Selective fluoride sensing by a novel series of lanthanide-based one-dimensional coordination polymers through intramolecular proton transfer

Vaibhav Singh,^a Lakshmi Thachanadan Suresh,^a Jean-Pascal Sutter, ^{*b} Arun Kumar Bar^{*a}

^aIndian Institute of Science Education and Research Tirupati, Tirupati-517507, AP, India. ^bLaboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France. E-mail: a.bar@iisertirupati.ac.in

SUPPORTING INFORMATION

Figure S1: *Top:* The comparative UV-Vis absorption spectra of the methanolic solutions (12.5 μ M) of **1**·**Y** (red), **1**·**Dy** (black) and **1**·**Gd** (blue), recorded at room temperature. The insets are the zoomed-in absorptions in the 225-475 nm regions. *Bottom:* The room temperature UV-Vis absorption spectrum of the methanolic solution (12.5 μ M) of **1**·**Dy** (black) along with the best fit (fluorescent green) for its deconvoluted peaks at λ_{max}^{abs} (nm) = 401 (red); 351 (orange); 315 (yellow); 255 (green); 220 (blue) and 204 (violet); The characteristic data and measurement details are provided in experimental section.

Figure S2. Comparative solid-state FT-IR spectra $(4000 - 400 \text{ cm}^{-1} \text{ on the top and } 1800-400 \text{ cm}^{-1} \text{ at the bottom})$ of the as synthesized Schiff base ligand H4L (black), 1·Dy (red), 1·Gd (green) and 1·Y(blue) recorded at room temperature.

Table S1: The characteristic stretching frequencies corresponding to the C=O and C=N functional groups in the Schiff base ligands and in the complexes. The assignment of the stretching frequencies is based on the reported literature.

Compound	$U_{C=0}(cm^{-1})$	$U_{C=N}(cm^{-1})$
H_4L	1640(vs),1608(s)	1573(m),1552(vs)
$[(H_2L)Y(NO_3)(TPPO)]_{\omega}(\mathbf{1.Y})$	1557(w),1542(m)	1612(w),1591(m)
$[(H_2L)Dy(NO_3)(TPPO)]_{\omega}(\mathbf{1.Dy})$	1555(w)	1612(w) ,1590(m)
$[(H_2L)Gd(NO_3)(TPPO)]_{\omega}(\mathbf{1.Gd})$	1556(w)	1612(w),1588(m)

Figure S3: The room temperature solution ¹H NMR spectra of the complexes of Y analogue $1 \cdot Y$ (top, recorded in CDCl₃/MeOD (5:1)). The solvent peaks/grease are indicated by asterisks

Figure S4: The comparative ³¹P NMR spectra of TPPO (red) and $1 \cdot Y$ (blue) recorded in CDCl3/MeOD(5:1) solution at room temperature.

Figure S5: The powder X-ray diffraction patterns of the complexes $1 \cdot Gd(top)$, $1 \cdot Dy(middle)$ and $1 \cdot Y$ (*bottom*) recorded at room temperature. Colour codes: experimental, blue; and simulated, red.

Figure S6: The variable temperature comparative solid-state FT-IR spectra $(3500 - 400 \text{ cm}^{-1} \text{ on the top and } 1700-400 \text{ cm}^{-1} \text{ at the bottom})$ of the complex **1**·**D**y recorded at 25 °C (black), 100 °C (red), 150 °C (blue), 200 °C (green) 250 °C (magenta) and 300 °C (cyan).

Figure S7: The comparative time-dependent solid-state FT-IR spectra $(4000 - 400 \text{ cm}^{-1} \text{ on the top and } 1800-400 \text{ cm}^{-1} \text{ at the bottom})$ of the complex **1.Dy** recorded at room temperature upon soaking under water instantly 0h (black) and after 1h (red), 6h (green), and 12h (blue).

Figure S8: Top: The *ball-and-stick* models of the single-crystal X-ray molecular structures of the $1 \cdot Y$ (displayed up to four consecutive repeat units) **Bottom left:** Ellipsoid models with 40% probability for the single crystal X-ray molecular structure of $1 \cdot Y$ in solid state. H atoms in $1 \cdot Y$ are omitted for clarity. Colour codes: cyan, Y; yellow, P; red, O; blue, N; grey, C. **Bottom** *Right:* The coordination polyhedron around the Y centre of $1 \cdot Y$. The oxygen atoms of the meridionally coordinated ancillary ligands are labelled.

Figure S9: Top: The *ball-and-stick* models of the single-crystal X-ray molecular structures of the **1·Dy** (displayed up to four consecutive repeat units) **Bottom left:** Ellipsoid models with 40% probability for the single crystal X-ray molecular structure of **1·Dy** in solid state. H atoms in **1·Dy** are omitted for clarity. Colour codes: cyan, Y; yellow, P; red, O; blue, N; grey, C. **Bottom** *Right:* The coordination polyhedron around the Dy centre of **1·Dy**. The oxygen atoms of the meridionally coordinated ancillary ligands are labelled.

Figure S10: Top:The ball-and-stick models of the single-crystal X-ray molecular structures of the **1**•**Gd** (displayed up to four consecutive repeat units) **Bottom left:** Ellipsoid models with 50% probability for the single crystal X-ray molecular structure of **1**•**Gd** in solid state. H atoms in **1**•**Gd** are omitted for clarity. Colour codes: cyan, Gd; yellow, P; red, O; blue, N; grey, C. **Bottom** *Right:* The coordination polyhedron around the Gd centre of **1**•**Gd**. The oxygen atoms of the meridionally coordinated ancillary ligands are labelled.

Figure S11: Top: Ellipsoid models with 40% probability for the single crystal X-ray molecular structure of **2**•**Y** in solid state. H atoms in **2**•**Y** are omitted for clarity. Colour codes: cyan, Y; yellow, P; red, O; blue, N; grey, C. **Bottom:** The coordination polyhedron around the Y centre of **2**•**Y**. The oxygen atoms of the meridionally coordinated ancillary ligands are labelled.

Figure S12: Top: Ellipsoid models with 40% probability for the single crystal X-ray molecular structure of **2**•**Dy** in solid state. H atoms in **2**•**Dy** are omitted for clarity. Colour codes: cyan, Dy; yellow, P; red, O; blue, N; grey, C. **Bottom:** The coordination polyhedron around the Dy centre of **2**•**Dy**. The oxygen atoms of the meridionally coordinated ancillary ligands are labelled.

Figure S13: Top: Ellipsoid models with 40% probability for the single crystal X-ray molecular structure of **2**•**Gd** in solid state. H atoms in **2**•**Gd** are omitted for clarity. Colour codes: cyan, Gd; yellow, P; red, O; blue, N; grey, C. **Bottom:** The coordination polyhedron around the Gd centre of **2**•**Gd**. The oxygen atoms of the meridionally coordinated ancillary ligands are labelled.

Figure S14: Unit cell contents of $1 \cdot Y$. Colour codes: cyan, Y; red, O; blue, N; grey, C; offwhite, H. The dotted green lines correspond to the Y---Y distances in the unit cells.

Figure S15: Unit cell contents of **1**•**Dy**. Colour codes: cyan, Dy; red, O; blue, N; grey, C; offwhite, H. The dotted green lines correspond to the Dy---Dy distances in the unit cells.

Figure S16: Unit cell contents of **1**•**Gd**. Colour codes: cyan, Gd; red, O; blue, N; grey, C; offwhite, H. The dotted green lines correspond to the Gd---Gd distances in the unit cells.

Figure S17: Unit cell contents of **2**•**Y**. Colour codes: cyan, Y; red, O; blue, N; grey, C; offwhite, H. The dotted green lines correspond to the Y---Y distances in the unit cells.

Figure S18: Unit cell contents of **2**•**Dy**. Colour codes: cyan, Dy; red, O; blue, N; grey, C; offwhite, H. The dotted green lines correspond to the Dy---Dy distances in the unit cells.

Figure S19: Unit cell contents of **2**•**Gd**. Colour codes: cyan, Gd; red, O; blue, N; grey, C; offwhite, H. The dotted green lines correspond to the Gd---Gd distances in the unit cells.

	1·Dy	1·Y	1·Gd
F a manual a 2	$C_{41}H_{34}DyN_6O_8P$	$C_{41}H_{34}YN_6O_8P$	$C_{41}H_{34}GdN_6O_8P$
Formula	·		
$Mr (g mol^{-1})^a$	932.21	858.62	926.96
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	P 21/n	P 21/n	P 21/n
T (K)	150	150	150
a (A)	16.2035(4)	16.1937(4)	16.0840(4)
b (A)	14.9875(4)	14.9487(3)	14.9967(3)
<i>c</i> (A)	16.3982(4)	16.4338(4)	16.1977(4)
$\alpha(^{\circ})$	90	90	90
$\beta(\circ)$	105.806(2)	105.832(3)	105.453(1)
$\gamma(^{\circ})$	90	90	90
$V(A^3)$	3831.73(17)	3827.30(16)	3765.76(15)
Z	4	4	4
$\rho_{calcd.}$ (g cm ⁻)	1.616	1.490	1.635
μ (mm ⁻¹)	2.054	1.628	1.867
collected refins	31126	38058	67528
unique refins	8280	8852 546	8315
No. of parameters	544	540	303
Reflections.	31126	38058	67528
$R(I > 3\sigma(I))^b$	0.0228	0.0383	0.0236
$wR(I > 3\sigma(I))^c$	0.0573	0.0895	0.0576
GOF on F	1.031	1.020	1.046
	2.Dv	2·Y	2∙Gd
F 1.0	$C_{59}H_{49}DyN_6O_9P_2$	$C_{59}H_{49}YN_6O_9P_2$	$C_{59}H_{49}GdN_6O_9P_2$
Formula ^a	<i></i>	0, 0, 0, 2	
$Mr (g mol^{-1})^a$	1210.48	1136.89	1205.23
crystal system	Monoclinic	Monoclinic	Monoclinic
space group	P 21/c	P 21/c	P 21/c
T (K)	100	100	100
a (Å)	12.7507(4)	12.7183(8)	12.7779(4)
b (Å)	18.8420(6)	18.8005(11)	18.8824(5)
<i>c</i> (A)	23.9856(9)	23.9922(15)	24.0303(6)
α (°)	90	90	90
eta (°)	103.0270(10)	102.962(2)	103.1190(10)
$\gamma(^{\circ})$	90	90	90
$V(A^3)$	5614.2(3)	5590.6(6)	5646.6(3))
Z ()	4	4	4
$\rho_{calcd.}$ (g cm ³)	1.432	1.351	1.418
μ (mm ⁻¹)	1.449	1.162	1.292
collected reflns	104895	53310	74873
unique reflns	12889	9913	13985
No. of parameters	098	699	0/3
Refinement	104895	53310	37008
$P(I > 2\pi(I))b$	0.0202	0.0644	0.0375
$K(I > 30(I))^{c}$ $wR(I > 2\pi(I))^{c}$	0.0202	0.0044	0.0373
GOF on F	1.032	0.956	0.1045
$wR (I > 3\sigma(I))^c$ GOF on F	0.0534 1.032	0.1838 0.956	0.1043 0.996

Table S2. Selected crystallographic data and refinement parameters for $1 \cdot Ln$ and $2 \cdot Ln$ (Ln = Y, Gd and Dy).

 $\frac{1002}{a} = \frac{1002}{b} = \frac{1$

Table S3. Selected bond lengths (Å) and bond angles (°) of the complexes $1 \cdot Ln$ (Ln = Y, Dy, Gd) and $2 \cdot Ln$ (Ln = Y, Dy, Gd)

Complex 1·Y

2.3560(14)	Y1 O1	2.3912(14)	Y1 O2 2.1	2629(15)	Y1 O6 2.	.5417(17)
2.4307(15)	Y1 N4	2.4717(18)	Y1 O8 2.	3573(16)	Y1 N2 2.	5352(17)
2.5120(16)	Y1 N6	2.903(2)				
01 141.58	(5)	O3 Y1 O6	70.53(5)	O3 Y1 O) 5 73.3	1(5)
N4 71.09(6	5)	O3 Y1 O8	145.47(5)	O3 Y1 N	112.5	55(5)
N3 77.81(5	5)	O3 Y1 N6	69.27(6)	O1 Y1 O	06 72.28	8(5)
05 76.19(5	5)	O1 Y1 N4	145.40(6)	O1 Y1 N	12 64.0°	7(5)
N3 122.99((5)	O1 Y1 N6	73.12(6)	O2 Y1 O	95.8	3(6)
01 94.44(5	5)	O2 Y1 O6	120.08(6)	O2 Y1 O)5 68.90	0(6)
N4 64.79(6	5)	O2 Y1 O8	81.03(6)	O2 Y1 N	12 151.0	61(6)
N3 127.04((6)	O2 Y1 N6	94.24(6)	O6 Y1 N	16 25.8	7(6)
06 51.19(5	5)	O5 Y1 N4	116.65(6)	O5 Y1 N	118.9	97(5)
N3 148.55((6)	O5 Y1 N6	25.34(6)	N4 Y1 O	6 141.0	61(6)
N2 122.55((6)	N4 Y1 N3	63.48(6)	N4 Y1 N	132.4	44(6)
01 72.78(5	5)	O8 Y1 O6	140.20(6)	O8 Y1 O	134.4	40(6)
N4 76.65(6	5)	O8 Y1 N2	75.10(6)	O8 Y1 N	13 77.05	5(6)
N6 145.05	(6)	N2 Y1 O6	72.91(6)	N2 Y1 N	6 96.50	6(6)
06 107.220	(6)	N3 Y1 N2	61.98(5)	N3 Y1 N	129.4	45(6)
	2.3560(14) 2.4307(15) 2.5120(16) 01 141.580 N4 71.09(6) N3 77.81(5) 05 76.19(5) N3 122.990 01 94.44(5) N4 64.79(6) N3 127.040 06 51.19(5) N3 148.550 N2 122.550 01 72.78(5) N4 76.65(6) N6 145.050 06 107.220	$\begin{array}{cccccc} 2.3560(14) & Y1 & O1 \\ 2.4307(15) & Y1 & N4 \\ 2.5120(16) & Y1 & N6 \\ \hline \\ O1 & 141.58(5) \\ N4 & 71.09(6) \\ N3 & 77.81(5) \\ O5 & 76.19(5) \\ N3 & 122.99(5) \\ O1 & 94.44(5) \\ N4 & 64.79(6) \\ N3 & 127.04(6) \\ O6 & 51.19(5) \\ N3 & 148.55(6) \\ N2 & 122.55(6) \\ O1 & 72.78(5) \\ N4 & 76.65(6) \\ N6 & 145.05(6) \\ O6 & 107.22(6) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Complex 1·Gd

Gd1 O1 2.423	32(15) Gd1	O3 2.3858(15)	Gd1 O8 2	2.3876(16)	Gd1 O6 2.5670(15)
Gd1 O5 2.460	01(14) Gd1	O2 2.2994(15)	Gd1 N3 2	2.5325(18)	Gd1 N4 2.4991(18)
Gd1 N6 2.937	79(18) Gd1	N2 2.5623(18)			
O1 Gd1 O6	71.78(5)	O1 Gd1 O5	76.71(5)	O1 Gd1 N3	122.08(5)
O1 Gd1 N4	145.75(6)	O1 Gd1 N6	71.87(5)	O1 Gd1 N2	63.50(5)
O3 Gd1 O1	141.72(5)	O3 Gd1 O8	145.10(6)	O3 Gd1 O6	70.58(5)
O3 Gd1 O5	74.48(5)	O3 Gd1 N3	77.42(6)	O3 Gd1 N4	71.16(6)
O3 Gd1 N6	71.27(5)	O3 Gd1 N2	112.12(6)	O8 Gd1 O1	72.79(6)
O8 Gd1 O6	140.63(5)	O8 Gd1 O5	133.59(5)	O8 Gd1 N3	76.50(6)
O8 Gd1 N4	76.54(6)	O8 Gd1 N6	143.41(5)	O8 Gd1 N2	74.32(6)
O6 Gd1 N6	25.71(5)	O5 Gd1 O6	50.97(5)	O5 Gd1 N3	149.88(5)
O5 Gd1 N4	116.11(5)	O5 Gd1 N6	25.27(5)	O5 Gd1 N2	120.69(5)
O2 Gd1 O1	95.55(5)	O2 Gd1 O3	96.94(6)	O2 Gd1 O8	80.24(6)
O2 Gd1 O6	119.70(5)	O2 Gd1 O5	68.74(5)	O2 Gd1 N3	125.90(6)
O2 Gd1 N4	64.17(6)	O2 Gd1 N6	93.99(5)	O2 Gd1 N2	150.79(6)
N3 Gd1 O6	108.97(5)	N3 Gd1 N6	131.79(5)	N3 Gd1 N2	61.47(6)
N4 Gd1 O6	141.72(5)	N4 Gd1 N3	63.19(6)	N4 Gd1 N6	133.17(5)
N4 Gd1 N2	121.69(6)	N2 Gd1 O6	74.93(5)	N2 Gd1 N6	97.88(5)

Complex 1·Dy

Dy1 O1 2.4	4062(15)	Dy1 O3	2.3718(15)	Dy1 O8 2	2.3704(17)	Dy1 O5	2.4413(17)
Dy1 O2 2.2	2757(16)	Dy1 07	2.5515(18)	Dy1 N3 2	2.5154(18)	Dy1 N2	2.5409(18)
Dy1 N4 2.4	4770(19)	Dy1 N6	2.912(2)				
01 D-1 06	76 12(6)		D-1 07	72.19(6)	O1 D 1 N	2 100 c	0(5)
OI DyI OS	7 - 62.97(6)) 0	1 Dy 1 O /	12.18(0) 145.42(6)	OI DyI N	5 122.0 6 72.09	9(5)
O1 Dy1 N2 O2 Dy1 O1	2 03.87(0)	() 0	1 Dy1 N4	143.42(0) 73.28(6)	O1 Dy1 N	0 75.08 7 70.56	$\overline{\mathbf{G}}(0)$
O3 Dy1 O1	1 + 1.02((0, 0)	3 Dyl OJ	112 68(6)	O3 Dy1 O O3 Dy1 N	7 70.50	(5)
O3 Dy1 N.	5 + 7.97(0)) 0	$\frac{3}{2}$ Dy1 N2	112.06(0)	$OS Dy1 N^2$	+ /1.12 2 1/5 5	(0)
OS Dy1 NC	5 09.40(0)	(1)	3 Dyl Ol	12.08(0) 140.30(6)	O8 Dy1 O	3 143.3 3 76.06	2(0)
08 Dyl 0.	7134.27((0) (0)	$\frac{3}{2}$ Dy1 07	76 63(6)	O8 Dy1 N	5 70.90 6 1// 8	(0) 6(6)
06 Dyl N2	2 74.90(0)) 0	5 Dy1 N4	10.03(0) 148.77(6)	O5 Dy1 N'	0 144.0 2 110.2	0(6)
O5 Dyl O7	1 11654(0)	() 0	D D y I N S	140.77(0)	O3 Dy1 N	2 119.3 1 04.76	U(0)
$O_2 D_{\rm V1} O_2^2$	+ 110.34(0 = 0	Dy1 N0	23.40(0)	O2 Dyl O	1 94.70 5 69.01	(6)
02 Dyl 03	5 93.80(0)) 0	2 Dyl 08	$\frac{80.87(7)}{126.70(6)}$	O2 Dyl O.	3 00.91	(0)
O2 Dyl O7	1 64 62(6)	0	2 Dyl N5	120.79(0)	O2 Dy1 N	2 131.4 6 35.60	9(0)
02 Dy1 N2	+ 04.02(0)	$) U_{2}$	2 Dyl No	94.31(0)	N2 D-1 N	0 23.00	
N3 Dy1 07		0) IN.) N/	Dy1 N2	01.8/(0)	N3 Dy1 N N4 D-1 O	0 129.7 7 141.6	$\mathbf{S}(0)$
N2 Dyl O7	7 73.41(6)) NA	2 Dyl No	96.79(6)	N4 Dyl O	/ 141.0	(0)
N4 Dy1 N3	5 63.44(6) N ²	+ Dyi N2	122.38(6)	N4 Dy1 N	6 132.5	3(6)
Complex 2	٠Y						
Y1 O9	2.291(3)	Y1 O1	2.325(3)	Y1 O2	2.335(4)	Y1 O8	2.319(3)
Y1 O6	2.544(3)	Y1 O5	2.493(3)	Y1 N2	2.498(4)	Y1 N3	2.506(4)
Y1 N4	2.495(4)	Y1 N6	2.919(4)				
00 1/1 01	75.00/1	1\	00 1/1 00	00 70(10)	00.1	71.00	100 10(11)
09 YI 01	/5.22(1	1)	09 Y1 02	83.73(12)		(1 08 (1 N2	138.12(11)
09 YI 06	143.00(12)	09 YI 05	145.07(11	$\begin{array}{c} 09 \\ 0 \\ 0 \\ 0 \\ \end{array}$	(1 N2)	/5.24(13)
09 YI N3	79.25(1)	2)	09 YI N4	/9.06(12)	09 3	(1 N6	157.81(12)
01 Y1 02	97.56(1)	2)	01 Y1 06	102.37(11		(105	139.54(11)
OI YI N2	64.26(1	3) 10)	OI YI N3	125.35(13		(1 N4	150.09(12)
OI YI N6	120.02(12)	02 YI 06	132.48(12	$\frac{1}{2} \qquad \qquad$	(105	87.03(12)
02 Y1 N2	154.96(13)	02 YI N3	126.66(12	$\frac{1}{2} \qquad \qquad$	(1 N4	64.38(12)
02 YI N6	108.17(13)	08 YI 01	70.60(11)	08 1	(102	77.63(12)
08 YI 06	69.36(1	1)	08 YI 05	71.26(11)	08 1	(1 N2	109.39(13)
08 Y1 N3	141.13(12)	08 Y1 N4	123.38(13	3) O8 Y	(1 N6	63.93(11)
O6 Y1 N6	25.92(1)	2)	O5 Y1 O6	50.81(12)	O5 Y	(1 N2	118.01(12)
O5 Y1 N3	79.58(1)	2)	O5 Y1 N4	66.61(12)	05 Y	(1 N6	25.53(12)
N2 Y1 O6	70.91(1)	2)	N2 Y1 N3	62.83(13)	N2 Y	(1 N6	96.23(13)
N3 Y1 O6	72.38(1)	2)	N3 Y1 N6	78.65(12)	N4 Y	71 06	107.35(12)
N4 Y1 N2	123.01(14)	N4 Y1 N3	62.89(14)	N4 Y	(1 N6	89.16(13)
Complex 2	·Gd						
	0.050(0)	014.05	0 5 10 /01	0.11.000		0.14.00	
Gd1 08	2.358(2)	Gd1 05	2.542(2)	Gd1 09	2.336(2)	Gd1 O2	2.377(2)
Gd1 06	2.584(2)	Gd1 01	2.360(2)	Gd1 N6	2.959(3)	Gd1 N3	2.550(3)
Gd1 N2	2.534(3)	Gd1 N4	2.537(3)				

O8 Gd1 O5	71.20(7)	O8 Gd1 O2	78.58(8)	O8 Gd1 O6	69.53(7)
O8 Gd1 O1	70.58(7)	O8 Gd1 N6	64.14(7)	O8 Gd1 N3	141.69(8)
O8 Gd1 N2	110.08(8)	O8 Gd1 N4	123.68(8)	O5 Gd1 O6	49.97(7)
O5 Gd1 N6	25.17(7)	O5 Gd1 N3	80.08(8)	O9 Gd1 O8	137.41(7)
O9 Gd1 O5	146.09(7)	O9 Gd1 O2	83.53(8)	O9 Gd1 O6	143.25(8)
O9 Gd1 O1	74.90(8)	O9 Gd1 N6	158.23(8)	O9 Gd1 N3	79.23(8)
O9 Gd1 N2	74.39(8)	O9 Gd1 N4	79.74(8)	O2 Gd1 O5	86.93(8)
O2 Gd1 O6	132.27(8)	O2 Gd1 N6	108.15(8)	O2 Gd1 N3	125.39(8)
O2 Gd1 N2	155.01(8)	O2 Gd1 N4	63.54(8)	O6 Gd1 N6	25.42(7)
O1 Gd1 O5	138.93(7)	O1 Gd1 O2	99.73(8)	O1 Gd1 O6	101.89(7)
O1 Gd1 N6	119.37(8)	O1 Gd1 N3	124.23(8)	O1 Gd1 N2	63.60(8)
O1 Gd1 N4	151.16(8)	N3 Gd1 O6	72.66(8)	N3 Gd1 N6	79.04(8)
N2 Gd1 O5	117.97(8)	N2 Gd1 O6	71.76(8)	N2 Gd1 N6	96.56(8)
N2 Gd1 N3	62.17(9)	N2 Gd1 N4	122.05(9)	N4 Gd1 O5	66.91(8)
N4 Gd1 O6	106.65(8)	N4 Gd1 N6	88.99(8)	N4 Gd1 N3	62.55(9)

Complex 2·Dy

Dy1 O9 2.303	B2(11) Dy1 O8	2.3334(11)	Dy1 O1 2.333	38(11)	Dy1 (06 2.5684(12)
Dy1 O2 2.349	D3(12) Dy1 O5	2.5115(12	Dy1 N4 2.508	35(14)	Dy1 I	N2 2.5066(14)
Dy1 N6 2.935	53(14) Dy1 N3	2.5212(14)	-		-	
O9 Dy1 O8	138.02(4)	O9 Dy1 O1	75.07(4)	O9 Dy1	06	143.07(4)
O9 Dy1 O2	83.78(4)	O9 Dy1 O5	145.38(4)	09 Dy1	N4	79.43(4)
O9 Dy1 N2	74.70(4)	O9 Dy1 N6	157.84(4)	09 Dy1	N3	79.10(4)
O8 Dy1 O1	70.69(4)	O8 Dy1 O6	69.29(4)	08 Dy1	O2	77.95(4)
O8 Dy1 O5	71.26(4)	O8 Dy1 N4	123.26(4)	08 Dy1	N2	109.71(4)
O8 Dy1 N6	63.96(4)	O8 Dy1 N3	141.34(4)	O1 Dy1	06	102.29(4)
O1 Dy1 O2	98.27(4)	O1 Dy1 O5	139.43(4)	O1 Dy1	N4	150.44(4)
O1 Dy1 N2	63.96(4)	O1 Dy1 N6	119.84(4)	O1 Dy1	N3	125.04(4)
O6 Dy1 N6	25.61(4)	O2 Dy1 O6	132.30(4)	O2 Dy1	05	87.07(4)
O2 Dy1 N4	63.96(4)	O2 Dy1 N2	154.84(4)	O2 Dy1	N6	108.20(4)
O2 Dy1 N3	126.12(4)	O5 Dy1 O6	50.39(4)	O5 Dy1	N6	25.41(4)
O5 Dy1 N3	79.64(4)	N4 Dy1 O6	107.08(4)	N4 Dy1	05	66.58(4)
N4 Dy1 N6	89.05(4)	N4 Dy1 N3	62.82(5)	N2 Dy1	06	71.46(4)
N2 Dy1 O5	118.07(4)	N2 Dy1 N4	122.87(5)	N2 Dy1	N6	96.45(4)
N2 Dy1 N3	62.75(5)	N3 Dy1 O6	72.63(4)	N3 Dy1	N6	78.80(4)

Figures S20: The variable temperature (2K, blue circles; 3K, red circles; 4K, purple) field dependence of the magnetization measured on the polycrystalline solid sample of **1.Dy**.

Figure S21: The AC susceptibility for 1.Dy recorded without and with an applied DC field.

Figure S22: The excitation PL spectra for the 12.5 μ M methanolic solution of **1**·**Dy** ranging from 200 nm to 500 nm (top) and the zoomed-in plot covering 300-400 nm (bottom) (Excitation and emission bandwidth = 2.5 nm).

Figure S23: The excitation PL spectra for the 2mL of 12.5 μ M methanolic solution of **1**•Dy in the presence of 5 equivalents (w.r.t. Dy ion) of NH₄F in the range of 200 nm to 500 nm (top) and its zoomed-in plot covering 300-400 nm (bottom) (Excitation and emission bandwidth = 2.5 nm).

Figure S24: The relative changes in the UV-vis absorbance ($|A - A_0|$; dark yellow bars) and the PL photon counts ($|I - I_0|$; green bars) for the 2mL of 12.5 µM methanolic solution of **1**·Dy in the presence of 5 equivalents (with respect to Dy ion) of NH₄F at room temperature.

Figure S25: The comparative photoluminescence spectra of the methanolic solutions of $1 \cdot Y$ (red), $1 \cdot Dy$ (black) and $1 \cdot Gd$ (blue), recorded in MeOH at room temperature upon excitation at 397 nm. The characteristic data and measurement details are provided in experimental section.

Figure S26: The time-dependent changes of the relative photon counts, $(I_0 - I)/I_0$, at $\lambda_{max}^{em.}$ = 435 nm in the PL spectra for the 12.5 µM solutions of **1**·Ln (Ln = Y, Gd and Dy) in the presence of 5 equivalents of F⁻ per Ln ion of the 1D coordination polymers, **1**·Ln. The time (*t*) was varied between 30 seconds – 2h at room temperature. I_0 corresponds to the photon counts in the absence of F⁻ ion, while *I* correspond to the photon counts at time *t* after addition of 5 equivalents (with respect to the Ln centre) of F- ion in aqueous methanolic (1:1, v/v) into the respective solution of **1**·Ln.

Figure S27: The time-dependent UV-Vis absorption changes (relative; $(A_0 - A)/A_0$) for 12.5 μ M (with respect to Ln centre) methanolic solutions of **1**·**Dy** (green), **1**·**Gd** (red) and **1**·**Y** (blue) at $\lambda_{max}^{abs.} = 277$ nm (solid stars), 320 nm (solid up-triangles), 348 nm (solid circles), and 402 nm (solid squares) upon treatment with 25 equivalents of NH₄F in aqueous methanolic (1:1 v/v) solution at room temperature. The solid lines are eye-guides only. A_0 corresponds to the absorbance in the absence of F⁻ ion, while *A* corresponds to the absorbance at time *t*.

Figure S28: The room temperature steady-state PL spectral change (*top*) and the corresponding calibration plots (*bottom*) with 12.5 μ M (with respect to Ln centre) methanolic solutions of **1**·**Dy** at the excitation wavelength of 349 nm upon titration with aqueous methanolic (1:1 v/v) solution of NH₄F in the range of 0 – 650 μ M. The inset is the expanded region in the ranges as mentioned in the ordinate and abscissa. The relative change in photon counts, (I₀ – I)/I₀, at emission maxima $\lambda_{max}^{em.}$ = 388 nm (solid squares), 412 nm (solid circles), and 435 nm (solid triangles) along with the best fits (the solid red lines) are plotted against the concentration of F⁻, where I₀ and I stand for the photon counts of the 12.5 μ M solutions of the 1D coordination polymers **1·Ln** (Ln = Y, Gd and Dy) in the absence of NH₄F and in the presence of NH₄F, respectively. The limit of detections (LoD's) for different 1D coordination polymers are tabulated below (Table S4).

Figure S29: The room temperature steady-state PL spectral change (left) and the corresponding calibration plots (right) with solutions of **1**·**Dy** (top), **1**·**Gd** (middle) and **1**·**Y** (bottom) at the excitation wavelength of 349 nm upon titration with NH₄F. The micromolar (μ M; with respect to Ln centre in the 1D coordination polymers) stock solutions in methanol are titrated with millimolar (mM) aqueous methanolic (1:1 v/v) solution of NH₄F such that the 1D coordination polymers are at 12.5 μ M strengths and the concentrations of F⁻ are varied between 0 – 1250 nM in the study solutions. The inset is the expanded region in the ranges as mentioned in the ordinate and abscissa. The relative change in photon counts, (I₀ – I)/I₀, at emission maxima $\lambda_{max}^{em.}$ = 388 nm (solid squares), 412 nm (solid circles), and 435 nm (solid triangles) along with the best fits (the solid red lines) are plotted against the concentration of F⁻, where I₀ and I stand for the photon counts of the 12.5 μ M solutions of the 1D coordination polymers **1**·L**n** (Ln = Y, Gd and Dy) in the absence of NH₄F and in the presence of NH₄F, respectively. The limit of detections (LoD's) for different 1D coordination polymers at different emission maxima are tabulated below (Table S5).

Table S4. The limit of detections (LoD's) of F⁻ by **1**·Dy at different emission maximum and different F- concentration domains micromolar (μ M) range. The calculations are based on the conventional $3\sigma/m$ method where σ stands for the standard deviation of the blank and m stands for the slope of the calibration plots with respect to the relative change in photon counts. The experimental conditions are as described in the figure above (Figure S28).

LoD (µM)	$\lambda_{max}^{em.}$ = 435 nm	$\lambda_{max}^{em.}$ = 412 nm	$\lambda_{max}^{em.}$ = 388 nm
[F ⁻]			
$60-300 \ \mu M$			3.067823
$300 - 625 \ \mu M$			1.336479
60 – 625 μM (average)	31.5982	37.29363	2.202151

Table S5. The limit of detection (LoD) of F⁻ by **1**·Ln (Ln = Y, Gd and Dy) at different emission maximum for the F- concentrations in the nanomolar (nM) range. The calculations are based on the conventional $3\sigma/m$ method where σ stands for the standard deviation of the blank and *m* stands for the slope of the calibration plots with respect to the relative change in photon counts. The experimental conditions are as described in the figure above (Figure S29).

LoD (µM)	$\lambda_{max}^{em.}$ = 435 nm	$\lambda_{max}^{em.}$ = 412 nm	$\lambda_{max}^{em.}$ = 388 nm
1·Y	722.834	473.436	7.54
1∙Gd		1001.386	14.842
1·Dy	1466.15	313.399	16.083

Figure S30: *Top:* The UV-Vis absorption spectral changes for 12.5 μ M (with respect to Ln centre) methanolic solutions of **1**·**Dy** at room temperature upon titration with aqueous methanolic (1:1, v/v) solution of NH₄F ranging between 0–500 equivalents (with respect to the Dy centre). The inset is the expanded region in the ranges as mentioned in the ordinate and abscissa. *Bottom:* The relative change in absorptions, (A₀ – A)/A₀, at the absorption maxima $\lambda_{max}^{abs.}$ = 280 nm (solid stars), 322 nm (solid up-triangles), 351 nm (solid circles), and 401 nm (solid squares) are plotted against the concentration of F⁻ upon titration with 2 mL of 12.5 μ M solutions of the 1D coordination polymer **1**·**Dy**, where A₀ and A stand for the absorbances of the 12.5 μ M solution in the absence of NH₄F and in the presence of NH₄F, respectively. The solid lines represent the best fits. The sensitivity for F⁻ is observed to be different at different absorption maximum as well as in different F- concentration domains, which are tabulated below (Table S6).

Figure S31: The room temperature UV-vis spectral change (left) and the corresponding calibration plots (right) with 12.5 μ M (with respect to Ln centre) methanolic solutions of **1**-**Dy** (top), **1**-**Gd** (middle) and **1**-**Y** (bottom) at 10 minutes time interval upon titration with aqueous methanolic (1:1 v/v) solution of NH₄F in the concentration range 0 – 1250 nM. The relative change in absorbances, (A₀ – I)/A₀, at the absorption maxima $\lambda_{max}^{abs.}$ (nm) = 401 (squares), 351 (circles), 322 (up-triangles), and 280 (down-triangles) along with the best fits (the solid red lines) are plotted against the concentration of F⁻, where A₀ and A stand for the absorbances of the 12.5 μ M solutions of the 1D coordination polymers **1**-**Ln** (Ln = Y, Gd and Dy) in the absence of NH₄F and in the presence of NH₄F, respectively. The limit of detections (LoD's) for different 1D coordination polymers at different emission maxima are tabulated below (Table S7).

Table S6. The limit of detections (LoD's) of F⁻ by **1**·Dy at different absorption maximum and different F- concentration domains in the micromolar (μ M) to milimolar (mM) range. The calculations are based on the conventional $3\sigma/m$ method where σ stands for the standard deviation of the blank and *m* stands for the slope of the calibration plots with respect to the relative change in photon counts. The experimental conditions are as described in the figure above (Figure S30).

LoD (µM)	$\lambda_{max}^{abs.}$ = 401 nm	$\lambda_{max}^{abs.}$ = 351 nm	$\lambda_{max}^{abs.}$ = 322 nm	$\lambda_{max}^{abs.}$ = 280 nm
[F ⁻]				
$12.5-250 \ \mu M$	0.277526	0.543479	6.436616	0.468074
$250-500\;\mu M$	2.259547	3.356639	6.882433	8.284917
$500-750\;\mu M$	0.123881	0.273753	0.459024	0.511415
$750 - 3\ 000\ \mu M$	0.899086	2.048592	2.652234	2.197591
12.5 – 3000 µM (av.)	0.89001	1.555616	4.107577	2.865499

Table S7. The limit of detections (LoD's) of F⁻ by **1·Ln** (Ln = Y, Gd and Dy) at different absorption maximum and different F- concentration domains in the nanomolar (nM) range. The calculations are based on the conventional $3\sigma/m$ method where σ stands for the standard deviation of the blank and *m* stands for the slope of the calibration plots with respect to the relative change in photon counts. The experimental conditions are as described in the figure above (Figure S31).

LoD (µM)	$\lambda_{max}^{abs.}$ = 401 nm	$\lambda_{max}^{abs.}$ = 351 nm	$\lambda_{max}^{abs.}$ = 322 nm	$\lambda_{max}^{abs.}$ = 280 nm
[F ⁻]				
for 1 ·Y				
0 - 1250 nM	18.26228876	37.01282186	2.76286781	0.220441439
for 1·Gd				
0-190 nM	10.5	1276.3	6.14641	2.26094
190 – 1250 nM	10.5	1276.3	26.8371	10.4749
0-1250 nM (av.)	10.5	1276.3	16.4918	6.36793
for 1·Dy				
0-60 nM	15.4	40	11.95362	2.89985
60 - 250 nM	15.4	40	11.95362	230.11664
250 – 690 nM	15.4	40	2.14038	4.78309
690 – 1250 nM	15.4	40	15.10323	41.7837
0-1250 nM (av.)	15.4	40	9.73241	69.89582

Figure S32: The changes in photon counts relative to $1 \cdot \text{Gd}$, $(I - I_0)_{1 \cdot \text{Gd}}/(I - I_0)_{1 \cdot \text{Ln}}$, of the PL spectra at $\lambda_{max}^{em.} = 435$ nm (cyan), and the changes in absorbances relative to $1 \cdot \text{Y}$, $(A - A_0)_{1 \cdot \text{Y}}/(A - A_0)_{1 \cdot \text{Ln}}$, of the UV-Vis spectra at $\lambda_{max}^{abs.} = 280$ nm (yellow) of the 2 mL of 12.5 μ M methanolic solutions of $1 \cdot \text{Ln}$ upon treatment (30 seconds of delay time for PL and 30 minutes of delay time for UV-Vis) with aqueous-methanolic (1:1, v/v) solution of NH₄F (5 eq. for PL and 25 eqv. for UV-Vis) at room temperature.

Figure S33: The relative changes in steady-state photon counts, $(I_0 - I)/I_0$, at room temperature and emission maximum $\lambda_{max}^{em.} = 435$ nm for 12.5 μ M (with respect to Ln center) methanolic solution of **1**·**Dy** at the excitation wavelength of 349 nm upon treatment with 50 equivalents (with respect to the Dy centre in the 1D coordination polymer **1**·**Dy**) of various anions with the common NH₄⁺ cation in aqueous methanolic (1:1 v/v) solutions and various cations with the common NO₃⁻ anion in aqueous methanolic (1:1 v/v) solutions.

Scheme S1: Schematic chart for the different obvious isomers (conformers and tautomers) of the pristine ligand, H_4L .

Figure S34: Solid-state FT-IR spectra (full range on the top and expanded at the bottom) of the complex **1.Dy** upon treatment with 0-7 eq. of solid NH_4F at room temperature under aerobic conditions.

Chart S1: Schematic structure of c_1 (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of c_1 viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown coloured surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (*top-right*) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of c_1 .

Chart S2: Schematic structure of c_2 (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of c_2 viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of c_2 .

Chart S3: Schematic structure of c_3 (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of c_3 viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of c_3 .

Chart S4: Schematic structure of c_4 (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of c_4 viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of c_4 .

Chart S5: Schematic structure of **cs** (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of **cs** viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown coloured surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of **cs**.

Chart S6: Schematic structure of **c**₆ (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of **c**₆ viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of **c**₆.

Chart S7: Schematic structure of c_7 (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of c_7 viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of c_7 .

Chart S8: Schematic structure of c_8 (*top-left*) as used for the initial guess in its gas-phase energy optimization; the gas-phase energy optimized geometry of c_8 viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of c_8 .

Chart S9: Schematic structures corresponding to the doubly deprotonated forms (H_2L^{2-}) of the ligand (*top-left*) which were used for the initial guesses for the gas-phase energy optimization; the gas-phase energy optimized geometry of H_2L^{2-} viewed along the axis perpendicular (*middle-left*) and parallel (*bottom-left*) to the plane of its pyridyl moiety; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (top-right) and LUMO (*bottom-right*) in the gas-phase energy optimized geometry of H_2L^{2-} .

Scheme S2. Schematic representation for the keto-iminolate tautomerization and intramolecular proton transfer in the building-block mimics (omitting TPPO) of the mononuclear complexes (c_9-c_{11}) ; 1D coordination polymers (c_{12}) , and the fluorinated form of the 1D coordination polymers (c_{13})

Chart S10: Schematic structure of the hypothetical monomeric model complex **NaH2LY** (*top-left*) representing the building units of the 1D coordination polymer **1**•**Y**; the corresponding solid-state structure of **NaH2LY** (*bottom-left*) as truncated from the single-crystal X-ray structure of the 1D coordination polymer **1**•**Y** upon replacing the neighbouring Y(III) ion with Na⁺ ion and upon replacing the bridging phenolic group of the neighbouring building unit with the phenolate ion; the isosurfaces (*isovalue* = 0.02; the green and brown colored surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (*top-right*) and LUMO (*bottom-right*) in the solid-state geometry of **NaH2LY** as truncated from **1**•**Y**.

Chart S11: Schematic structures of the hypothetical monomeric model complex H_4LYF (*top-left*), representing the building units of the fluorinated congener of the 1D coordination polymer **1**·**Y**, which were used for the initial guesses for the gas-phase energy optimization; the gas-phase energy optimized geometry of H_4LYF (*bottom-left*); the isosurfaces (*isovalue* = 0.02; the green and brown coloured surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (*top-right*) and LUMO (*bottom-right*) in the optimized geometry of H_4LYF .

Chart S12: Schematic structures of the hypothetical monomeric model complex Na₂H₂LYF (*top-left*), representing the building units of the fluorinated congener of the 1D coordination polymer 1·Y, which were used for the initial guesses for the gas-phase energy optimization; the gas-phase energy optimized geometry of Na₂H₂LYF (*bottom-left*); the isosurfaces (*isovalue* = 0.02; the green and brown coloured surfaces representing the mutually opposite phases of the corresponding wave function) corresponding to the HOMO (*top-right*) and LUMO (*bottom-right*) in the optimized geometry of Na₂H₂LYF.

Figure S35: The *ball-and-sticks* representations for the repeat unit of the solid-state single crystal X-ray molecular structure of **1.Y** (*top*), the energy-optimized geometries of the hypothetical monomeric model complexes **H**₄**LYF** (*left, bottom*) and **Na**₂**H**₂**LYF** (*right, bottom*) representing the fluorinated congener of the 1D CP **1.Y**. The selective atoms are labelled. The H atoms are omitted for clarity. Colour codes: C, grey; N, blue; O, red; F, fluorescent green; P, orange; Na, purple; and Y, cyan. The atomic labels are in accordance with characteristic bond parameters provided in Table S8 below.

Table S8: The characteristic bond parameters associated with the 1D CP **1.Y** and the hypothetical monomeric model complexes **H4LYF**, and **Na2H2LYF** representing the fluorinated congener of the 1D CP **1.Y**. The atomic labels are in accordance with labels as portrayed Figure 35 above.

Bond parameter	1•Y	H4LYF	Na ₂ H ₂ LYF
Y1-O1 (Å)	2.391	2.495	2.477
Y1-O2 (Å)	2.263	2.504	2.519
Y1-O3 (Å)	2.431	3.718	3.517
Y1-O4 (Å)	2.542	-	-
Y1-O6 (Å)	2.357	2.381	2.413
Y1-O7 (Å)	2.356	2.249	2.257
Y1-N2 (Å)	2.472	2.588	2.578
Y1-N3 (Å)	2.512	2.576	2.584
Y1-N4 (Å)	2.535	2.605	2.592
O1-C17 (Å)	1.248	1.276	1.285
O2-C10 (Å)	1.278	1.277	1.284
N1-O8 (Å)	2.594	2.618	2.576
N5-O7 (Å)	2.605	2.619	2.579
Y1-F1 (Å)	-	2.193	2.199
Na1-O7 (Å)	-	-	2.158
Na2-O8 (Å)	-	-	2.155
Y1-O6-P1 (°)	160.1	159.2	158.3
Y1-O7-C19/19' (°)	131.0	159.0	159.5
O1-C17-N5-N4 (°)	11.863	1.398	2.018
O2-C10-N1-N2 (°)	2.472	3.084	3.144
$Py_{(centroid)} - Ph_{(bridging, centroid)}(Å)$	3.589	6.386	6.177

Table S9: The coordinates of the energy-optimized geometries

C 1:							
Ν	0.0000	0.1092	0.0000	0	-5.9115	-1.7476	0.0000
Ν	-4.7214	0.2188	0.0000	Ν	-3.5238	-0.4558	0.0000
С	-7.1694	0.2900	0.0000	С	-7.2246	1.7018	0.0000
С	-1.1705	-0.5730	0.0000	С	-5.9100	-0.4856	0.0000
С	-2.4179	0.2291	0.0000	С	-1.2056	-1.9765	0.0000
Η	-2.1605	-2.4781	0.0000	С	-8.4002	-0.4227	0.0000
С	-9.6184	0.2743	0.0000	Η	-10.5271	-0.3090	-0.0001
С	-8.4318	2.3845	0.0000	Η	-8.4438	3.4651	0.0000
С	-9.6354	1.6599	-0.0001	Η	-10.5813	2.1845	-0.0001
С	-2.3427	1.7330	0.0000	Η	-1.3036	2.0418	0.0001
Η	-2.8247	2.1591	-0.8860	Η	-2.8249	2.1591	0.8859
С	-0.0000	-2.6747	0.0000	Η	-0.0000	-3.7559	0.0000
0	5.9115	-1.7476	-0.0001	Ν	4.7214	0.2188	0.0000
Ν	3.5238	-0.4558	0.0000	С	7.1694	0.2900	0.0000
С	7.2246	1.7018	0.0000	С	1.1705	-0.5730	0.0000
С	5.9100	-0.4856	0.0000	С	2.4179	0.2291	0.0000
С	1.2056	-1.9765	0.0000	Η	2.1605	-2.4781	0.0000
С	8.4002	-0.4227	0.0000	С	9.6184	0.2743	0.0000
Η	10.5271	-0.3090	0.0001	С	8.4318	2.3845	0.0001
Н	8.4438	3.4651	0.0001	С	9.6354	1.6599	0.0001

Н	10.5813	2.1845	0.0001	С	2.3427	1.7330	0.0000
Н	1.3036	2.0418	-0.0001	Η	2.8249	2.1591	-0.8859
Н	2.8247	2.1591	0.8860	Н	4.7340	1.2279	0.0000
Н	-4.7340	1.2279	0.0000	Н	6.3145	2.2879	0.0000
Н	-6.3144	2.2879	0.0000	0	8.4728	-1.7877	0.0000
0	-8.4727	-1.7877	0.0000	Н	7.5522	-2.1669	-0.0001
Η	-7.5521	-2.1669	0.0001				
C2:							
Ν	0.0000	0.0948	0.0000	0	-5.9203	-1.7567	-0.1173
Ν	-4.7218	0.2032	0.0358	Ν	-3.5236	-0.4703	0.0271
С	-7.1626	0.2803	0.0852	С	-7.2096	1.6465	0.4400
С	-1.1705	-0.5874	0.0049	С	-5.9108	-0.5015	0.0053
С	-2.4179	0.2147	0.0097	С	-1.2056	-1.9908	0.0044
H	-2.1604	-2.4925	0.0069	С	-8.3883	-0.3768	-0.2063
C	-9.5930	0.3419	-0.1883	H	-10.4994	-0.1943	-0.4268
C	-8.4058	2.348/	0.4686	H	-8.4162	3.3920	0.1500
C	-2 3432	1 7197	-0 0033	п u	-13042	2.2295	-0 0121
с ц	-2.3432	1./104 2 1376	-0.8891	п u	-2 8201	2.0277	-0.0121
C	-0 0000	-2 6891	0.0001	н	-0 0000	-3 7703	0.0024
0	5.9202	-1.7567	0.1173	N	4.7218	0.2031	-0.0359
N	3.5236	-0.4703	-0.0271	С	7.1626	0.2803	-0.0852
С	7.2096	1.6465	-0.4399	C	1.1705	-0.5874	-0.0049
С	5.9107	-0.5015	-0.0053	С	2.4179	0.2147	-0.0098
С	1.2056	-1.9908	-0.0043	Н	2.1604	-2.4925	-0.0068
С	8.3883	-0.3768	0.2063	С	9.5930	0.3419	0.1883
Н	10.4994	-0.1944	0.4267	С	8.4058	2.3487	-0.4685
Н	8.4162	3.3921	-0.7498	С	9.6019	1.6887	-0.1411
Н	10.5386	2.2295	-0.1577	С	2.3432	1.7184	0.0031
Н	1.3042	2.0277	0.0119	Η	2.8201	2.1510	-0.8826
Н	2.8314	2.1377	0.8889	Η	4.7403	1.2125	-0.0062
H	-4.7403	1.2125	0.0061	Н	6.3042	2.1649	-0.7289
H	-6.3042	2.1648	0.7291	0	8.4659	-1.7076	0.5125
0	-8.4658	-1.7076	-0.5126	Н	7.5646	-2.1196	0.4304
Н	-/.5646	-2.1196	-0.4304				
c ₃ :	0 0000	0 1520	0 0000	\sim	5 7600	1 07/1	0 0002
IN NI	1 7110	-0 1211	-0.0000	N	3 5426	1.9741	0.0003
C	7 1220	-0 0045	0.0001	C	7 2530	-1 4202	-0 0004
C	1,1736	0.8290	-0.0001	C	5.8122	0.6115	0.0000
C	2.4134	0.0122	-0.0001	C	1.2041	2.2331	-0.0001
H	2.1518	2.7458	-0.0001	C	8.2880	0.7915	0.0004
С	9.5455	0.2081	0.0004	H	10.4315	0.8270	0.0007
С	8.5294	-1.9984	-0.0003	Н	8.5955	-3.0762	-0.0006
С	9.6608	-1.1934	0.0001	Н	10.6403	-1.6529	0.0001
С	2.3252	-1.4859	-0.0002	Н	1.2899	-1.8042	0.0000
Н	2.8312	-1.8973	-0.8763	Н	2.8315	-1.8974	0.8757
С	0.0000	2.9327	-0.0001	Н	0.0000	4.0140	-0.0001
0	-5.7628	1.9741	-0.0004	Ν	-4.7110	-0.1212	0.0001
Ν	-3.5425	0.6635	0.0000	С	-7.1220	-0.0045	0.0000
С	-7.2530	-1.4202	0.0003	C ~	-1.1736	0.8290	0.0000
C	-5.8122	U.6115	-0.0001	C	-2.4134	0.0122	0.0001
C	-ı.2041	∠.∠33⊥	0.0000	п	-<.TOTQ	Z./430	0.0000

С	-8.2880	0.7916	-0.0002	С	-9.5455	0.2081	-0.0001
Н	-10.4315	0.8270	-0.0003	С	-8.5294	-1.9984	0.0004
Н	-8.5955	-3.0762	0.0006	С	-9.6608	-1.1934	0.0002
н	-10.6403	-1.6528	0.0002	C	-2.3252	-1.4859	0.0002
н	-1 2898	-1 8042	0 0001	н	-2 8315	-1 8975	-0 8756
и и	-2 8311	-1 8973	0 8764	\cap	6 1712	-2 2573	-0 0008
0	-6 1712	-2 2574	0.0704	U	0.1712	1 9651	0.0000
	-0.1712	-2.2J/4	0.0000	П 11	0.1/J4 5 2207	1 7007	0.0000
п	-0.1755	1 7007	-0.0005	п	-5.5297	-1.7087	0.0005
H	5.3297	-1./08/	-0.0009	Н	-4.8109	2.2293	-0.0004
Н	4.8109	2.2293	0.0003				
C ₄:							
N	0.0000	0.1706	-0.0001	0	-5.6741	-1.5782	0.3860
N	-4 7026	0 4739	-0 1905	N	-3 5353	-0 3205	-0 0685
C	-7 1255	0 3026	-0 0290	C	-7 2991	1 6620	-0 3756
C	-1 1689	-0 5063	-0 0989	C	-5 7768	_0 2378	0.0745
C	-1.1009	-0.5005	-0.0989	C	-1 1004	-0.2370	-0 1070
	-2.4033	0.3110	-0.1989	C	-1.1994	-1.9104	-0.1070
H	-2.1429	-2.4229	-0.2008	C	-8.2//4	-0.4812	0.2343
С	-9.5504	0.0988	0.14/2	H	-10.4025	-0.5311	0.3553
С	-8.5611	2.2267	-0.4592	Η	-8.6733	3.2680	-0.7258
С	-9.6927	1.4359	-0.1951	Η	-10.6824	1.8684	-0.2578
С	-2.3062	1.7901	-0.4355	Н	-1.2776	2.0813	-0.6136
Н	-2.9353	2.0745	-1.2791	Н	-2.6883	2.3374	0.4291
С	-0.0000	-2.6105	-0.0001	Н	-0.0000	-3.6918	-0.0001
0	5.6742	-1.5782	-0.3864	Ν	4.7026	0.4738	0.1903
Ν	3.5352	-0.3206	0.0678	С	7.1255	0.3026	0.0289
С	7.2989	1.6621	0.3751	С	1.1688	-0.5063	0.0986
С	5.7768	-0.2379	-0.0447	С	2.4035	0.3115	0.1987
С	1.1993	-1.9104	0.1068	Н	2.1428	-2.4229	0.2005
С	8.2775	-0.4813	-0.2338	С	9.5505	0.0989	-0.1467
н	10.4026	-0.5311	-0.3543	C	8.5609	2.2269	0.4587
н	8 6730	3 2683	0 7249	C	9 6926	1 4361	0 1952
и	10 6822	1 8686	0 2580	C	2 3064	1 7898	0 4364
и П	1 2769	2.0821	0.2000	U U	2.5001	2 3370	-0 4241
п тт	1.2709	2.0021	1 2057	п	2.0907	2.3370	-0.4241
п	2.9209	2.0725	1.2007	п	0.4127	2.2400	0.5719
Н	-6.4129	2.240/	-0.5729	0	8.2434	-1.8136	-0.5801
0	-8.2432	-1.8134	0.5811	H	1.3202	-2.1436	-0.6190
Н	-7.3200	-2.1433	0.6197	Н	4.7076	-1.7898	-0.3869
H	-4.7075	-1.7898	0.3860				
c ₅ :		2	1 0000	~	10 0500		0 0050
Ń	18.8544	3.0409	1.9232	0	16.0536	6.0056	-0.9052
Ν	15.2818	4.8891	0.9597	Ν	16.4281	4.1374	1.0705
С	13.9729	6.7326	0.0349	С	13.0782	6.7735	1.1274
С	17.6866	2.3657	2.0304	С	15.1790	5.8755	-0.0076
С	16.4256	3.1434	1.9092	С	17.6517	0.9761	2.2564
Η	16.7077	0.4481	2.3238	С	13.7021	7.5656	-1.0875
С	12.5397	8.3558	-1.1115	Н	12.3643	8.9659	-1.9892
С	11.9373	7.5675	1.1034	Η	11.2690	7.5877	1.9569
С	11.6661	8.3535	-0.0316	Н	10.7760	8.9738	-0.0598
С	15.2276	2.7539	2.7527	Н	15.4631	1.9286	3.4251
Н	14.9056	3.5927	3.3872	Н	14.3689	2.4527	2.1363
С	18.8558	0.2793	2.3624	Н	18.8563	-0.7947	2.5155
0	21.6640	5.9833	-0.9294	Ν	22.4265	4.8879	0.9517
N	21.2813	4.1342	1.0628	С	23.7341	6.7286	0.0199
				-			

24.6194 22.5322 20.0592 24.0107 25.3501 26.4180 26.9221 22.2440 23.3418 14.4840 23.1931 24.4000 22.3768	6.7846 5.8658 0.9774 7.5514 8.9482 7.6151 8.9825 1.9375 2.4654 4.7063 7.6127 6.2240 7.0575	1.1194 -0.0239 2.2565 -1.1086 -2.0134 1.9557 -0.0711 3.4298 2.1455 1.5558 -2.1995 2.0235 -2.0290	С Н С С С Н Н О Н Н	20.0226 21.2829 21.0039 25.1700 25.7571 26.0345 22.4787 22.7936 23.2209 14.5283 13.2921 15.3453	2.3668 3.1456 0.4506 8.3462 7.5832 8.3586 2.7631 3.6042 4.7133 7.6415 6.2045 7.0876	2.0301 1.9078 2.3243 -1.1310 1.0968 -0.0439 2.7576 3.3925 1.5547 -2.1710 2.0275 -1.9997
18.8560 15.2264 13.7974 17.6872 16.4213 16.7075 12.5435 11.5383 11.4613 15.2408 14.9213 18.8560 21.7241 21.3179 25.0181 22.6102 20.0591 24.0230 25.2183 27.0101 27.1502 22.2188 23.3386 14.4347 11.9498 25.7624	3.1180 4.8877 6.6280 2.4457 3.2130 0.5378 8.4178 7.2154 8.2071 2.8488 3.7147 0.3666 6.1315 4.1714 6.4360 5.8697 1.0617 7.6341 9.1855 7.0437 8.8078 2.0528 2.5230 4.7323 5.3953 5.3953 5.3950	1.8892 0.8867 -0.0909 2.0151 1.8825 2.3582 -1.1968 0.6453 -0.3343 2.7628 3.3598 2.3993 -0.9155 1.0025 0.7640 -0.0827 2.2763 -1.0684 -1.9608 1.3185 -0.4204 3.4641 2.1712 1.5061 2.2853 2.2850	О И С С С С Н Н Н Н Н Н И С С С Н С С С Н Н О О Н	15.9877 16.3940 12.6940 15.1017 17.6529 13.6889 12.4936 10.7021 10.5619 15.4933 14.3734 18.8560 22.4856 23.9146 20.0248 21.2907 21.0044 25.1684 26.1738 26.2508 22.4713 22.7909 23.2773 12.7637 24.9484	6.1312 4.1714 6.4361 5.8696 1.0617 7.6340 9.1854 7.0441 8.8079 2.0529 2.5232 -0.7036 4.8878 6.6280 2.4457 3.2130 0.5378 8.4179 7.2152 8.2070 2.8487 3.7146 4.7322 5.4382 5.4380 7.7699	-0.9158 1.0025 0.7642 -0.0828 2.2764 -1.0685 -1.9609 1.3188 -0.4202 3.4642 2.1714 2.5788 0.8867 -0.0909 2.0151 1.8825 2.3581 -1.1967 0.6451 -0.3344 2.7626 3.3596 1.5060 1.7501 1.7498 -1.7198
23.1674	7.7702	-1.7196		11.0111		1.7100
-0.0005 3.4880 4.1754	2.8386 0.6631 -1.6532	-0.0002 -0.1879 0.1443	O N C	1.9391 2.3300 5.4891	-0.8891 1.4582 -1.3889	0.6215 -0.0412 -0.3052
1.1584 2.4048 2.1182 4.8268 6.4472	3.5147 2.7198 5.4530 -3.9774 -2.3882	-0.1693 -0.3308 -0.3180 0.5000 -0.3517	C C C H	3.2074 1.1892 3.8502 4.5407 7.4466	-0.5694 4.9213 -2.9725 -4.9691 -2.1670	0.1762 -0.1819 0.5509 0.8174 -0.6985
6.1091 3.6666 4.4270	-3.6908 3.3945 2.6465	0.0548 -0.7987 -0.9971	H H H	6.8506 4.0534 3.4902	-4.4779 4.0778 3.9782	0.0215 -0.0372 -1.7043
	24.6194 22.5322 20.0592 24.0107 25.3501 26.4180 26.9221 22.2440 23.3418 14.4840 23.1931 24.4000 22.3768 18.8560 15.2264 13.7974 17.6872 16.4213 16.7075 12.5435 11.5383 11.4613 15.2408 14.9213 18.8560 21.7241 21.3179 25.0181 22.6102 20.0591 24.0230 25.2183 27.0101 27.1502 22.2188 23.3386 14.4347 11.9498 25.7624 23.1674 -0.0005 3.4880 4.1754 1.1584 2.4048 2.1182 4.8268 6.4472 6.0015	24.6194 6.7846 22.5322 5.8658 20.0592 0.9774 24.0107 7.5514 25.3501 8.9482 26.4180 7.6151 26.9221 8.9825 22.2440 1.9375 23.3418 2.4654 14.4840 4.7063 23.1931 7.6127 24.4000 6.2240 22.3768 7.0575 18.8560 3.1180 15.2264 4.8877 13.7974 6.6280 17.6872 2.4457 16.4213 3.2130 16.7075 0.5378 12.5435 8.4178 11.5383 7.2154 11.4613 8.2071 15.2408 2.8488 14.9213 3.7147 18.8560 0.3666 21.7241 6.1315 21.3179 4.1714 25.0181 6.4360 22.6102 5.8697 20.0591 1.0617 24.0230 7.6341 25.2183 9.1855 27.0101 7.0437 27.1502 8.8078 22.2188 2.0528 23.3386 2.5230 14.4347 4.7323 1.9498 5.3953 25.7624 5.3950 23.1674 7.7702 -0.0005 2.8386 3.4880 0.6631 4.1754 -1.6532 1.1584 3.5147 2.4048 2.7198 2.1182 5.4530 4.8268 </td <td>24.6194$6.7846$$1.1194$22.5322$5.8658$$-0.0239$20.0592$0.9774$$2.2565$24.0107$7.5514$$-1.1086$25.3501$8.9482$$-2.0134$26.4180$7.6151$$1.9557$26.9221$8.9825$$-0.0711$22.2440$1.9375$$3.4298$23.3418$2.4654$$2.1455$14.4840$4.7063$$1.5558$23.1931$7.6127$$-2.1995$24.4000$6.2240$$2.0235$22.3768$7.0575$$-2.0290$18.8560$3.1180$$1.8892$15.2264$4.8877$$0.8867$13.7974$6.6280$$-0.0909$17.6872$2.4457$$2.0151$16.4213$3.2130$$1.8825$16.7075$0.5378$$2.3582$12.5435$8.4178$$-1.1968$11.5383$7.2154$$0.6453$11.4613$8.2071$$-0.3343$15.2408$2.8488$$2.7628$14.9213$3.7147$$3.3598$18.8560$0.3666$$2.3993$21.7241$6.1315$$-0.9155$21.3179$4.1714$$1.0025$25.0181$6.4360$$0.7640$22.2183$9.1855$$-1.9608$27.0101$7.0437$$1.3185$27.1502$8.078$$-0.4204$22.2188$2.0528$$2.2850$23.1674$7.7702$$-1.7196$-0.0005$2.8386$$-0.0002$3.4880<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td>	24.6194 6.7846 1.1194 22.5322 5.8658 -0.0239 20.0592 0.9774 2.2565 24.0107 7.5514 -1.1086 25.3501 8.9482 -2.0134 26.4180 7.6151 1.9557 26.9221 8.9825 -0.0711 22.2440 1.9375 3.4298 23.3418 2.4654 2.1455 14.4840 4.7063 1.5558 23.1931 7.6127 -2.1995 24.4000 6.2240 2.0235 22.3768 7.0575 -2.0290 18.8560 3.1180 1.8892 15.2264 4.8877 0.8867 13.7974 6.6280 -0.0909 17.6872 2.4457 2.0151 16.4213 3.2130 1.8825 16.7075 0.5378 2.3582 12.5435 8.4178 -1.1968 11.5383 7.2154 0.6453 11.4613 8.2071 -0.3343 15.2408 2.8488 2.7628 14.9213 3.7147 3.3598 18.8560 0.3666 2.3993 21.7241 6.1315 -0.9155 21.3179 4.1714 1.0025 25.0181 6.4360 0.7640 22.2183 9.1855 -1.9608 27.0101 7.0437 1.3185 27.1502 8.078 -0.4204 22.2188 2.0528 2.2850 23.1674 7.7702 -1.7196 -0.0005 2.8386 -0.0002 3.4880 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0	-1.9387	-0.8893	-0.6205	Ν	-3.4884	0.6627	0.1879
Ν	-2.3306	1.4579	0.0414	С	-4.1750	-1.6539	-0.1442
С	-5.4889	-1.3901	0.3049	С	-1.1594	3.5146	0.1693
С	-3.2073	-0.5698	-0.1758	С	-2.4057	2.7196	0.3306
С	-1.1902	4.9211	0.1823	Н	-2.1192	5.4528	0.3185
С	-3.8493	-2.9731	-0.5508	С	-4.8255	-3.9783	-0.5002
Н	-4.5390	-4.9700	-0.8175	С	-6.4466	-2.3897	0.3510
Н	-7.4463	-2.1688	0.6977	С	-6.1080	-3.6922	-0.0554
Н	-6.8493	-4.4795	-0.0223	С	-3.6678	3.3942	0.7979
Н	-3.4919	3.9787	1.7030	Н	-4.4279	2.6460	0.9968
Н	-4.0548	4.0766	0.0356	0	2.6114	-3.3556	1.0083
0	-2.6101	-3.3558	-1.0078	Н	5.7217	-0.3800	-0.6116
Н	-5.7219	-0.3812	0.6113	Н	1.9852	-2.5988	1.0095
Н	-1.9842	-2.5987	-1.0088	Н	1.4170	-0.0388	0.5790
Η	-1.4169	-0.0386	-0.5780				
c 8:							
Ν	0.0000	2.5383	0.0001	0	2.0562	-1.1985	-0.7868
Ν	3.5170	0.4067	0.0854	Ν	2.3604	1.1941	-0.0441
С	4.3190	-1.8416	-0.3089	С	5.6330	-1.5182	0.1253
С	1.1535	3.2156	0.1981	С	3.2809	-0.8329	-0.3283
С	2.3953	2.4186	0.3809	С	1.1853	4.6216	0.2085
Н	2.1130	5.1530	0.3568	С	4.0377	-3.1629	-0.7176
С	5.0245	-4.1367	-0.6983	Н	4.7983	-5.1457	-1.0125
С	6.6225	-2.5098	0.1396	Н	7.6113	-2.2327	0.4737
С	6.3203	-3.8033	-0.2662	Н	7.0935	-4.5600	-0.2493
С	3.6077	3.0486	1.0162	Н	3.3294	3.8075	1.7457
Н	4.2042	2.2903	1.5172	Н	4.2489	3.5208	0.2655
С	0.0001	5.3234	-0.0002	Н	0.0001	6.4047	-0.0003
0	-2.0562	-1.1985	0.7869	Ν	-3.5170	0.4067	-0.0853
Ν	-2.3604	1.1941	0.0443	С	-4.3190	-1.8416	0.3089
С	-5.6329	-1.5183	-0.1254	С	-1.1535	3.2156	-0.1981
С	-3.2809	-0.8329	0.3284	С	-2.3954	2.4187	-0.3808
С	-1.1852	4.6217	-0.2088	Н	-2.1128	5.1531	-0.3571
С	-4.0377	-3.1629	0.7176	С	-5.0245	-4.1367	0.6983
Н	-4.7983	-5.1457	1.0126	С	-6.6225	-2.5099	-0.1397
Н	-7.6113	-2.2328	-0.4740	С	-6.3203	-3.8033	0.2661
Η	-7.0934	-4.5601	0.2491	С	-3.6078	3.0487	-1.0159
Η	-4.2490	3.5209	-0.2651	Н	-4.2043	2.2904	-1.5168
Н	-3.3297	3.8076	-1.7454	Н	-5.1798	0.3424	-0.4634
Н	5.1798	0.3425	0.4632	0	5.9826	-0.2573	0.5280
0	-5.9826	-0.2574	-0.5282	Η	3.0349	-3.3942	-1.0445
Η	-3.0349	-3.3942	1.0446	Η	1.4798	-0.3917	-0.7396
Н	-1.4799	-0.3917	0.7398				
H_2L^2	-:						
N	0.0000	0.2419	0.0000	0	6.0102	2.1022	0.0001
N	4.7269	U.1551	0.0000	N ~	3.5387	0.8244	0.0000
C	/.1263	-0.0398	0.0000	C	/.0391	-1.4871	-0.0001
C	\bot \bot $/$ $/$ \bot	0.9227	0.0000	C	5.9364	0.8455	0.0000
C	2.4302	0.1321	0.0000	C	1.2075	2.3291	0.0000
H	2.1662	2.8240	0.0000	C	8.3858	0.5865	0.0001
C	9.5/39	-0.1345	U.UUUI	H	10.5307	0.3/47	0.0001
C	8.2881	-2.1956	-0.0001	H 	8.2218	-3.2/69	-0.0002
C	9.5081	-1.5445	0.0000	H	10.4262	-2.1264	0.0000
C	∠.380/	-1.3/20	0.0000	н	1.3492	-T./NAT	0.0004

Η	2.8949	-1.7834	-0.8743	Η	2.8957	-1.7834	0.8738
С	0.0000	3.0240	0.0000	Н	0.0000	4.1076	0.0000
0	-6.0102	2.1022	-0.0002	Ν	-4.7269	0.1551	0.0000
Ν	-3.5387	0.8244	0.0000	С	-7.1263	-0.0398	0.0000
С	-7.0391	-1.4871	0.0001	С	-1.1771	0.9227	0.0000
С	-5.9364	0.8455	0.0000	С	-2.4302	0.1321	0.0000
С	-1.2075	2.3291	0.0000	Н	-2.1662	2.8240	0.0000
С	-8.3858	0.5865	-0.0001	С	-9.5739	-0.1345	0.0000
Н	-10.5307	0.3747	-0.0001	С	-8.2881	-2.1956	0.0001
Η	-8.2218	-3.2769	0.0002	С	-9.5081	-1.5445	0.0001
Н	-10.4262	-2.1264	0.0001	С	-2.3807	-1.3720	0.0000
Н	-1.3492	-1.7081	-0.0005	Н	-2.8958	-1.7834	-0.8738
Н	-2.8948	-1.7834	0.8743	0	5.9037	-2.1505	-0.0002
0	-5.9037	-2.1505	0.0002	Н	8.3885	1.6695	0.0001
Н	-8.3885	1.6695	-0.0001	Н	-4.8322	-0.8868	0.0002
H	4.8322	-0.8868	-0.0001		1.0011		0.0001
H ₄	LYF:						
P	0.9737	2.4062	-0.2576	0	-1.5128	-0.3433	-1.1456
Ν	0.1456	-0.6028	3.0015	0	2.0586	-1.6445	-0.9071
0	0.9084	0.8496	0.2206	0	6.0092	-1.9974	0.5016
Ν	3.4511	-1.6210	0.9190	Н	4.4050	-1.7360	1.2792
0	-0.1650	-2.7334	-2.9054	С	2.5182	3.1851	0.4358
Ν	-1.9054	0.0912	1.4430	С	4.1145	-2.4032	-2.6581
Н	3.0869	-2.3281	-2.9995	Ν	-2.8729	0.4466	0.5244
С	1.2351	3.7729	-2.7419	Н	1.2892	4.6864	-2.1554
С	-0.9716	-0.0916	3.5977	С	4.3855	-2.1419	-1.2917
С	-2.6027	0.2269	-0.8037	С	3.2325	-1.7851	-0.4266
С	3.7710	-1.5857	3.7487	Н	3.5665	-1.9028	4.7727
Н	4.2989	-2.4113	3.2574	Н	4.4529	-0.7241	3.7900
С	3.6080	2.3469	0.7471	Н	3.5261	1.2717	0.6164
С	-2.1402	0.2098	2.7260	С	-0.9956	0.2152	4.9754
Η	-1.8846	0.6243	5.4383	С	1.2842	-0.7807	3.7359
С	5.7299	-2.2506	-0.8451	Ν	2.3730	-1.2748	1.7086
С	-3.5979	0.6663	-1.8135	0	-5.1052	1.6213	-0.1757
С	1.3187	-0.4872	5.1164	Н	2.2253	-0.6220	5.6921
С	1.0655	2.5204	-2.1141	С	-4.8114	1.3415	-1.5137
С	5.1350	-2.7545	-3.5501	Н	4.9036	-2.9528	-4.5923
С	0.1614	0.0035	5.7385	Н	0.1675	0.2347	6.7994
С	1.2752	2.6616	-4.9147	Н	1.3554	2.7160	-5.9977
С	1.3379	3.8406	-4.1431	Н	1.4675	4.8048	-4.6279
С	3.8217	5.1376	1.0866	Н	3.9016	6.2137	1.2178
С	-5.3833	1.4379	-3.8753	Н	-6.0723	1.7364	-4.6612
С	-3.4406	0.6740	3.3340	Н	-3.6336	0.1618	4.2804
Н	-3.4113	1.7542	3.5361	Н	-4.2952	0.4730	2.6813
С	2.6222	4.5816	0.6029	Н	1.7851	5.2343	0.3694
С	4.8045	2.9083	1.2312	Н	5.6450	2.2624	1.4720
С	-1.5045	3.8066	-0.5225	Н	-1.4533	3.5867	-1.5850
С	-0.4762	3.3987	0.3507	С	1.1105	1.4144	-4.2820
Η	1.0633	0.5034	-4.8728	Ċ	-3.3084	0.3876	-3.1723
H	-2.3829	-0.1289	-3.4025	Ċ	1.0058	1.3399	-2.8794
H	0.8836	0.3761	-2.3968	Ċ	4.9134	4.3032	1.4002
H	5.8386	4.7356	1.7736	C	-5.6966	1.7246	-2.5370
H	-6.6189	2.2414	-2.2813	Č	2.5030	-1.2345	3.0097
С	6.4637	-2.8536	-3.0836	H	7.2648	-3.1267	-3.7654

~	4 1 0 0 0	0 8 6 8 9	1 1 0 6 0		0 0 4 4 0	0 5400	- 0010
С	-4.1839	0.7670	-4.1969	Н	-3.9418	0.5422	-5.2313
С	6.7609	-2.6026	-1.7346	Н	7.7816	-2.6785	-1.3669
С	-2.6135	4.5104	-0.0146	Н	-3.4036	4.8270	-0.6905
С	-2.6975	4.8027	1.3604	Н	-3.5534	5.3493	1.7491
С	-1.6717	4.3851	2.2337	Н	-1.7333	4.6078	3.2958
С	-0.5624	3,6818	1.7321	н	0.2244	3,3627	2,4116
\circ	-1 8197	-2 5913	0 6977	C	-5 3677	-3 4030	0 0362
U U	-6 0312	-3 5405	-0.8166	C	-1 0102	-3 0743	_0 1890
C	0.0312	2 0025	0.0100	C	F 0600	2.0743	1 2402
	-3.1100	-2.0925	0.9043	C	-5.0002	-3.5619	1.3403
H	-6.9114	-3.8202	1.5156	C	-4.9862	-3.3898	2.43//
Н	-5.3512	-3.5168	3.4562	С	-3.6346	-3.0611	2.2259
Η	-2.9558	-2.9454	3.0694	Y	0.0468	-1.3469	0.5375
Η	-3.6405	-2.9600	-1.2026	F	0.8378	-3.3331	1.0264
Ν	-1.2536	-3.4596	-2.8787	0	-2.3352	-3.0367	-3.4824
0	-1.2618	-4.6012	-2.2443	Н	-3.7540	0.9059	0.7797
Η	6.9590	-2.0937	0.7281	Η	-5.9644	2.0778	-0.0483
Na ₂	H ₂ LYF:						
Ρ	-0.6853	-2.5454	0.2470	0	1.4348	0.1130	-1.3653
Ν	-0.2645	1.2779	2.6274	0	-2.1953	1.0812	-1.4055
0	-0.8253	-0.9246	0.3213	0	-6.1566	1.5272	0.0335
Ν	-3.6112	1.3622	0.3942	Н	-4.6147	1.4875	0.6722
0	0.0396	2.3542	-3.3272	С	-2.0741	-3.3189	1.2207
N	1.8584	0.4444	1.2523	C	-4.4024	1.0025	-3.2100
н	-3 3875	0 8894	-3 5820	N	2 8656	-0 0208	0 4403
C	-0.8104	-4 5120	_1 8131	и Ц	-0 6901	-5 2513	-1 0252
C	0.0104	1 0702	3 3117	C	-1 5881	1 1010	_1 8128
C	0.9021	1.0792	0 0063	C	2 2022	1 2010	-1.0120
C	2.3073	-0.2043	-0.8903		-3.3933	1.2010	-0.9551
	-4.0170	1.9529	3.1096	п	-3.9552	2.2107	4.1009
н	-4.4616	2.7817	2.5700	H	-4.7092	1.0820	3.0257
C	-3.2452	-2.5646	1.4353	Н	-3.3131	-1.5453	1.0661
С	2.0978	0.6888	2.5180	С	0.9475	1.1666	4.7205
Η	1.8727	1.0086	5.2600	С	-1.4276	1.5048	3.3102
С	-5.9218	1.3446	-1.2788	Ν	-2.5192	1.3469	1.2292
С	3.6687	-0.7729	-1.7172	0	5.2499	-0.9570	0.1409
С	-1.4383	1.5996	4.7193	Н	-2.3576	1.7789	5.2614
С	-0.8283	-3.1330	-1.5139	С	4.9542	-1.1282	-1.1608
С	-5.4845	0.9722	-4.0920	Н	-5.3248	0.8344	-5.1578
С	-0.2345	1.4424	5.4224	Н	-0.2225	1.5148	6.5058
С	-1.1106	-3.9864	-4.1777	Н	-1.2182	-4.3163	-5.2082
С	-0.9503	-4.9359	-3.1470	Н	-0.9347	-5.9977	-3.3793
С	-3.0658	-5.2108	2.3920	Н	-2.9943	-6.2311	2.7602
C	5.6521	-1.8690	-3.4089	н	6.4172	-2.2921	-4.0573
C	3 4575	0 5310	3 1542	н	3 5378	1 0834	4 0912
н	3 6689	-0 5282	3 3629	н	4 2396	0 9092	2 4852
C	_1 0.0000	-4 6432	1 6967	и 11	-1 0799	-5 2200	1 5/05
C	-1.9014	-4.0452	1.0907	П 11	-1.0799 5.007	-J.2299	2 2004
C	-4.3200	-3.1370	Z.IJZJ 0 1517	п	- J. 2297	-2.5559	2.2904
C	1.9497	-3.6484	0.151/	н	1.8304	-3.6949	-0.9268
C	0.9089	-3.1/13	0.9/31	Ċ	-1.1332	-2.0121	-3.8/14
H	-1.25/9	-1.8//8	-4.6630	C	3.4193	-0.9690	-3.1016
Н	2.4463	-0.6868	-3.4935	С	-0.9929	-2.1808	-2.5381
Н	-1.0162	-1.1215	-2.3043	С	-4.2385	-4.4598	2.6102
Н	-5.0746	-4.9010	3.1475	С	5.9268	-1.6810	-2.0516
Η	6.8978	-1.9529	-1.6409	С	-2.6758	1.5920	2.5059
С	-6.7980	1.1275	-3.5755	Η	-7.6508	1.1064	-4.2516

С	4.3884	-1.5121	-3.9481	Η	4.1805	-1.6553	-5.0048
С	-7.0099	1.3094	-2.2063	Н	-8.0180	1.4296	-1.8135
С	3.1606	-4.0709	0.7330	Н	3.9606	-4.4407	0.0970
С	3.3343	-4.0119	2.1290	Н	4.2693	-4.3429	2.5754
С	2.2949	-3.5250	2.9487	Н	2.4250	-3.4776	4.0268
С	1.0834	-3.1031	2.3734	Н	0.2866	-2.7298	3.0126
0	1.5244	2.8289	-0.0771	С	5.0430	3.8643	-0.5579
Н	5.8217	3.7927	-1.3164	С	3.7856	3.2879	-0.8084
С	2.7368	3.3665	0.1590	С	5.3059	4.5366	0.6575
Н	6.2794	4.9848	0.8435	С	4.2768	4.6253	1.6208
Н	4.4565	5.1476	2.5598	С	3.0141	4.0519	1.3820
Н	2.2201	4.1395	2.1220	Y	-0.2131	1.3931	0.0462
Na	-7.6219	2.1932	1.4716	Н	3.5886	2.7790	-1.7494
F	-1.2015	3.3554	0.1279	Ν	1.1614	2.9810	-3.5746
0	2.1767	2.3278	-4.0787	0	1.2678	4.2571	-3.3153
Н	3.8322	-0.2960	0.7374	Na	6.8608	-1.0179	1.5715

Table S10: The coordinates of NaH_2LY as used for the single-point computation

D	0 5890	1 7036	1 1631	\cap	_1 1017	0 0012	_1 8960
L N	-0 5923	-2 09/1	1 0785	0	-1.4047	-0.2596	-1.0900
	-0.5925	-2.0941	1.0705	0	1.9221 5.5787	-0.2390 -1.7857	-1.9550
N	2 97/2	-1 7332	-0 5721	U Ц	3 6929	-2 1/71	-0.3450
	-0 5169	-1.7332	-0.5721	п С	2 1542	1 6000	-0.3430
N	-0.5169	-0.9991	-3.0133	C	2.1342	1.0000	2.3490
	-2.2910	-0.3137	0.1332	C NI	4.2929	1.0000 0.7214	-2.4001
п	3.40/9 0 5501	1.4207	-2.0010	IN C	-3.0017	0.7314	-0.3201
	0.3321	-2.7031	-2.0J44	C	1 9120	4.4/4/	1 6502
н	0.4486	4.3363	Z.34/I 1 7410	C	-1.8120	-2.0436	1.0582
C	4.2920	-0.1106	-1./419	C	-2.5032	1.2800	-1.3689
C	2.9935	-0.7088	-1.4636	C	2.8849	-3.4012	1.6943
H	2.58/5	-3.8941	2.4622	Н	3.3405	-3.9913	1.0909
H	3.4838	-2.7043	1.9/33	C	3.2506	1.1123	1./359
H	3.1539	0.6983	0.9088	С	-2.7419	-1.0169	1.1291
С	-2.1505	-2.8828	2.7045	Н	-3.0072	-2.8634	3.0641
С	0.3457	-2.9130	1.6139	С	5.5139	-0.6333	-1.2498
Ν	1.7536	-2.0770	-0.0547	С	-3.1979	2.4480	-1.9699
0	-5.0160	2.4501	-0.4304	Η	-4.5809	1.8201	-0.1352
С	0.0599	-3.7588	2.6604	Н	0.7137	-4.3303	2.9952
С	0.4118	3.3544	0.7827	С	-4.3985	2.9530	-1.4976
С	5.4488	1.7511	-2.7487	Н	5.4343	2.5342	-3.2493
С	-1.2039	-3.7494	3.2070	Η	-1.4163	-4.3222	3.9069
С	0.2212	5.9023	-0.2587	Η	0.1824	6.7589	-0.6173
С	0.3176	5.7376	1.1094	Η	0.3279	6.4779	1.6724
С	3.5836	2.3416	4.1646	Η	3.6975	2.7565	4.9900
С	-4.4174	4.5839	-3.2516	Η	-4.8377	5.2945	-3.6800
С	-4.0983	-0.8465	1.7379	Η	-4.2129	-1.4812	2.4486
Η	-4.1856	0.0430	2.0850	Н	-4.7706	-0.9956	1.0662
С	2.3444	2.2802	3.5780	Η	1.6139	2.6495	4.0213
С	4.4965	1.1505	2.3448	Н	5.2239	0.7364	1.9366
0	0.2226	-2.4864	-4.9873	С	-1.8563	2.3066	2.6585
Н	-1.9449	2.9509	1.9935	С	-0.7166	1.5226	2.7035
С	0.1799	4.8088	-1.1032	Н	0.0783	4.9254	-2.0202
С	-2.6225	3.0417	-3.1086	Н	-1.8157	2.7164	-3.4366
С	0.2911	3.5178	-0.5596	Н	0.2836	2.7755	-1.1203
Ν	0.0874	-2.0789	-3.8448	С	4.6576	1.7759	3.5072
Н	5.5075	1.8332	3.8829	С	-4.9895	4.0425	-2.1367

Н	-5.7800	4.4012	-1.8027	С	1.7037	-2.7959	1.0028
С	6.6590	1.2479	-2.2645	Н	7.4540	1.6895	-2.4582
С	-3.2432	4.1059	-3.7483	Н	-2.8611	4.4876	-4.5053
С	6.6793	0.1157	-1.5081	Н	7.4882	-0.1737	-1.1516
С	-2.8549	2.1473	3.5765	Н	-3.6102	2.6896	3.5374
С	-2.7547	1.2279	4.5180	Н	-3.4370	1.1511	5.1452
С	-1.6635	0.3703	4.6046	Н	-1.6234	-0.2895	5.2582
С	-0.6007	0.5347	3.6544	Н	0.1484	-0.0147	3.6802
0	-2.0220	-2.5057	-1.6254	С	-4.0140	-5.0388	0.1288
Η	-4.8947	-5.2077	0.3762	С	-3.7110	-3.8736	-0.6030
С	-2.3726	-3.6151	-0.9900	С	-3.0429	-5.9226	0.4788
Н	-3.2570	-6.6821	0.9701	С	-1.7207	-5.6819	0.0977
Н	-1.0507	-6.2749	0.3501	С	-1.4091	-4.5840	-0.6451
Н	-0.5323	-4.4686	-0.9331	Н	-4.4883	-3.1868	-0.8654
Y	-0.2706	-0.9517	-1.1602	Na	6.7106	-3.2756	-0.8644

Table S11: The characteristic computational output parameters regarding different isomers of the pristine ligand, H₄L, its doubly deprotonated forms, H_2L^{2-} , and the model complexes NaH₂YF, H₄YF and Na₂H₂YF. The energy-optimized ground state electronic energy of the most stable isomer (c₂) of the pristine ligand H₄L is highlighted in bold with green colour.

	Ground-state energy	HOMO energy	LUMO energy	$\Delta E_{LUMO-HOMO}$
	(Hartree) (ΔE_{ci-c2} ; kCal)	(Hartree)	(Hartree)	(kCal)
c ₁	-1463.649624 (7.5)	-0.21452	-0.06774	92.10489034
C 2	-1463.661515 (0)	-0.23437	-0.08505	93.69874796
C 3	-1463.652503 (5.6)	-0.22948	-0.09834	82.29074342
C4	-1463.6379 (14.8)	-0.22822	-0.09578	83.10649732
C 5	-1463.28007 (239.4)	-0.22256	-0.06459	99.12664891
C 6	-1463.264868 (248.9)	-0.20779	-0.04736	100.6703063
C 7	-1463.626776 (21.8)	-0.22491	-0.08822	85.77338703
C 8	-1463.638065 (14.7)	-0.2277	-0.08984	86.50756358
H_2L^{2-}	-1462.558863	-0.01074	0.10716	73.9826037
NaH ₂ LY	-2870.857993	-0.14251	-0.10227	25.25072072
H ₄ LYF	-2965.431912	-0.19255	-0.09608	60.53521441
Na ₂ H ₂ LYF	-2964.794594	-0.19071	-0.09033	62.98875114

Figure S36: The normalized UV-Vis spectra for the energy optimized geometry of H_2L^{2-} computed in solvent-free gas-phase (*blue solid line*); the energy optimized geometry of the conformer c_2 computed in solvent-free gas-phase (*red solid line*); the energy optimized geometry of the conformer c_2 computed in gas-phase with self-consistent DMSO solvent environment (*green solid line*); and the DMSO solution (see the experimental section for details) of the *as-synthesized* sample of H₄L at room temperature (*black dotted line*).

Figure S37: The theoretically predicted molar absorption coefficients (solid blue circles) and the associated oscillator strengths (solid red bars) considering 120 frontier electronic transitions associated with the lowest energy conformer (c_2) of the pristine ligand H4L in solvent free gas phase (*top*) and in gas-phase with self-consistent DMSO solvent environment (*bottom*). The solid blue lines are eye-guides only.

Figure S38: The theoretically predicted molar absorption coefficients (solid blue circles) and the associated oscillator strengths (solid red bars) considering 120 frontier electronic transitions associated with the *energy-optimized* geometry of the hypothetical doubly deprotonated dianionic form (H_2L^{2-}) of the pristine ligand H_4L in solvent-free gas-phase. The solid blue lines are eye-guides only.

Table S12. The outputs from the *Continuous Shape Measures* (CShM's) analyses employing the SHAPE program based on the Pinsky-Avnir algorithm for the calculation of continuous shape measures for the $[LnN_3O_6]$ nonacoordinate fragments around the Ln centers in the complexes **1·Ln**, and **2·Ln** and the $[LnN_3O_5F]$ nonacoordinate fragments around the Ln centers in the energy optimized geometries of the hypothetical monomeric complexes **H4LYF** and **Na₂H₂LYF** representing the fluorinated congener of **1·Y**. The coordination geometry with the *minimal distortion paths value* with respect to the ideal topology is highlighted in bold with green text for each metal center.

Complex	1•Y	1·Gd	1·Dy	2•Y	2·Gd	2·Dy	H4LYF	Na ₂ H ₂ LYF
Polyhedron*			-			-		
EP-9	29.482	29.343	29.375	35.446	35.052	35.293	31.453	30.762
OPY-9	21.338	21.111	21.237	23.271	23.446	23.313	20.638	21.262
HBPY-9	17.492	17.653	17.520	15.420	15.216	15.319	15.491	16.428
JTC-9	14.182	14.514	14.209	16.358	16.348	16.336	15.829	15.508
JCCU-9	7.437	7.510	7.464	8.068	8.127	8.099	7.704	7.279
CCU-9	6.241	6.318	6.254	6.736	6.771	6.762	7.218	6.728
JCSAPR-9	4.063	4.249	4.120	2.746	3.008	2.831	6.403	4.721
CSAPR-9	3.171	3.395	3.230	1.807	2.060	1.893	7.388	5.535
JTCTPR-9	4.200	4.502	4.277	4.086	4.256	4.158	5.181	3.575
TCTPR-9	4.246	4.325	4.288	2.582	2.796	2.656	7.726	5.694
JTDIC-9	11.371	10.838	11.296	11.310	11.164	11.291	12.377	12.624
HH-9	6.062	6.003	6.036	8.707	8.403	8.656	6.008	6.915
MFF-9	2.664	2.817	2.698	1.843	2.097	1.933	6.081	4.766

*EP-9: Enneagon (*D9h*); OPY-9: Octagonal pyramid (*C8v*); HBPY-9: Heptagonal bipyramid (*D7h*); JTC-9: Johnson triangular cupola J3 (*C3v*); JCCU-9: Capped cube J8 (*C4v*); CCU-9: Spherical-relaxed capped cube (*C4v*); JCSAPR-9: Capped square antiprism J10 (*C4v*); CSAPR-9: Spherical capped square antiprism (*C4v*); JTCTPR-9: Tricapped trigonal prism J51 (*D3h*); TCTPR-9: Spherical tricapped trigonal prism (*D3h*); JTDIC-9: Tridiminished icosahedron J63 (*C3v*); HH-9: Hula-hoop (*C2v*); MFF-9: Muffin (*Cs*).