Supporting Information for

Binucleating Jäger-type $\{(N_2O_2)_2\}^{4-}$ ligands: Magnetic and electronic interactions of Fe(II), Ni(II) and Cu(II) across an in-plane TTF-bridge

Constantin Schreck,^a Sophie Schönfeld,^{a+} Phil Liebing,^b Gerald Hörner^b and

Birgit Weber*b

^{a.} Department of Chemistry, Inorganic Chemistry IV, University of Bayreuth, 95447 Bayreuth, Germany.

^{b.} Institute for Inorganic and Analytical Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich-Schiller-University Jena, Germany.

⁺ Present Address: Fraunhofer Institute for Environmental, Safety and Energy Technology UM-SICHT, Institute Branch Sulzbach-Rosenberg, Department Renewable Energy, 92237 Sulzbach Rosenberg.

¹H-NMR spectra

Figure S1: ¹H-NMR spectrum of ligand precursor **2** in dmso-d₆ (300 mHz) with signal assignments. Solvent signals are marked with *.

Figure S2: ¹H-NMR spectrum of ligand H₄L in dmso-d₆ (500 mHz) with signal assignments. Solvent signals are marked with *.

Figure S3: ¹H-NMR spectrum of **[Ni₂L]** in dmso-d₆ (500 mHz) with signal assignments. Solvent signals (dmso, H₂O and EtOH) are marked with *.

Mass spectrum

ESI neg: H_4L in MeCN

Figure S 4: Mass spectrum of H₄L in MeCN.

Figure S5: FT-IR spectrum of (A) H₄L, (B) [Cu₂L], (C) [Ni₂L], (D) [Ni₂L(py)₄], (E) [Fe₂L(py)₄], (F) [Fe₂L(dmap)₄] and (G) [Fe₂L(bpee)₂]·1 Tol.

Cristallographic data

Table S1: Crystallographic data of [Ni2L(py)4].

Compound	[Ni ₂ L(py) ₄]
CCDC number	2332706
Formula	$C_{62}H_{48}F_{12}N_8Ni_2O_{12}S_4$ [+ solvent]
Crystal size [mm]	$0.054 \times 0.051 \times 0.041$
Crystal description	Red platelet
<i>M</i> [g mol ⁻¹]	1570.74
Т [К]	180 K
λ [nm]	0.71073
Crystal system	tetragonal
Space group	P4 ₂
a [Å]	17.8926(3)
b [Å]	17.8926(3)
c [Å]	24.3239(5)
α [°]	90.0
β[°]	90.0
γ [°]	90.0
V [ų]	7787.2(3)
Z	4
$ ho_{calculated}$ [mg cm ⁻³]	1.429
μ [mm ⁻¹]	0.684
F(000)	3200
Θ _{range} [°]	1.8–29.0
Reflections collected	34757
Indep. reflections (R _{int})	16403 (0.050)
<i>R</i> 1	0.0572
wR2	0.1447
GooF (S)	0.938
Min. and Max. $\rho_{residual} \left[e {\rm \AA}^{-1} \right]$	-0.40, 1.01

[Ni ₂ L(py) ₄]			
	Bond length [Å]		Bond angles [°]
d(Ni1–N1)	1.991(7)	∡(N1–Ni1–O4)	168.6(3)
d(Ni1–N2)	2.008(7)	∡(N2–Ni1–O3)	172.7(2)
d(Ni1–O3)	2.020(5)	∡(N5–Ni1–N6)	174.7(3)
d(Ni1–O4)	2.065(6)	∡(O3–Ni1–O4)	100.6(2)
d(Ni1–N5)	2.117(7)	∡(N3–Ni2–O10)	173.7(2)
d(Ni1–N6)	2.151(7)	∡(N4–Ni2–O9)	173.8(3)
d(Ni2–N3)	1.961(6)	∡(N7–Ni2–N8)	176.8(3)
d(Ni2–N4)	2.009(6)	≰(O9–Ni2–O10)	96.1(2)
d(Ni2–O9)	2.010(6)		
d(Ni2–O10]	2.039(5)		
d(Ni2–N7)	2.139(7)		
d(Ni2–N8)	2.198(7)		

Table S2: Selected bond lengths and bond angles of [Ni₂L(py)₄].

Table S3: Selected distances for short contact F…F interactions in [Ni₂L(py)₄].

1.345(11)

	Distance [Å]
d(F2–F8)	2.867(8)
d(F3–F12)	2.839(7)
d(F4–F11)	2.784(9)

d(C21–C22)

Table S4: Distances and angles of the aromatic interactions within **[Ni₂L(py)₄]**. Cg(I) and Cg(j) are the centroids. Given are the angles between the ring planes, the perpendicular distance between the gravitational center and the respective ring as well as the slippage

Cg(I)	Cg(J)	Cg(I)–Cg(J) [Å]	α [°]	в [°]	γ [°]	Cg(I)-perp [Å]	Cg(J)-perp [Å]	Slippage [Å]
S1 - C19 - C20 - S2 -	N7 – C53 – C54 – C55 –	3.814(5)	16.1(4)	12.3	27.2	3.393(3)	3.726(4)	0.814
C21	C56 – C57							
S3 - C22 - S4 - C24 -	N6 - C48 - C49 - C50 -	3.843(5)	17.8(4)	13.4	29.4	3.347(3)	3.739(4)	0.888
C23	C51 – C52							
N5 - C43 - C44 - C45 -	N5 - C43 - C44 - C45 -	3.658(6)	11.5(5)	13.5	13.5	3.556(4)	3.557(4)	0.853
C46 – C47	C46 – C47							
N6 - C48 - C49 - C50 -	S3 - C22 - S4 - C24 -	3.843(5)	17.8(4)	29.4	13.4	3.739(4)	3.347(3)	1.889
C51 – C52	C23							
N6 - C48 - C49 - C50 -	C23 – C24 – C26 – C28	4.183(5)	18.9(4)	40.7	26.2	3.755(4)	3.171(3)	2.729
C51 – C52	– C27 – C25							
N7 – C53 – C54 – C55 –	S1 - C19 - C20 - S2 -	3.814(5)	16.1(4)	27.2	12.3	3.726(4)	3.393(3)	1.742
C56 – C57	C21							
N7 – C53 – C54 – C55 –	C15 - C16 - C18 - C20	4.096(5)	17.6(4)	35.3	23.7	3.751(4)	3.344(3)	2.366
C56 – C57	– C19 – C17							
N8 - C58 - C59 - C60 -	N8 - C58 - C59 - C60 -	3.794(5)	18.4(4)	16.1	16.1	3.646(4)	3.645(4)	1.052
C61 – C62	C61 – C62							
C15 - C16 - C18 - C20	N7 – C53 – C54 – C55 –	4.096(5)	17.6(4)	23.7	35.3	3.344(3)	3.750(4)	1.647
– C19 – C17	C56 – C57							
C23 – C24 – C26 – C28	N6 - C48 - C49 - C50 -	4.184(5)	18.9(4)	26.2	40.7	3.171(3)	3.756(4)	1.844
– C27 – C25	C51 – C52							

DFT-Modelling frontier orbital pattern

Figure S6: Kohn-Sham frontier MO energy diagram and orbital plots of the binuclear nickel complex [Ni₂L].

Figure S7: Kohn-Sham frontier MO energy diagram and orbital plots of the binuclear iron complex [Fe₂L(py)₄] (all-low spin).

Thermogravimetric Analysis

Figure S8: Thermogravimetric analysis of [Fe₂L(py)₄] under argon atmosphere.

UV-Vis absorption spectra

Spectral deconvolutions of the UV-Vis absorption spectra of H₄L, [Ni₂L], [Cu₂L] and [Fe₂L(py)₄] are shown in Figure S 13. It is noted that the fit procedure was model-free; that is, the fit was phenomenological with no *a priori* physical meaning. While overall red-shifted spectra prevail for all metal complexes, only the copper complex retains the overall spectral shape of the ligand spectrum. The long-wavelength band fits to a single Gaussian profile, which is red-shifted by 2400 cm⁻¹ with respect to the ligand spectrum. A very similar shift prevails for the near-UV band. The long-wave tailing of the strong Vis absorption in [Cu₂L] hides an additional, weak transition with a maximum at ca. 15.000 cm⁻¹, which is readily identified as the *d*⁹ ligand-field absorption. In the case of nickel and iron the spectral shapes do no longer mimic the parent ligand spectrum. The long-wavelength band clearly consists of (at least) two strong individual transitions in both cases (in the fit, maxima are located at v = 20.700 cm⁻¹ and v = 23.700 cm⁻¹ and v = 25.000 cm⁻¹ for nickel and iron, respectively).

Figure S9: Gaussian deconvolution of the UV-Vis absorption spectra of H₄L, [Ni₂L], [Cu₂L] and [Fe₂L(py)₄] (for Cu, the given molar absorption coefficients denote lower limits); colored line: exp. data; dottet: individual fit components; dashed: composite fit.

Magnetic Properties

Figure S10: Temperature dependence of $\chi_{M}T$ of [Cu₂L], including a fit to the coupling model of Bleaney-Bowers.

⁵⁷Fe-Mössbauer Spectroscopy

Sample	Т	Site	species	δ	ΔE_{Q}	Г/2	Area [%]
	[K]			[mm s ⁻¹]	[mm s ⁻¹]	[mm s ⁻¹]	
[Fe ₂ L(py) ₄]	298	D1	Fe(II) HS	0.99(4)	2.15(8)	0.41(5)	65(8)
		D2	Fe(II) LS	0.31(7)	1.19(15)	0.43(11)	35(8)
	200	D1	Fe(II) HS	1.01(4)	2.29(8)	0.13(4)	29(7)
		D2	Fe(II) LS	0.40(2)	1.20(5)	0.17(3)	71(8)
	100	D1	Fe(II) HS	1.10(4)	2.23(8)	0.14(6)	19(6)
		D2	Fe(II) LS	0.430(10)	1.132(19)	0.154(14)	81(5)
	80	D1	Fe(II) HS	1.104(13)	2.26(3)	0.14(2)	17.7(18)
		D2	Fe(II) LS	0.435(3)	1.148(6)	0.153(4)	82.3(17)
[Fe ₂ L(py) ₄] ^{heated}	150 D1 Fe(II)		Fe(II) HS	1.02(3)	2.29(5)	0.18(4)	61(9)
		D2	Fe(II) LS	0.42(4)	1.27(9)	0.13(6)	25(14)
		D3	Fe(III) HS	0.41(6)	0.73(16)	0.13(11)	14(13)
	80	D1	Fe(II) HS	1.031(13)	2.31(3)	0.157(18)	65(5)
		D2	Fe(II) LS	0.42(3)	1.30(8)	0.14(5)	22(12)
		D3	Fe(III) HS	0.43(4)	0.78(12)	0.13(8)	13(11)
[Fe ₂ L(dmap) ₄]	150	D1	Fe(II) HS	1.12(4)	2.29(8)	0.16(6)	24(6)
		D2	Fe(II) LS	0.423(12)	1.08(2)	0.161(16)	76(5)
	80	D1	Fe(II) HS	1.189(8)	2.305(17)	0.148(13)	15.5(10)
		D2	Fe(II) LS	0.4455(18)	1.082(4)	0.166(26)	84.5(10)
[Fe ₂ L(bpee) ₂] _n	150	D1	Fe(II) HS	1.14(11)	2.2(2)	0.22(17)	12(7)
		D2	Fe(II) LS	0.407(10)	1.131(18)	0.166(14)	88(6)
	80	D1	Fe(II) HS	1.26(8)	2.21(16)	0.23(13)	13(6)
		D2	Fe(II) LS	0.424(7)	1.109(13)	0.156(10)	87(5)

Table S 5: ⁵⁷Fe Mössbauer parameters for all iron compounds.

Cyclic voltammograms

Table S 6: Measured half wave potentials $E_{1/2}$ [V] and their corresponding peak-to-peak seperations ΔE [V] of the investigated samples.

sample	solv	E _{1/2} ¹	$E_{1/2}^2$	$E_{1/2}^{3}$	$E_{1/2}^{4}$	ΔE^1	ΔE^2	ΔE^3	ΔE^4	Elox	Elred	E ^{2ox}	E ^{2red}	E ^{3ox}	E ^{3red}	E ^{4ox}	E ^{4red}
H ₄ L	DCM	0.665 ^{a)}	0.321			0.145 ^{a)}	0.186			0.737	0.592	0.414	0.228				
											0.504						
[Ni ₂ L]	DCM	0.697	0.263			0.087	0.067			0.740	0.653	0.296	0.229				
[Fe ₂ L(py) ₄]	DCM		0.202		0.001		0.150		0.220		0.616	0.278	0.128	0.182		0.111	-0.109
H_4L	MeCN	0.578	0.300			0.189	0.105			0.672	0.483	0.352	0.247				
ox	DCM	0.640				0.088				0.684	0.596						

^{a)}Appearance of two reduction peaks. Calculated $E_{1/2}$ and ΔE based on the first of two reduction peaks at 0.592 V.

Figure S11: Cyclic voltammogram of a H₄L; measured in MeCN ($c = 1.0 \times 10^{-3}$ M) with NBu₄PF₆ (c = 0.1 M) on a platinum working and counter electrode with a saturated calomel reference electrode (SCE) and a scan rate of 50 mV s⁻¹. Potentials are reported in reference to Fc/Fc⁺.

Chemical oxidation

Figure S12: UV-Vis absorption spectra of (A) the ligand H₄L and (B) [Fe₂L(py)₄] in DCM after addition of varying amounts of oxidation agent [N(C₆H₅Br-4)₃]⁺⁺ [{3,5-(CF₃)₂C₆H₃}₄B]⁻ ox; ($c = 2.0 \times 10^{-5}$ M).