILES [O-][N+](=O)c1ccc(c(c1)Oc1ccccc1)NS(=O)(=O)C

ysicochemical Properties
C13H12N2O5S
308.31 g/mol
21
12
0.08
5
5
1
80.05
109.60 Ų
Lipophilicity
1.78
2.60
3.65
1.73
-0.62
1.83

	Water Solubility
Log S (ESOL) 😣	-3.48
Solubility	1.02e-01 mg/ml ; 3.29e-04 mol/l
Class 🥹	Soluble
Log S (Ali) 😣	-4.55
Solubility	8.67e-03 mg/ml ; 2.81e-05 mol/l
Class 🥹	Moderately soluble
Log S (SILICOS-IT) 😣	-4.38
Solubility	1.27e-02 mg/ml ; 4.13e-05 mol/l
Class 🧐	Moderately soluble
	Pharmacokinetics
GI absorption 🥹	High
BBB permeant 🥹	No
P-gp substrate 0	No
CYP1A2 inhibitor 📀	Yes
CYP2C19 inhibitor Θ	Yes
CYP2C9 inhibitor 😣	Yes
CYP2D6 inhibitor 🧐	No
CYP3A4 inhibitor 📀	No
Log K_p (skin permeation) 0	-6.33 cm/s
	Druglikeness
Lipinski	Yes; 0 violation
Ghose 🥹	Yes
Veber 🥹	Yes
Egan 😣	Yes
Muegge 🥯	Yes
Bioavailability Score 📀	0.55
1	Medicinal Chemistry
PAINS 🥹	0 alert
Brenk 🧐	2 alerts: nitro_group, oxygen- nitrogen_single_bond
Leadlikeness 😣	Yes
Synthetic accessibility 📀	3.08

b)

SMILES [0-][N+](=0)c1ccc(c(c1)0c1cccccc1)[N-]S(=0)(=0)C.[0-][N+] (=0)c1ccc(c(c1)0c1ccccc1)[N-]S(=0)(=0)C.[Sr+2].0.0.0 Physicochemical Properties

Formula	C26H28N4O13S2Sr
Molecular weight	756.27 g/mol
Num. heavy atoms	46
Num. arom. heavy atoms	24
Fraction Csp3	0.08
Num. rotatable bonds	10
Num. H-bond acceptors	15
Num. H-bond donors	3
Molar Refractivity	168.40
TPSA 🔞	222.83 Å ²
	Lipophilicity
Log P _{o/w} (iLOGP) 🥹	0.00
Log P _{o/w} (XLOGP3) 🥹	3.42
Log P _{o/w} (WLOGP) 🤨	8.67
Log P _{o/w} (MLOGP) 🥹	0.53
Log P _{o/w} (SILICOS-IT) 🥹	-0.62
Consensus Log P _{o/w} 🤨	2.40

	Water Solubility
Log S (ESOL) 😣	-6.41
Solubility	2.95e-04 mg/ml ; 3.89e-07 mol/l
Class 🧐	Poorly soluble
Log S (Ali) 🥹	-7.78
Solubility	1.26e-05 mg/ml ; 1.66e-08 mol/l
Class 📀	Poorly soluble
Log S (SILICOS-IT) 09	-4.38
Solubility	3.12e-02 mg/ml ; 4.13e-05 mol/l
Class 🔞	Moderately soluble
	Pharmacokinetics
GI absorption 🧐	Low
BBB permeant 🥹	No
P-gp substrate 🧐	No
CYP1A2 inhibitor 🥹	No
CYP2C19 inhibitor 📀	No
CYP2C9 inhibitor 🧐	Yes
CYP2D6 inhibitor 🧐	No
CYP3A4 inhibitor 🥹	No
Log K _p (skin permeation) 🥺	-8.49 cm/s
	Druglikeness
Lipinski 🤨	No; 2 violations: MW>500, NorO>10
Ghose 🛞	No; 4 violations: MW>480, WLOGP>5.6, MR>130, #atoms>70
Veber 🥹	No; 1 violation: TPSA>140
Egan 📀	No; 2 violations: WLOGP>5.88, TPSA>131.6
Muegge 🥹	No; 3 violations: MW>600, TPSA>150, H- acc>10
Bioavailability Score 📀	0.17
1	Medicinal Chemistry
PAINS 😣	0 alert
Brenk 🥹	2 alerts: nitro_group, oxygen- nitrogen_single_bond 60
Leadlikeness 🥹	No; 2 violations: MW>350, Rotors>7
Synthetic accessibility 📀	4.66

Molecule 2			
₩ @ \ 			Water Solubility
0	LIPO	Log S (ESOL) 🔞	-6.92
↓ , , , , , , , , , , , , , , , , , , ,		Solubility	9.54e-05 mg/ml ; 1.21e-07 mol/l
	FLEX	Class 📀	Poorly soluble
		Log S (Ali) 🚱	-8.08
0		Solubility	6.50e-06 mg/ml : 8.24e-09 mol/l
H.C. &		Class ()	Poorly soluble
	INSATU POLAR	Log S (SILICOS-IT) 😣	-4.38
		Solubility	3.25e-02 mg/ml ; 4.13e-05 mol/l
		Class 🔞	Moderately soluble
	INSOLU		Pharmacokinetics
SMILES [0-][N+](=0)c1cc	c(c(c1)Oc1ccccc1)[N-]S(=O)(=O)C.[O-][N+]	GI absorption 🥹	Low
(=O)c1ccc(c(c1)C	ic1ccccc1)[N-JS(=O)(=O)C.[Ba+2].O.O	BBB permeant 🥹	No
Formula		P-gp substrate 🧐	No
Formula Molecular weight	727 06 a/mal	CYP1A2 inhibitor 🥹	No
Num beavy atoms	45	CYP2C19 inhibitor 🔞	No
Num arom heavy atoms	24	CYP2C9 inhibitor 0	Yes
Fraction Csp3	0.08	CYP2D6 inhibitor 📀	No
Num. rotatable bonds	10	CYP3A4 inhibitor 😣	No
Num. H-bond acceptors	14	Log K _o (skin permeation) 📀	-8.34 cm/s
Num. H-bond donors	2	v pr y	Druglikeness
Molar Refractivity	165.35	Lipinski 🥹	No; 2 violations: MW>500, NorO>10
TPSA 🥹	213.60 Ų	Ghose 🧐	No; 4 violations: MW>480, WLOGP>5.6,
	Lipophilicity	Veber 🔞	No: 1 violation: TPSA>140
Log P _{o/w} (ILOGP)	0.00	Faan ()	No: 2 violations: WI OGP>5.88 TPSA>1
Log P _{o/w} (XLOGP3) 69	3.90	Lyan	No: 3 violations: MW>600 TPSA>150 H
Log P _{o/w} (WLOGP) 🧐	8.74	Muegge 🧐	acc>10
Log P _{o/w} (MLOGP) 📀	1.26	Bioavailability Score 📀	0.17
Log P _{o/w} (SILICOS-IT) 🥹	-0.62		Medicinal Chemistry
Consensus Log Poly 0	2.65	PAINS 🥹	0 alert
		Brenk 🧐	2 alerts: nitro_group, oxygen- nitrogen_single_bond
		Leadlikeness 🧐	No; 3 violations: MW>350, Rotors>7, XLOGP3>3.5
		Synthetic accessibility 🥹	4.56

Figure 3S. ADME analysis for nimesulide (a) and for compounds 1 (b) and 2 (c).

References

[1] Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.

[2] Tetko, I. V.; Bruneau, P.; Mewes, H. W.; Rohrer, D. C.; Poda, G. I. Can we estimate the accuracy of ADME–Tox predictions? Drug Discov. Today 2006, 11, 700–707.

[3] Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Lai, L. Computation of Octanol–Water Partition Coefficients by Guiding an Additive Model with Knowledge. Journal of Chemical Information and Modeling 2007, 47(6), 2140–2148.

[4] Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. Journal of Medicinal Chemistry 2000, 43(20), 3714–3717.

[5] Delaney, J. S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. Journal of Chemical Information and Computer Sciences 2004, 44(3), 1000–1005.