Supporting Information

Chromium iodate: the structure and origin of optical second harmonic generation

Yang Chi*, Mei-Ling Xin

Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China

Corresponding author: yang.chi@hotmail.com

chemical formula	Cr(IO ₃) ₃
Fw	576.70
<i>T</i> (K)	296(2)
crystal system, space group	hexagonal, P6 ₃
Ζ	2
<i>a</i> (Å)	9.1319(4)
<i>c</i> (Å)	5.2815(3)
$V(Å^3)$	381.43(4)
$D_{ m calcd}~(m g/cm^3)$	5.021
$\mu (\mathrm{mm}^{-1})$	13.666
<i>F</i> (000)	510.0
2θ range (°)	5.15 to 66.59
measd. reflns	4362
indep. reflns/R _{int}	843/0.0486
obs. reflns	843
$\mathbf{R}_1, \mathbf{w}\mathbf{R}_2 (I > 2\sigma(I))^a$	0.0326, 0.0653
R_1, wR_2 (all data) ^a	0.0561, 0.0707
GOF on F^2	1.070
Flack parameter	-0.01(6)
$\Delta ho_{ m max}/\Delta ho_{ m min,}{ m e}/{ m \AA}^3$	1.81/-1.44

Table S1. Crystal data and structure refinement parameters for CIO.

^aR₁ = $||F_o| - |F_c||/|F_o|$; wR₂ = $[w(F_o^2 - F_c^2)^2]/[w(F_o^2)^2]^{1/2}$.

Atom	Wyck. site	x	У	Z	$U_{ m eq}$ /Å ²
I(1)	6 <i>c</i>	3162(1)	3368(1)	4883(4)	15.4(2)
Cr(1)	2b	6667	3333	3485(7)	17.5(7)
O(1)	6 <i>c</i>	4747(10)	2831(10)	5824(15)	17.8(17)
O(2)	6 <i>c</i>	1669(12)	2187(11)	7300(20)	31(2)
O(3)	6 <i>c</i>	4227(11)	5477(10)	6387(19)	20.2(17)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters $(U_{eq}{}^{a}, Å^{2} \times 10^{3})$ for CIO.

 $^{a}U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S3. Important bond lengths (Å) for CIO.

Atom	Length/Å	Atom	Length/Å
I(1)–O(1)	1.814(8)	Cr(1)–O(1)	2.001(8)
I(1)–O(2)	1.785(10)	$Cr(1) - O(3)^3$	1.990(8)
I(1)–O(3)	1.847(9)	$Cr(1)-O(3)^4$	1.990(8)
Cr(1)–O(1) ¹	2.001(8)	$Cr(1)-O(3)^5$	1.990(8)
$Cr(1)-O(1)^2$	2.001(8)		

Symmetry transformations used to generate equivalent atoms: ${}^{1}1+y-x$, 1-x, +z; ${}^{2}1-y$, +x-y, +z; ${}^{3}+y$, -x+y, -1/2+z; ${}^{4}1-y+x$, +x, -1/2+z; ${}^{5}1-x$, 1-y, -1/2+z.

Table S4. The angle between the lone pair electron direction of I^{5+} ion and the polar axis of $M^{III}(IO_3)_3$ ($M^{III} = Cr$, Fe, Al, Ga, and In).

Compounds	Shannon ionic radii of <i>M</i> ¹¹¹	Angle (°)
Cr(IO ₃) ₃	0.615	19.90
Fe(IO ₃) ₃	0.645 (high spin)	17.87
Al(IO ₃) ₃	0.535	22.59
Ga(IO ₃) ₃	0.62	22.03
In(IO ₃) ₃	0.80	19.87

Compound	Space group	SHG efficiency	Ref.
KCrIO ₆	$P2_{1}/c$	_	1
Ca ₂ (H ₂ O)(IO ₃) ₂ (CrO ₄)	$P2_{1}/c$	_	2
$Na_6CaMg(IO_3)_6((Cr_{0.84}S_{0.16})O_4)_2(H_2O)_{12}$	C2/c	_	3
RbUO ₂ (CrO ₄)(IO ₃)(H ₂ O)	$P\overline{1}$	_	4
$A_2 UO_2 (CrO_4) (IO_3)_2 (A = K, Rb, Cs)$	$P2_{1}/c$	_	3
Th(CrO ₄)(IO ₃) ₂	$P2_{1}2_{1}2_{1}$	$1 \times \alpha$ -SiO ₂ (1064 nm)	5
Cr(IO ₃) ₃	<i>P</i> 6 ₃	$3.5 \times \text{KDP}$	this work

Table S5. Metal iodates containing Cr element.

 Table S6. Calculated Mulliken bond populations of CIO.

Bond	Population	Length (Å)
I(1)–O(1)	0.27	1.814
I(1)–O(2)	0.42	1.785
I(1)–O(3)	0.19	1.847
Cr(1)–O(1)	0.32	2.001
Cr(1)–O(3)	0.35	1.990

Fig. S1 X-ray powder diffraction pattern of CIO.

Fig. S2 IR spectrum of CIO.

Fig. S3 Calculated band structure for CIO.

Fig. S4 Calculated birefringence of CIO.

Fig. S5 Calculated frequency dependent NLO coefficients in CIO (a) and the contribution of spin-up (down) bands (b).

References

- Loefgren, P. The Crystal Structure of Potassium Chromato Iodate, KCrIO₆, *Acta Chem. Scand.*, **1967**, *21*, 2781–2791.
- (2) The crystal structure of dietzeite, Ca₂(H₂O)(IO₃)₂(CrO₄), a heteropolyhedral framework mineral. *Can. Mineral.*, **1993**, *31*, 313–319.
- (3) Cooper, M.A.; Hawthorne, F.C.; Roberts, A.C.; Grice, J.D.; Stirling, J.A.R.; Moffatt, E.A. Georgeericksenite, Na₆CaMg(IO₃)₆(CrO₄)₂(H₂O)₁₂, a new mineral from Oficina Chacabuco, Chile: description and crystal structure. *Am. Mineral.*, **1998**, *83*, 390–399.
- (4) Sykora, R.E.; McDaniel, S.M.; Wells, D.M.; Albrecht Schmitt, T.E. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures and reactivity of Rb(UO₂(CrO₄)(IO₃)(H₂O)), A₂(UO₂(CrO₄)(IO₃)₂) (A = K, Rb, Cs) and K₂(UO₂(MoO₄)(IO₃)₂), *Inorg. Chem.*, **2002**, *41*, 5126–5132.

(5) Sullens, T.A.; Almond, P.M.; Byrd, J.A.; Beitz, J.V.; Bray, T.H.; Albrecht Schmitt, T.E. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: structures and properties of Th(SeO₃)(SeO₄), Th(IO₃)₂(SeO₄)(H₂O)₃·H₂O, and Th(CrO₄)(IO₃)₂. *J. Solid State Chem.*, **2006**, *179*, 1192–1201.