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Vibrational spectroscopies and DFT 

DRIFT spectra were collected with a Thermo Nicolet 8700 spectrometer, equipped with a KBr 

beamsplitter, an MCT detector and using an environmental cell with a Harrick Praying Mantis, with a 

4 cm-1 resolution. Measurements were performed on pure Na-bir and K-bir powders in ambient 

condition (air at RT) as well as under vacuum (down to 10-5 mbar) at temperature up to 200°C. Each 

spectrum is the average of 40 scans. Measurements were also performed at RT under a humid 

atmosphere (1 bar). Humid atmosphere with controlled RH was generated using an in-house dynamic 

system mixing a dry and a wet N2 flow controlled using a mass flow meter. Using such a setup, an RH 

up to 100% can be generated with an uncertainty of 0.3–0.5%. 

 

Figure S1: DRIFT spectra of Na-bir (left) and K-bir (right) under air (black) and 10-5 mbar (grey) at RT 

(spectra recorded during vacuuming are shown (green)). Pink and red: spectra recorded under 10-5 

mbar at 100°C and 200°C, respectively. Signal in the 2800-3000 cm-1 range mainly arises form 

unproperly compensated carbonaceous compounds. 
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Figure S2: DRIFT spectra of Na-bir (bottom) and K-bir (top) under air (black), 10-5 mbar (red), 2% (light 

blue), and 29% (dark blue) RH in N2 at RT.  

 

Raman spectroscopy 

Raman spectra were recorded on a Renishaw inVia Qontor microspectrometer equipped with a 

confocal microscope and an Olympus X50 objective (N.A = 0.55). A 532 nm exciting radiation was used 

with a laser power below 0.05 mW for all samples to prevent their degradation. The spot area was a 

few μm2. Several locations were probed on each sample. The spectral resolution was about 4 cm−1 and 

the precision on the wavenumber was lower than 1 cm−1. 



 

Figure S3: Raman spectra of Na-bir (black) and K-bir (orange) under air at RT. 

 

Figure S4: Scheme indicating the calculated direction of the displacement of the atoms during the 

vibration at 292 cm-1 in Na-bir.  

 



NAP-XPS 

 

Figure S5: Mn 3p XPS spectra of Na-bir (hν = 420 eV) at RH = 0.0 (black; 293 K, UHV). The spectrum 

obtained from deconvolution (grey dash line) and its components (Mn(III): green, Mn(IV): blue) are 

shown. Deconvolution procedure was given in ref 1.  

 

Figure S6: Mn 2p3/2 (left) and O 1s (right) XPS spectra of Na-bir (hν = 1100 eV) at RH = 0.0 (black; 293 

K, UHV).  

 

The O 1s spectrum of Na-bir obtained under UHV is presented in Figure S6. Curve fitting was carried 

out with sums of Gaussian functions. The most intense component of the O 1s spectrum at 529.2 eV is 

attributed to the O2- ions of the lattice. Components at higher binding energies (530.7 and 532.2 eV) 

are assigned to partial hydroxylation of the oxide layers.1 



  

Figure S7: Na 2s (left), Mn 3p (middle) and Na 2p & O 2s (right) XPS spectra of Na-bir (hν = 420 eV). RH 

= 0.0 (black; 293 K, UHV), RH = 0.4 % (blue; 293 K, 0.1 mbar water), RH = 9 % (green; 293 K, 2 mbar 

water), RH = 31 % (red; 274 K, 2 mbar water). 

 

Figure S8: Mn 2p3/2 (left) and O 1s (right) XPS spectra of Na-bir (hν = 1100 eV) at RH = 9 % (293 K, 2 

mbar water). Four spectra (red, yellow, pink and black) were recorded successively on the same spot 

under irradiation. 

 

Figure S9: Na 2p and O 2s (1st scan: red, 9th scan: black) NAP-XPS spectra of Na-bir (hν = 420 eV) at RH 

= 31 % (274 K, 2 mbar water). Spectra were recorded successively on the same spot under irradiation. 
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Prolonged irradiation (hν = 1100 eV) of hydrated Na-bir leads to Mn reduction (Mn 2p feature shifts to 

lower bending energy) and material hydroxylation (decrease and increase of O2- and OH components, 

respectively, of the O 1s spectrum, see Figure S8). This material alteration should be attributed to 

water radiolysis effects as previously evidenced on different hydrated clays.2–4 To avoid material 

alteration, irradiation time was limited: each NAP-XPS spectrum was acquired on different spot. For a 

given spectrum, different recorded scans were compared to exclude any birnessite evolution under 

the X-ray beam (see, for example, Figure S9). Therefore, the modification of the Na 2p spectrum at RH 

= 31% with respect to what is observed at lower RH, cannot be attributed to radiolysis effects (see 

Figure 7). 
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