Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Intimately mixed copper, cobalt, and iron fluorides resulting from the insertion of fluorine into a LDH template

Abderraouf Rouag^a, Régis Porhiel^a, Kevin Lemoine^a, Fabrice Leroux^a, Jean-Marc Grenèche^b,

Diane Delbègue^c, Cristina Iojoiu^d, Katia Guérin^{*a}

- université Clermont Auvergne, INP Clermont, CNRS, ICCF, 24, Avenue Blaise Pascal,
 63178 Aubière, France.
 - Institut des Molécules et des Matériaux du Mans, UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
- c. Centre National des Etudes Spatiales, 18 avenue Edouard Belin 31 401 Toulouse Cedex
 9, France.
- d. Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, UMR
 5631 CNRS/INPG/UJF, 138402 Saint Martin d'Hères Cedex, France

Fig. S1 Phase identification in diffractograms across critical temperatures.

* CuO (96-901-6823), μ CoFe₂O₄ (96-153-3163),

x CoO(96-900-8619), and **o** Al₂O₃ (96-154-1583)

Stoichiometric coefficients	Equations	Results
X	$\frac{Cu(\%)}{Co(\%)} = \frac{(1-x)MCu}{x MCo} = 3.34$	0.24
у	$\frac{Fe(\%)}{Al(\%)} = \frac{y MFe}{(1-y) MAl} = 5.32$	0.72
n	$\frac{\frac{Cu(\%)}{MCu} + \frac{Co(\%)}{MCo}}{\frac{Al(\%)}{Fe(\%)}}$	2.03
	$\overline{MAl} + \overline{MFe}$	

Table S1 Detail of experimental composition calculations obtained by ICP-AES.

Z

Fig. S2 Thermogravimetric analysis of LDH template under helium, temperature ramp from RT to 1200 °C at 10 °C/min.

Elements Cu Co Al Fe Cl F LDH Template 0 8.2 1.03 2.19 3.9 1.13 F200 12.6 1.83 2.4 5.17 0.2 31

Table S2 Compositions generated by semi-quantitative EDX analysis (% Atomic).

Fig. S4 Thermogravimetric study of water uptake at 30°C Over 60 hours in freshly synthesized F200.

Fig. S5 Mössbauer spectra at 300 K for F200 under air phase. Grey dots represent the experimental data, black lines the resulting fitted spectra

Cell pa	rameters		Bond dista	nces			
a (Å)	7.4836(4)	Atom i	Atom j		d _{i-j} (Å)		
b (Á)	7.5759(5)	Cu1	F1	2x	1.89(3)		
c (Á)	8.1753(5)		Ow2	2x	2.30(3)		
α (°)	88.826(5)		Ow1	2x	2.38(3)		
β (°)	89.927(6)	Cu2	Ow3	2x	2.04(3)		
γ (°)	87.934(6)		F3	2x	2.13(3)		
V (Á3)	463.10(5)		F3	2x	2.13(3)		
Z	1		Ow4	2x	2.19(3)		
ρ (g/cm ³)	2.538	Cu3	Ow5	2x	2.01(3)		
SG	<i>P</i> -1		Ow6	2x	2.18(3)		
Symmetry	Triclinic		F2	2x	2.22(3)		
R_p/R_{wp}	0.137/0.095	Fe1 Al2	F1	2x	2.05(3)		
R_b/R_f	0.036/0.032		F2	2x	2.11(3)		
χ^2	2.19		F3	2x	2.31(3)		
		Fe2 Al1	F5	2x	1.80(3)		
			F6	2x	1.94(3)		
			F4	2x	1.99(2)		
Atom	Wyck.	Х	Y		Ζ	$B(Å^2)*$	Occ.
Cul	1a	0	0		0	1.0	1
Cu2	1g	0	1/2	1/2		1.0	1
Cu3	1e	1⁄2	1/2	0		1.0	1
Fel	1c	0	1/2		0	1.0	0.75
Fe2	lf	1/2	0	1⁄2		1.0	0.75
A11	lf	1/2	0		1/2	1.0	0.25
A12	1c	0	1/2	0		1.0	0.25
Ow1	2i	0.1040(39)	0.0812(42)	-0.2646(38)		1.0	1
Ow2	2i	0.2801(44)	0.0326(39)	0.1	072(46)	1.0	1
Ow3	2i	0.2575(38)	0.4587(37)	0.4	242(39)	1.0	1
Ow4	2i	0.0573(43)	0.7730(44)	0.5597(38)		1.0	1
Ow5	2i	0.4068(47)	0.6022(42)	-0.2140(40)		1.0	1
Ow6	2i	0.4787(44)	0.7573(41)	0.1148(37)		1.0	1
F1	2i	0.9311(36)	0.2414(36)	0.0181(37)		1.0	1
F2	2i	0.2444(37)	0.4234(35)	0.1127(31)		1.0	1
F3	2i	0.1019(35)	0.4444(40)	0.7386(40)		1.0	1
F4	2i	0.4583(42)	0.2510(34)	0.5	623(30)	1.0	1
F5	2i	0.5847(43)	0.0640(36)	0.3	029(25)	1.0	1
F6	2i	0.2618(40)	-0.0098(32)	0.4	062(38)	1.0	1

Table. S3 Data collection, structural parameter and atomic positions of $Cu_3Fe_{1.5}AI_{0.5}F_{12}$ · $(H_2O)_{12}$

*Atomic displacements were not refined and fixed at 1.0

Fig. S6 Raman *operando* of the fluorinated active material with 1M LiTFSI in TEGDME electrolyte, one scan out of 5 between: (a) 3.4V and 1.5 V vs. Li⁺/Li during electrochemical reduction; (b) 1.5 and 3.5 V vs. Li⁺/Li during electrochemical oxidation

Fig. S7 Raman *operando* of the 1M LiTFSI in TEGDME electrolyte on polypropylene Celgard separator and its voltammogram obtained at 0.03 mV.s⁻¹