Supporting information

An enhanced photoreduction efficiency of Cr(VI) driven by visible light in a new Zr-based metal-organic framework modified by hydroxyl groups

Duc T. Nguyen,^a Khang M. V. Nguyen,^a Huy K. Duong,^a Binh T. Nguyen,^a Mai D. K. Nguyen,^a Dang B. Tran,^a Quang-Hieu Tran,^b Tan L. H. Doan^{c,d} and My V. Nguyen^{*a}

^a Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.

^b Basic Sciences Department-Saigon Technology University, Ho Chi Minh City 700000, Vietnam, 180 Cao Lo, Ward 4, District 8, Ho Chi Minh City, Vietnam.

^c Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.

^d Vietnam National University, Ho Chi Minh City, Vietnam.

*To whom correspondence should be addressed: <u>mynv@hcmue.edu.vn</u>

Section S1. Nuclear Magnetic Resonance (NMR) Spectroscopy

Figure S1. ¹H-NMR spectrum of H₂NDC(OH) linker in DMSO solvent.

Figure S2. ¹³C-NMR spectrum of H₂NDC(OH) linker in DMSO solvent.

Section S2. The standard curve of Cr(VI)

Figure S3. The relationship between the absorbed intensity of the Cr(VI) complex via the DPC method and the Cr(VI) different concentrations of $0 - 2 \text{ mg L}^{-1}$ by linear fitting.

Figure S4. Raman spectrum of activated HCMUE-1 (red) in comparison with $H_2NDC(OH)$ linker (black).

Figure S5. N₂ isotherm curve of HCMUE-1 material at 77K. The closed and open circles symbolize the adsorption and desorption branches of the isotherm, respectively.

Section S5. XPS Spectroscopy

Figure S6. The XPS analysis of HCMUE-1 after photocatalysis: high-resolution spectrum of C 1s in HCMUE-1 (a); high-resolution spectrum of O 1s in HCMUE-1 (b); high-resolution spectrum of Zr 3d in HCMUE-1 (c).

Figure S7. Photoluminescence spectra and time-resolved fluorescence decay traces (inset) were collected for HCMUE-1 material with an excitation wavelength of 270 nm.

Section S7. Photocatalyic kinetic model for the Cr(VI) reduction

Photoreduction kinetic. The pseudo-first-order kinetic are utilized to determine the photoreduction rate of Cr(VI), which is displayed by the eqn:

$$\ln\left(\frac{C_t}{C_o}\right) = -k_1 t$$

Where C_t and C_o are the Cr(VI) concentration at t and original time, k_1 are the rate constant of pseudo-first-order.

Overall Initial Dosage degradation Time of catalyst concentration **Light source** Ref. Material efficiency (min) $(g L^{-1})$ $(mg L^{-1})$ (%) [1] SrTiO₃ 1.0 4.8 Visible light 99 240 [2] Fe-g-C₃N₄/MoS₂ 9.6 91.4 0.6 Visible light 150 [3] OH-TiO₂ 10 Visible light 88 1.0 30 [4] Ag-BiOCl 1.0 10 Visible light 86 180 [5] 10 95.3 NNU-36 0.375 Visible light 60 [6] MIL-53(Fe) 1.0 20 Visible light 40 66 Ag/AgCl@MIL-[7] 0.4 10 Visible light 99.4 240 53(Fe) [8] Pt@MIL-100(Fe) 1.0 20 Visible light 100 8 [9] MIL-68(In)-NH₂ 1.0 20 Visible light 97 80 [10] 99 g-C₃N₄/UiO-66 0.5 10 White light 40 [11] UiO-66-NH₂(Zr) 5 98 120 0.5 Sunlight [12] 8 UiO-66(OH)₂ 0.2 Visible light 100 10 [13] RGO-UiO-66(NH₂) 0.5 10 Visible light 100 100 [14] 0.5 8 Visible light 15 MIL-53-NH₂ 60 [15] MIL-53/WO₃ 45 94 1.0 Sun light 240 MIL-101-NH₂/g-[16] 90 1.0 20 Sun light 66 C_3N_4 [17] 10 99.2 MIL-100/Bi12O17C12 0.5 Visible light 120 **DUT-52** 0.2 20 Visible light 30 120 This 0.2 10 Visible light 100 30 study **HCMUE-1** 98 90 0.2 20 Visible light 0.2 20 Visible light 100 120

Table S1. The Cr(VI) photoreduction efficiency of HCMUE-1 in comparison with other

 previously reported materials

References

[1] D. Yang, Y. Sun, Z. Tong, Y. Nan and Z. Jiang, Fabrication of bimodal-pore SrTiO₃ microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight, *J. Hazard. Mater.*, 2016, **312**, 45-54.

[2] X. Wang, M. Hong, F. Zhang, Z. Zhuang and Y. Yu, Recyclable nanoscale zero valent iron doped $g-C_3N_4/MoS_2$ for efficient photocatalysis of RhB and Cr(VI) driven by visible light, *ACS Sustain. Chem. Eng.*, 2016, **4**, 4055-4063.

[3] Y. Li, Y. Bian, H. Qin, Y. Zhang and Z. Bian, Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide, *Appl. catal. B: environ.*, 2017, **206**, 293-299.

[4] H. Li and L. Zhang, Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light, *Nanoscale*, 2014, **6**, 7805-7810.

[5] H. Zhao, Q. Xia, H. Xing, D. Chen and H. Wang, Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr(VI) reduction and dye degradation, *ACS Sustain. Chem. Eng.*, 2017, **5**, 4449-4456.

[6] R. Liang, F. Jing, L. Shen, N. Qin and L. Wu, MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes, *J. Hazard. Mater.*, 2015, 287, 364-372.

[7] Q. Liu, C. Zeng, L. Ai, Z. Hao and J. Jiang, Boosting visible light photoreactivity of photoactive metal-organic framework: Designed plasmonic Z-scheme Ag/AgCl@MIL-53-Fe, *Appl. Catal. B: Environ.*, 2018, **224**, 38-45.

[8] R. Liang, F. Jing, L. Shen, N. Qin and L. Wu, M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water, *Nano Res.*, 2015, **8**, 3237-3249.

[9] R. Liang, R. Huang, X. Wang, S. Ying, G. Yan and L. Wu, Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution, *Appl. Surf. Sci.*, 2019, **464**, 396-403.

[10] X.-H. Yi, S.-Q. Ma, X.-D. Du, C. Zhao, H. Fu, P. Wang and C.-C. Wang, The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light, *Chem. Eng. J.*, 2019, **375**, 121944.

[11] X. -D. Du, X. -H. Yi, P. Wang, W. Zheng, J. Deng and C. -C. Wang, Robust photocatalytic reduction of Cr(VI) on UiO-66-NH₂(Zr/Hf) metalorganic framework membrane under sunlight

irradiation, Chem. Eng. J., 2019, 356, 393-399.

[12] H. Xie, D. Ma, W. Liu, Q. Chen, Y. Zhang, J. Huang, H. Zhang, Z. Jin, T. Luo and F. Peng, Zr-based MOFs as a new photocatalysts for rapid reduction of Cr(VI) in water, *New J. Chem.*, 2020, **44**, 7218-7225.

[13] L. Shen, L. Huang, S. Liang, R. Liang, N. Qin and L. Wu, Electrostatically derived selfassembly of NH₂-mediated zirconium MOFs with graphene for photocatalytic reduction of Cr(VI), *RSC Adv.*, 2014, **4**, 2546-2549.

[14] L. Shi, T. Wang, H. Zhang, K. Chang, X. Meng, H. Liu and J. Ye, An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction, *Adv. Sci.*, 2015, **2**, 1500006.

[15] A. A. Oladipo, MIL-53(Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI), *Process Saf. Environ. Prot.*, 2018, 116, 413-423.

[16] D. Pattappan, K. V. Kavya, S. Vargheese, R. T. R. Kumar and Y. Haldorai, Graphitic carbon nitride/NH₂-MIL-101(Fe) composite for environmental remediation: visible-light-assisted photocatalytic degradation of acetaminophen and reduction of hexavalent chromium, *Chemosphere*, 2022, **286**, 131875.

[17] Li, H.; Zhao, C.; Li, X.; Fu, H.; Wang, Z.; Wang, C. -C. Boosted photocatalytic Cr(VI) reduction over Z-scheme MIL-53(Fe)/Bi₁₂O₁₇Cl₂ composites under white light, *J. Alloy. Compd.*, 2020, 844, 156147.