Contents

Analytical data
Compound 1
Compound 2
Compound 311
Compound 4
R spectra15
Crstallographic data16
General Data Acquisition and Processing16
Crystal structure of 1
Crystal structure of 2
Crystal structure of 322
Crystal structure of 424
References

Analytical data

Figure S1: ¹H NMR spectrum of **1** in THF-*d*₈.

Figure S2: ¹³C{¹H} NMR spectrum of 1 in THF-d₈.

Figure S3: ¹H, ¹³C HSQC NMR spectrum of 1 in THF-*d*₈.

Figure S4: ¹H, ¹³C HMBC NMR spectrum of 1 in THF-*d*₈.

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 δ (ppm)

Figure S5: ¹¹B NMR spectrum of 1 in THF-*d*₈.

Figure S6: ¹¹B-H NMR spectrum of 1 in THF-d₈.

Figure S7: Mass spectrum (LIFDI[+], THF) of 1 (1 of 2).

Figure S8: Mass spectrum (LIFDI[+], THF) of 1 (2 of 2).

Figure S9: ¹H NMR spectrum of 2 in tol-*d*₈.

∠2.59 __2.30 ~2.02

Figure S10: ¹¹B NMR spectrum of 2 in tol-*d*₈.

-113.4 -113.8 -114.2 -114.6 -115.0 -115.4 -115.8 -116.2 -116.6 -117.0 -117.4 -117.8 -118.2 -118.6 δ (ppm)

Figure S11: ¹⁹F NMR spectrum of 2 in tol-*d*₈.

Figure S12: ${}^{19}F{}^{1}H$ NMR spectrum of 2 in THF- d_8 .

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 δ(ppm)

Figure S13: ${}^{13}C{}^{1H}$ NMR spectrum of 2 in tol- d_8 .

Figure S14: ¹H, ¹³C HMBC NMR spectrum of 2 in tol-*d*₈.

Figure S15: ¹H, ¹³C HSQC NMR spectrum of 2 in tol-*d*₈.

Figure S16: Mass spectrum (LIFDI[+], toluene) of 2.

Figure S18: ¹¹B NMR spectrum of 3 in tol-*d*₈.

Figure S19: Mass spectrum (LIFDI[+], toluene) of 3 (1 of 2).

Figure S20: Mass spectrum (LIFDI[+], toluene) of 3 (2 of 2).

Figure S22: ¹¹B NMR spectrum of 4 in THF-*d*₈.

Figure S23: Mass spectrum (LIFDI[+], toluene) of 4.

IR spectrum of 1

Figure S24: ATR-IR spectra (solid, 650–4000 cm⁻¹) of compound 1.

Crstallographic data

General Data Acquisition and Processing

The diffraction data were collected using Incoatec Mo Microsource radiation and a Bruker APEX II detector. The data were integrated with SAINT.¹ A multi-scan absorption correction was applied using SADABS² and TWINABS³(**4**). The structures were solved by SHELXT⁴ and refined on *F*² using SHELXL⁵ in the graphical user interface ShelXle.⁶ All hydrogen atoms were placed according to geometrical criteria and refined with a riding model except those mentioned below. An overview of the crystallographic data for **1**, **2**, **3**, **4** can be found in **Table S1** while individual bond lengths and angles are listed in **Table S2-S5**, respectively.

Compound	4	2	2	
Compound	1	2	3	4
CCDC	2333148	2333149	2333150	2333151
Empirical Formula	$C_{17}H_{15}BN_2O_2$	$C_{17}H_{13}BF_2N_2O_2$	$C_{17}H_{13}BCI_2N_2O_2$	$C_{17}H_{13}BBr_2N_2O_2$
Formula weight	290.12	326.10	359.00	447.92
<i>т</i> [К]	100(2)	100(2)	100(2)	100(2)
λ [Å]	0.71073	0.71073	0.71073	0.71073
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	<i>P</i> nma	<i>P</i> nma	<i>P</i> 2 ₁ /m	<i>P</i> 2 ₁
a [Å]	15.336(3)	15.378(3)	7.935(2)	6.877(2)
b [Å]	6.707(2)	6.800(2)	6.703(2)	14.447(3)
c [Å]	13.506(2)	13.574(3)	14.407(3)	7.970(2)
β [°]	-	-	94.76(2)	93.81(2)
<i>V</i> [ų]	1389.2(5)	1419.4(6)	763.6(3)	790.1(3)
Ζ	4	4	2	2
μ [mm ⁻¹]	0.091	0.118	0.437	5.142
F(000)	608	672	368	440
Crystal size [mm]	0.708x0.254x0.163	0.412x0.094x0.046	0.243x0.155x0.1	0.279x0.263x0.127
Θ max [°]	2.009 to 27.126	2.001 to 27.114	2.576 to 27.144	2.561 to 29.749
Reflections collected	38676	34861	17901	21013
Independent reflections	1678	1707	1843	4055
R _{int}	0.0238	0.0332	0.0266	0.0590
Data/restraints/parameters	1678/0/139	1707/0/144	1843/0/145	4055/1/226
GooF	1.046	1.060	1.032	1.057

Table S1: Crystal data and structure refinement for compound 1, 2, 3, 4 at 100(2)K.

Shape and color	yellow needle	yellow needle	colorless needle	colorless plate
$ ho_{max}/ ho_{min}$ [e A ⁻³]	0.317/-0.232	0.367/-0.285	0.368/-0.243	0.827/-0.748
Extinction coefficient	-	-	0.015(2)	
wR2 [all data]	0.0992	0.0944	0.0716	0.0686
R1 [<i>l</i> >2σ(<i>l</i>)]	0.0348	0.0336	0.0262	0.0354

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma w(F_{o}{}^{2} - F_{c}{}^{2})^{2}/\Sigma (F_{o}{}^{2})^{2}]^{1/2}$

Figure S25: Molecular structure of compound **1**. Anisotropic displacement parameters are depicted at the 50% probability level. All hydrogen atoms are omitted for clarity except for the bridging (methylene) and boron dihydride. The hydrogens attached to boron were refined freely.

Table	S2 :	Bond	lengths	[Å]	and	angles	[°]	for	1.
O(1)-C(7)		1.3548(16)			C(8)-C(9)	1.3901	(19)		
O(1)-C(6)		1.3887(15)			C(10)-C(11)	1.3788	(18)		
O(2)-C(9)		1.3609(16)			C(10)-C(15)	1.3905	(18)		
O(2)-C(10)		1.3892(16)			C(11)-C(12)	1.399(2	2)		
N(1)-C(7)		1.3373(17)			C(12)-C(13)	1.3977	(19)		
N(1)-C(1)		1.4069(16)			C(13)-C(14)	1.4008	(18)		
N(1)-B(1)		1.5770(18)			C(14)-C(15)	1.3985	(19)		
N(2)-C(9)		1.3381(17)			C(14)-C(17)	1.5055	(19)		
N(2)-C(15)		1.4062(16)			B(1)-H(1)	1.118(*	13)		
N(2)-B(1)		1.5824(18)							
C(1)-C(6)		1.3912(18)			C(7)-O(1)-C(6) 105.63	(10)		
C(1)-C(2)		1.4014(18)			C(9)-O(2)-C(10)105.50	(10)		
C(2)-C(3)		1.3992(18)			C(7)-N(1)-C(1) 106.69	(11)		
C(2)-C(16)		1.5066(18)			C(7)-N(1)-B(1) 124.33	(11)		
C(3)-C(4)		1.3986(19)			C(1)-N(1)-B(1) 128.98	(11)		
C(4)-C(5)		1.3921(19)			C(9)-N(2)-C(15) 106.80	(11)		
C(5)-C(6)		1.3788(18)			C(9)-N(2)-B(1) 124.00	(11)		
C(7)-C(8)		1.3883(18)			C(15)-N(2)-B	6(1) 129.20	(10)		

C(6)-C(1)-C(2) 120.53(12)	O(2)-C(9)-C(8)	121.54(12)
C(6)-C(1)-N(1) 106.46(11)	C(11)-C(10)-O(2)	126.08(12)
C(2)-C(1)-N(1) 133.01(12)	C(11)-C(10)-C(15)	125.01(13)
C(3)-C(2)-C(1) 115.21(12)	O(2)-C(10)-C(15)	108.91(11)
C(3)-C(2)-C(16) 120.61(12)	C(10)-C(11)-C(12)	114.93(13)
C(1)-C(2)-C(16) 124.18(13)	C(13)-C(12)-C(11)	121.10(13)
C(4)-C(3)-C(2) 123.29(13)	C(12)-C(13)-C(14)	123.24(13)
C(5)-C(4)-C(3) 121.10(13)	C(15)-C(14)-C(13)	115.44(12)
C(6)-C(5)-C(4) 115.34(12)	C(15)-C(14)-C(17)	124.35(12)
C(5)-C(6)-O(1) 126.68(12)	C(13)-C(14)-C(17)	120.21(13)
C(5)-C(6)-C(1) 124.53(12)	C(10)-C(15)-C(14)	120.29(12)
O(1)-C(6)-C(1) 108.79(11)	C(10)-C(15)-N(2)	106.53(11)
N(1)-C(7)-O(1) 112.43(11)	C(14)-C(15)-N(2)	133.18(12)
N(1)-C(7)-C(8) 126.09(12)	H(1)-B(1)-N(1)	110.5(6)
O(1)-C(7)-C(8) 121.48(12)	H(1)-B(1)-N(2)	109.9(6)
C(7)-C(8)-C(9) 114.69(12)	N(1)-B(1)-N(2)	104.71(10)
N(2)-C(9)-O(2) 112.27(12)	H(1)-B(1)-H(1)#1	111.3(12)
N(2)-C(9)-C(8) 126.19(12)		

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z

Figure S26: Molecular structure of compound **2**. Anisotropic displacement parameters are depicted at the 50% probability level. All hydrogen atoms are omitted for clarity except for the bridging (methylene).

Table	S3 :	Bond	lengths	[Å]	and	angles	[°]	for	2 .
F(1)-B(1)		1.3853(13)			C(4)-C(5)	1.388(3)			
B(1)-N(1)		1.558(2)			C(5)-C(6)	1.378(2)			
B(1)-N(2)		1.569(2)			C(7)-C(8)	1.388(2)			
O(1)-C(7)		1.349(2)			C(9)-C(8)	1.384(3)			
O(1)-C(6)		1.391(2)			C(10)-C(11)	1.378(2)			
N(1)-C(7)		1.341(2)			C(10)-C(15)	1.387(2)			
N(1)-C(1)		1.417(2)			C(11)-C(12)	1.398(3)			
C(1)-C(6)		1.390(2)			C(12)-C(13)	1.394(3)			
C(1)-C(2)		1.402(2)			C(13)-C(14)	1.402(2)			
N(2)-C(9)		1.346(2)			C(14)-C(15)	1.399(2)			
N(2)-C(15)		1.418(2)			C(14)-C(17)	1.501(2)			
O(2)-C(9)		1.356(2)							
O(2)-C(10)		1.393(2)			F(1)#1-B(1)-I	F(1) 110.	15(14)		
C(2)-C(3)		1.398(2)			F(1)-B(1)-N(2	1) 109.	86(10)		
C(2)-C(16)		1.504(2)			F(1)-B(1)-N(2	2) 110.	44(10)		
C(3)-C(4)		1.398(3)			N(1)-B(1)-N(2	2) 106.	01(13)		

C(7)-O(1)-C(6)	105.86(13)	N(1)-C(7)-O(1)	112.50(15)
C(7)-N(1)-C(1)	106.53(14)	N(1)-C(7)-C(8)	125.71(16)
C(7)-N(1)-B(1)	123.99(14)	O(1)-C(7)-C(8)	121.79(16)
C(1)-N(1)-B(1)	129.49(14)	N(2)-C(9)-O(2)	112.18(15)
C(6)-C(1)-C(2)	120.44(16)	N(2)-C(9)-C(8)	126.15(16)
C(6)-C(1)-N(1)	106.17(15)	O(2)-C(9)-C(8)	121.66(16)
C(2)-C(1)-N(1)	133.39(16)	C(9)-C(8)-C(7)	114.95(16)
C(9)-N(2)-C(15)	106.41(14)	C(11)-C(10)-C(15)	125.38(17)
C(9)-N(2)-B(1)	123.19(14)	C(11)-C(10)-O(2)	125.79(16)
C(15)-N(2)-B(1)	130.40(14)	C(15)-C(10)-O(2)	108.83(15)
C(9)-O(2)-C(10)	105.94(13)	C(10)-C(11)-C(12)	114.63(16)
C(3)-C(2)-C(1)	114.94(16)	C(13)-C(12)-C(11)	121.17(16)
C(3)-C(2)-C(16)	120.59(16)	C(12)-C(13)-C(14)	123.44(17)
C(1)-C(2)-C(16)	124.47(16)	C(15)-C(14)-C(13)	115.17(16)
C(4)-C(3)-C(2)	123.51(17)	C(15)-C(14)-C(17)	124.30(15)
C(5)-C(4)-C(3)	121.20(17)	C(13)-C(14)-C(17)	120.52(16)
C(6)-C(5)-C(4)	115.07(16)	C(10)-C(15)-C(14)	120.21(16)
C(5)-C(6)-C(1)	124.83(17)	C(10)-C(15)-N(2)	106.65(15)
C(5)-C(6)-O(1)	126.23(16)	C(14)-C(15)-N(2)	133.14(15)
C(1)-C(6)-O(1)	108.94(15)		

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z

Figure S27: Molecular structure of complex **3**. Anisotropic displacement parameters are depicted at the 50% probability level. All hydrogen atoms are omitted for clarity except for the bridging (methylene).

Table	S4 :	Bond	lengths	[Å]	and	angles	[°]	for	3.
C(1)-C(6)		1.390(2)			C(11)-C(12)	1.389(2)			
C(1)-C(2)		1.405(2)			C(12)-C(13)	1.390(2)			
C(1)-N(1)		1.430(2)			C(13)-C(14)	1.404(2)			
C(2)-C(3)		1.409(2)			C(14)-C(15)	1.402(2)			
C(2)-C(17)		1.503(2)			C(14)-C(16)	1.504(2)			
C(3)-C(4)		1.392(3)			C(15)-N(2)	1.429(2)			
C(4)-C(5)		1.390(2)			B(1)-N(1)	1.542(2)			
C(5)-C(6)		1.372(2)			B(1)-N(2)	1.542(2)			
C(6)-O(1)		1.384(2)			B(1)-Cl(1)	1.8692(1	1)		
C(7)-O(1)		1.345(2)							
C(7)-N(1)		1.349(2)			C(6)-C(1)-C(2	2) 119.55(1	5)		
C(7)-C(8)		1.377(2)			C(6)-C(1)-N(2	1) 105.21(1	4)		
C(8)-C(9)		1.382(2)			C(2)-C(1)-N(2	1) 135.24(1	5)		
C(9)-O(2)		1.342(2)			C(1)-C(2)-C(3	3) 114.87(1	5)		
C(9)-N(2)		1.349(2)			C(1)-C(2)-C(2)	17)126.93(1	5)		
C(10)-C(11))	1.378(2)			C(3)-C(2)-C(2)	17)118.20(1	5)		
C(10)-O(2)		1.385(2)			C(4)-C(3)-C(2	2) 123.84(1	6)		
C(10)-C(15))	1.396(2)			C(5)-C(4)-C(3	3) 120.84(1	6)		

C(6)-C(5)-C(4)	115.02(16)	C(15)-C(14)-C(16)	127.36(15)
C(5)-C(6)-O(1)	124.24(15)	C(13)-C(14)-C(16)	117.81(15)
C(5)-C(6)-C(1)	125.88(16)	C(10)-C(15)-C(14)	119.62(15)
O(1)-C(6)-C(1)	109.88(14)	C(10)-C(15)-N(2)	105.39(14)
O(1)-C(7)-N(1)	112.25(14)	C(14)-C(15)-N(2)	134.99(15)
O(1)-C(7)-C(8)	121.08(15)	N(1)-B(1)-N(2)	108.37(13)
N(1)-C(7)-C(8)	126.67(15)	N(1)-B(1)-CI(1)	109.37(7)
C(7)-C(8)-C(9)	114.77(15)	N(2)-B(1)-CI(1)	109.10(7)
O(2)-C(9)-N(2)	112.44(14)	CI(1)#1-B(1)-CI(1)	111.48(9)
O(2)-C(9)-C(8)	121.46(15)	C(7)-N(1)-C(1)	106.61(13)
N(2)-C(9)-C(8)	126.10(15)	C(7)-N(1)-B(1)	121.83(13)
C(11)-C(10)-O(2)	124.81(15)	C(1)-N(1)-B(1)	131.56(14)
C(11)-C(10)-C(15)	125.75(16)	C(9)-N(2)-C(15)	106.45(13)
O(2)-C(10)-C(15)	109.43(14)	C(9)-N(2)-B(1)	122.27(13)
C(10)-C(11)-C(12)	114.57(16)	C(15)-N(2)-B(1)	131.29(13)
C(11)-C(12)-C(13)	121.20(16)	C(7)-O(1)-C(6)	106.05(13)
C(12)-C(13)-C(14)	124.04(16)	C(9)-O(2)-C(10)	106.29(13)
C(15)-C(14)-C(13)	114.83(15)		

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z

Figure S28: Molecular structure of complex **4**. Anisotropic displacement parameters are depicted at the 50% probability level. All hydrogen atoms are omitted for clarity except for the bridging (methylene). The data were collected on a non-merohedrally twinned crystal with the twin law $1 \ 0 \ 0 \ -1 \ 0 \ -0.154 \ 0 \ -1$. Additional inversion twinning was taken into account. The fractional contribution refined to nearly identical values: 0.255(17), 0.252(10) and 0.253(17).

Table	S5 :	Bond	lengths	[Å]	and	angles	[°]	for	4.
Br(1)-B(1)		2.046(7)			B(1)-N(2)	1.538(8)			
C(1)-C(2)		1.406(8)			N(2)-C(9)	1.363(8)			
C(1)-C(6)		1.410(8)			N(2)-C(15)	1.447(8)			
C(1)-C(16)		1.510(8)			C(12)-C(13)	1.397(9)			
O(1)-C(7)		1.348(7)			C(5)-C(4)	1.382(9)			
O(1)-C(5)		1.362(8)			C(5)-C(6)	1.393(8)			
Br(2)-B(1)		2.028(6)			C(14)-C(15)	1.391(9)			
C(2)-C(3)		1.384(8)			C(14)-C(13)	1.404(8)			
O(2)-C(9)		1.348(7)			C(14)-C(17)	1.507(8)			
O(2)-C(10)		1.394(8)			C(4)-C(3)	1.381(9)			
C(11)-C(10))	1.357(9)			C(15)-C(10)	1.404(9)			
C(11)-C(12))	1.372(9)			C(8)-C(9)	1.362(9)			
N(1)-C(7)		1.356(8)			C(8)-C(7)	1.365(9)			
N(1)-C(6)		1.431(8)							
N(1)-B(1)		1.537(9)			C(2)-C(1)-C(6	6) [,]	114.5(6)		

C(2)-C(1)-C(16)	117.5(5)	C(15)-C(14)-C(13)	114.8(6)
C(6)-C(1)-C(16)	128.0(5)	C(15)-C(14)-C(17)	127.4(6)
C(7)-O(1)-C(5)	107.7(5)	C(13)-C(14)-C(17)	117.7(6)
C(3)-C(2)-C(1)	124.3(6)	C(3)-C(4)-C(5)	115.2(6)
C(9)-O(2)-C(10)	106.5(5)	C(4)-C(3)-C(2)	121.1(7)
C(10)-C(11)-C(12)	115.3(6)	C(14)-C(15)-C(10)	119.6(6)
C(7)-N(1)-C(6)	106.8(5)	C(14)-C(15)-N(2)	135.9(6)
C(7)-N(1)-B(1)	121.0(5)	C(10)-C(15)-N(2)	104.5(5)
C(6)-N(1)-B(1)	132.2(5)	C(9)-C(8)-C(7)	115.5(5)
N(1)-B(1)-N(2)	109.5(4)	O(1)-C(7)-N(1)	110.8(5)
N(1)-B(1)-Br(2)	109.0(4)	O(1)-C(7)-C(8)	122.6(5)
N(2)-B(1)-Br(2)	109.2(4)	N(1)-C(7)-C(8)	126.6(6)
N(1)-B(1)-Br(1)	108.9(4)	C(5)-C(6)-C(1)	119.8(6)
N(2)-B(1)-Br(1)	108.4(4)	C(5)-C(6)-N(1)	105.1(5)
Br(2)-B(1)-Br(1)	111.8(3)	C(1)-C(6)-N(1)	135.0(5)
C(9)-N(2)-C(15)	107.0(5)	C(11)-C(10)-O(2)	124.4(6)
C(9)-N(2)-B(1)	120.9(5)	C(11)-C(10)-C(15)	125.5(6)
C(15)-N(2)-B(1)	132.1(5)	O(2)-C(10)-C(15)	110.1(6)
C(11)-C(12)-C(13)	121.2(7)	O(2)-C(9)-C(8)	121.6(5)
O(1)-C(5)-C(4)	125.3(6)	O(2)-C(9)-N(2)	111.9(6)
O(1)-C(5)-C(6)	109.6(6)	C(8)-C(9)-N(2)	126.4(6)
C(4)-C(5)-C(6)	125.1(6)	C(12)-C(13)-C(14)	123.5(6)

References

- 1 Bruker AXS Inc., SAINT v8.40B, Madison (WI), USA, 2019.
- 2 L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Crystallogr., 2015, 48, 3–10.
- 3 M. Sevvana, M. Ruf, I. Usón, G. M. Sheldrick and R. Herbst-Irmer, *Acta Crystallogra. D*, 2019, **75**, 1040–1050.
- 4 G. M. Sheldrick, Acta Crystallogra. A, 2015, 71, 3–8.
- 5 G. M. Sheldrick, Acta Crystallogra. C, 2015, 71, 3–8.
- 6 C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogra., 2011, 44, 1281–1284.