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Vibrational spectroscopies and DFT

DRIFT spectra were collected with a Thermo Nicolet 8700 spectrometer, equipped with a KBr
beamsplitter, an MCT detector and using an environmental cell with a Harrick Praying Mantis, with a
4 cm? resolution. Measurements were performed on pure Na-bir and K-bir powders in ambient
condition (air at RT) as well as under vacuum (down to 10 mbar) at temperature up to 200°C. Each
spectrum is the average of 40 scans. Measurements were also performed at RT under a humid
atmosphere (1 bar). Humid atmosphere with controlled RH was generated using an in-house dynamic
system mixing a dry and a wet N5 flow controlled using a mass flow meter. Using such a setup, an RH

up to 100% can be generated with an uncertainty of 0.3-0.5%.

Na-bir K-bir
_ | lo1
=
P
(24
i)
=]
- D s
4 500 4 000 3 500 3 000 2 500 4 500 4000 3 500 3 000 2 500
Wavenumber (cm) Wavenumber (cm)
=
P
(24
>
S| oo

4500 - 4000 3500 3000 2 500 4500 4000 3500 3000 2500
Wavenumber (cm?) Wavenumber (cm?)
Figure S1: DRIFT spectra of Na-bir (left) and K-bir (right) under air (black) and 10 mbar (grey) at RT
(spectra recorded during vacuuming are shown (green)). Pink and red: spectra recorded under 107
mbar at 100°C and 200°C, respectively. Signal in the 2800-3000 cm™® range mainly arises form

unproperly compensated carbonaceous compounds.
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Figure S2: DRIFT spectra of Na-bir (bottom) and K-bir (top) under air (black), 10> mbar (red), 2% (light

blue), and 29% (dark blue) RH in N, at RT.

Raman spectroscopy

Raman spectra were recorded on a Renishaw inVia Qontor microspectrometer equipped with a

confocal microscope and an Olympus X50 objective (N.A = 0.55). A 532 nm exciting radiation was used

with a laser power below 0.05 mW for all samples to prevent their degradation. The spot area was a

few um?. Several locations were probed on each sample. The spectral resolution was about 4 cm™ and

the precision on the wavenumber was lower than 1 cm™.
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Figure S3: Raman spectra of Na-bir (black) and K-bir (orange) under air at RT.

Figure S4: Scheme indicating the calculated direction of the displacement of the atoms during the

vibration at 292 cm™ in Na-bir.
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Figure S5: Mn 3p XPS spectra of Na-bir (hv = 420 eV) at RH = 0.0 (black; 293 K, UHV). The spectrum

obtained from deconvolution (grey dash line) and its components (Mn(lll): green, Mn(IV): blue) are

shown. Deconvolution procedure was given in ref 1.
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Figure S6: Mn 2ps/, (left) and O 1s (right) XPS spectra of Na-bir (hv = 1100 eV) at RH = 0.0 (black; 293
K, UHV).

The O 1s spectrum of Na-bir obtained under UHV is presented in Figure S6. Curve fitting was carried
out with sums of Gaussian functions. The most intense component of the O 1s spectrum at 529.2 eV is

attributed to the O ions of the lattice. Components at higher binding energies (530.7 and 532.2 eV)

are assigned to partial hydroxylation of the oxide layers.!
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Figure S7: Na 2s (left), Mn 3p (middle) and Na 2p & O 2s (right) XPS spectra of Na-bir (hv =420 eV). RH
= 0.0 (black; 293 K, UHV), RH = 0.4 % (blue; 293 K, 0.1 mbar water), RH = 9 % (green; 293 K, 2 mbar
water), RH =31 % (red; 274 K, 2 mbar water).
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Figure S8: Mn 2ps/, (left) and O 1s (right) XPS spectra of Na-bir (hv = 1100 eV) at RH =9 % (293 K, 2

mbar water). Four spectra (red, yellow, pink and black) were recorded successively on the same spot

under irradiation.
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Figure S9: Na 2p and O 2s (1 scan: red, 9" scan: black) NAP-XPS spectra of Na-bir (hv = 420 eV) at RH

=31% (274 K, 2 mbar water). Spectra were recorded successively on the same spot under irradiation.



Prolonged irradiation (hv = 1100 eV) of hydrated Na-bir leads to Mn reduction (Mn 2p feature shifts to
lower bending energy) and material hydroxylation (decrease and increase of 0> and OH components,
respectively, of the O 1s spectrum, see Figure S8). This material alteration should be attributed to
water radiolysis effects as previously evidenced on different hydrated clays.™* To avoid material
alteration, irradiation time was limited: each NAP-XPS spectrum was acquired on different spot. For a
given spectrum, different recorded scans were compared to exclude any birnessite evolution under
the X-ray beam (see, for example, Figure S9). Therefore, the modification of the Na 2p spectrum at RH
= 31% with respect to what is observed at lower RH, cannot be attributed to radiolysis effects (see

Figure 7).
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