# Modulated Spin Dynamics of [CO2] Coordination Helicates via Differential Strand Composition 

Leoní A. Barrios,*.a Nuria Capó, ${ }^{a}$ Hanae Boulehjour, ${ }^{\text {c }}$ Daniel Reta, ${ }^{\text {b,c,d }}$ Inés Tejedor, ${ }^{e}$ Olivier Roubeau*,e and Guillem Aromí *,a<br>${ }^{\text {a }}$ Departament de Química Inorgànica i Orgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. E-mail: aromi@ub.edu3<br>${ }^{\text {b }}$ Faculty of Chemistry, The University of the Basque Country UPV/EHU, Donostia, 20018, Spain<br>${ }^{\text {c }}$ Donostia International Physics Center (DIPC), Donostia, 20018, Spain<br>${ }^{d}$ IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain<br>e Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain. E-mail: roubeau@unizar.es

## SUPPORTING INFORMATION

## Table of contents

| Synthetic details | p. S3 |
| :---: | :---: |
| Physical characterization | p. S4 |
| Table S1. Crystallographic and refinement details for the structures of 2 and 3 | p. S6 |
| Table S2. Details of hydrogen bonds involving the guest anions in structures of 1-3 | p. S7 |
| Table S3. Co(II) ions coordination environment in the structures of 1-3 | p. S8 |
| Figure S1. ORTEP representation of the supramolecular cation of 1 | p. S9 |
| Figure S2. ORTEP representation of the supramolecular cation of 2 | p. S10 |
| Figure S3. Supramolecular $\pi \cdots \pi$ interactions in the structure of 2 | p. S11 |
| Figure S4. ORTEP representation of the supramolecular cation of 3 | p. S12 |
| Figure S5. Supramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{m}$ and $\pi \cdots \pi$ interactions in the structure of 3 | p. S13 |
| Figure S6. $\chi$ T vs. $T$ and isothermal magnetization vs. field plots for 1-3 | p. S14 |
| Figure S7. $\chi T$ vs. $T$ and isothermal magnetization vs. field plots per Co for 1 and 3 | p. S14 |
| Details of CASSCF calculation procedure | p. S15 |
| Table S4. Energies (CAS $(7,5)$ level) of spin-only and spin-orbit coupled states of 1 | p. S17 |
| Table S5. Energies (CAS $(7,5)$ level) of spin-only and spin-orbit coupled states of 2 | p. S18 |
| Table S6. Energies (CAS $(7,5)$ level) of spin-only and spin-orbit coupled states of 3 | p. S19 |
| Table S7. Energies (CAS $(7,5)$ level), larger basis for $1^{\text {a }}$ | p. S20 |
| Table S8. Energies (CAS $(7,10)$ level) for $1^{\text {a }}$ | p. S21 |
| Table S9. Dipolar interaction components calculated for the ground Kramers of 1 | p. S22 |
| Table S10. Dipolar interaction components calculated for the ground Kramers of 2 | p. S22 |
| Table S11. Dipolar interaction components calculated for the ground Kramers of 3 | p. S22 |
| Figure S5. Semi-log experimental and CASSCF-SO $\chi$ T vs. T for compounds 1, 2 and 3 | p. S23 |
| Figure S6. Frequency dependence of ac magnetic susceptibility of 2 and 3 at 2 K and increasing applied dc fields | p. S24 |

Figure S7. Low frequency dependence of the ac magnetic susceptibility of 1-3 at 2 K p. S25 and increasing fields

Figure S8. Field dependence of the magnetization relaxation rates of compounds 1-4
p. S26

Figure S9. Frequency dependence of the ac magnetic susceptibility of $\mathbf{2}$ and $\mathbf{3}$ at 0.03 T
p. S27 and increasing temperatures

Figure S10. Frequency dependence of the ac magnetic susceptibility of $\mathbf{2}$ and $\mathbf{3}$ at 0.1 T
p. S28 and increasing temperatures
Figure S11. Temperature dependence of the relaxation rates of $\mathbf{2}$ and $\mathbf{3}$ at 0.03 T p. S29
Figure S12. Temperature dependence of the relaxation rates of compounds 1, 2, 3 and
p. S30

4 under a 0.1 T applied field, showing phonon-bottlenecked direct and Raman processes
Figure S13. $T^{m}$ dependence of the magnetization relaxation rates of 1-4 at 0.1 T
p. S31

Table S12. Best-fit parameters for the field dependence of $\tau^{-1}$ of 1-4
p. S32

Table S13. Best-fit parameters for the temperature dependence of $\tau^{-1}$ of 1-4
p. S33

Figure S14. SEM images showing grain size distribution of the used samples of 1-3
p. S34

Figure S15. Specific heat of 1-3 in zero-field with calculated Debye heat capacity p. S35

## Synthetic details.

Ligand L1 was prepared as previously published. ${ }^{1}$ Compounds 1 and 4 were obtained according to our previous published procedures. ${ }^{2}$ Ligand L2 was prepared following the published protocol. ${ }^{3}$ The rest of the reagents were obtained from commercial sources and used as received.
$\mathbf{C l @}\left[\mathrm{Co}_{2}\left(\mathrm{~L}_{1}\right)_{3}\right] \mathrm{Cl}\left(\mathrm{PF}_{6}\right)_{2}$ (1). This complex was prepared as previously published by us. ${ }^{2}$
$\mathrm{SiF}_{6} @\left[\mathrm{Co}_{2}(\mathrm{~L} 1)_{2}\left(\mathrm{~L}_{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2})$. A suspension of $\mathrm{L} 1(7.8 \mathrm{mg}, 0.021 \mathrm{mmol})$ and $\mathrm{L} 2(20 \mathrm{mg}$, 0.042 mmol ) in 10 mL of methanol was added dropwise to a 5 mL of methanolic solution of $\mathrm{Co}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(14.6 \mathrm{mg}, 0.042 \mathrm{mmol})$. The mixture was stirred for 30 min while a change of color from light red to yellow was observed while the solution turned cloudy., The solution was then filtered with a nylon membrane ( $0.2 \mu \mathrm{~m}$ pore size), yielding a yellow filtrate to which a solution of $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(33.2 \mathrm{mg}, 0.086 \mathrm{mmol})$ in 5 mL of methanol was then added dropwise. After stirring for 10 min , mixture was filtered again with a membrane with $0.2 \mu \mathrm{~m}$ pores and the resulting filtrate was layered in toluene. Orange crystals were obtained after 10 days. Yield(\%): 41\%. IR: 3151 (s N-H), 1623 (b -N-H), 1566 (s C=C), 1438 (s C=C), 837 (s P-F), 781 (s Si-F), 697(s Si-F) cm${ }^{-1}$. Anal. Calc. (Found) for 2. $\mathrm{CH}_{3} \mathrm{OH} \cdot 0.55 \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{C}, 53.93$ (53.92); H, 3.77 (3.68); N, 13.04 (12.94).
$\mathrm{ClO}_{4} @\left[\mathrm{Co}_{2}(\mathrm{~L} 2)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{3}$ (3). Dropwise addition of a 5 mL methanolic light red solution of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}, 0.027 \mathrm{mmol})$ to a suspension of $\mathrm{L} 2(20 \mathrm{mg}, 0.043 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ led to a cloudy light yellow suspension after stirring for 30 min . The suspension was then filtered with a nylon membrane of $0,2 \mu \mathrm{~m}$ pore size and a solution of $\mathrm{Bu}_{4} \mathrm{NClO}_{4}(19,4 \mathrm{mg}, 0.056 \mathrm{mmol})$ in 5 mL of methanol was added dropwise to the resulting filtrate. Then, the mixture was left stirring for 10 min and filtered again with a membrane with $0.2 \mu \mathrm{~m}$ pores. The crystallization was carried out by vapor diffusion of diethyl ether. After 2 weeks, yellow crystals were obtained. Yield(\%): 26\%. IR: 2363 (s C-H), 1622 (b -NH), 1557 ( $\mathrm{s}=\mathrm{C}=$ ), 1435 ( $\mathrm{s}=\mathrm{C}$ ), 1083 (s Cl-O), 796 (b C-H) cm-1 . Anal. Calc. (Found) for $3 \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.66$ (52.23); H, 4.25 (3.81); N, 12.28 (11.92).

[^0]
## Physical characterization

## Single Crystal X-ray Diffraction (SCXRD).

Data for compound 2 were obtained at 100 K on an orange rod of dimensions 0.133 x $0.048 \times 0.012 \mathrm{~mm}^{3}$ at Beamline 12.2.1 of the Advanced Light Source (Berkeley, USA), on a Bruker D8 diffractometer equipped with a PHOTON II detector and using silicon (111) monochromated synchrotron radiation ( $\lambda=0.7288 \AA$ ). Data for compound 3 were obtained at 100 K on an orange rod of dimensions $0.145 \times 0.045 \times 0.032 \mathrm{~mm}^{3}$ using a Bruker Smart APEX diffractometer. Data reduction and absorption corrections were performed with SAINT and SADABS, respectively. ${ }^{4}$ The structures were solved by intrinsic phasing with SHELXT ${ }^{5}$ and refined by full-matrix least-squares on $\mathrm{F}^{2}$ with SHELXL. ${ }^{6}$ The structure of 2 was refined as a 2-component inversion twin.

All details can be found in CCDC 2304058 (2) and 2304059 (3) that contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via https://summary.ccdc.cam.ac.uk/structure-summary-form. Crystallographic and refinement parameters are summarized in Table S1. Details of hydrogen bonds involving the guest anions and of the coordination environement of the $\mathrm{Co}(\mathrm{II})$ ions are given in Tables S 2 and S3 respectively.

## Scanning Electron Microscopy

Observations were made through the Laboratorio de Microscopías Avanzadas (LMA) with an FEI INSPECT-F50 microscope working at 10 kV . Samples were coated with a conductive layer of Pd. Analysis of images was done with Digital Micrograph software.

## Magnetic properties.

Direct current (dc) measurements were performed with a commercial MPMS-XL SQUID magnetometer hosted by the Physical Measurements Unit of the Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza. The data were corrected for the contribution of the capsule sample holder, determined empirically. The sample diamagnetic contributions to the susceptibility were corrected using Pascal's constant tables.

Isothermal alternating current (ac) measurements were collected with the ACMS option of a commercial PPMS set-up with a 4 Oe field oscillating in the range $10 \leq v \leq 10000 \mathrm{~Hz}$. Measurements were performed at 2 K at various applied dc fields in the range 0-15000 Oe , and then at 300 and 1000 Oe at various temperatures up to 10 K . Because a low frequency tail appearing at high fields and 2 K seemed to indicate the presence of a slower relaxation mode, further measurements in the range $0.03 \leq v \leq 100 \mathrm{~Hz}$ were performed with the same 4 Oe amplitude at 2 K and fields from 3000 to 15000 Oe using the MPMSXL SQUID magnetometer. In all magnetic measurements, the samples were in the form of polycrystalline powders, either as obtained or lightly crushed in cases like compound 1 where relatively large crystallites were present. Overall, all samples had crystallite size in the $1-10 \mu \mathrm{~m}$ range (see Fig. S15), a priori precluding the presence of significant size/shape phonon bottleneck.

The characteristic relaxation times $\tau$ were extracted from the frequency dependence of the real and imaginary components of the ac susceptibility $\chi$ and $\chi$ " using the following expressions corresponding to the generalized Debye model:

[^1]\[

$$
\begin{gathered}
\chi^{\prime}(\omega)=\chi_{S}+\left(\chi_{T}-\chi_{S}\right) \frac{1+(\omega \tau)^{\beta} \cos \left(\frac{\pi \beta}{2}\right)}{1+2(\omega \tau)^{\beta} \cos \left(\frac{\pi \beta}{2}\right)+(\omega \tau)^{2 \beta}} \\
\chi^{\prime \prime}(\omega)=\left(\chi_{T}-\chi_{S}\right) \frac{(\omega \tau)^{\beta} \sin \left(\frac{\pi \beta}{2}\right)}{1+2(\omega \tau)^{\beta} \cos \left(\frac{\pi \beta}{2}\right)+(\omega \tau)^{2 \beta}}
\end{gathered}
$$
\]

in which $\omega$ is the angular frequency, $\chi$ т the isothermal susceptibility, $\chi$ s the adiabatic susceptibility and $\beta$ describes the distribution of relaxation times. $\beta$ was found to be close to 1 in the case of 1 and 4 (0.88-1 range), indicating a limited distribution of relaxation times. In the case of 2 and 3, correct simulation of the width of the peak in the experimental $\chi^{\prime \prime}$ vs. frequency data requires in all cases $\beta$ in the range 1-1.25, which has no physical meaning. $\beta$ was therefore fixed to 1 , resulting in relatively poorer fits, albeit with no significant effect on the estimation of the relaxation rates.

## Heat capacity

Heat capacities in the range of $0.35-100 \mathrm{~K}$ were obtained using the relaxation method in a commercial ${ }^{3} \mathrm{He}$ set-up equipped with a 9 T magnet, at the Physical Measurements Unit of the Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza. ApiezonN grease was used to provide good internal thermal contact between the heater, thermometer and sample. The samples were in the form of thin pellets.
Differential Scanning Calorimetry (DSC) was used to obtain heat capacity in the range 100-300 K. Measurements were done with a Q1000 calorimeter from TA Instruments equipped with the LNCS accessory. Calibration of the temperature and enthalpy scales was achieved with a standard sample of In, using its melting transition (156.6 ${ }^{\circ} \mathrm{C}$, 3296 $\mathrm{Jmol}^{-1}$ ). Mechanically crimped Al pans with an empty pan as a reference were used. Data were obtained at a scanning rate of $10 \mathrm{Kmin}^{-1}$. Measurements of a sapphire reference sample under the same conditions were used to correct the obtained values of heat capacity.
Considering that the low temperature components in Figure 6 would arise from weak spinspin interactions, the corresponding average dipolar magnetic field $\left\langle B_{d i p}\right\rangle$ seen by each Co(II) ion was estimated through a high temperature series for dipolar interactions using the expression ${ }^{7}$

$$
\frac{C_{d i p}}{R} \approx \frac{\mu_{e f f}^{2}\left\langle B_{d i p}\right\rangle^{2}}{2\left(k_{B} T\right)^{2}}
$$

Using the experimental magnetic susceptibility data at 2 K to define $\mu_{\text {eff, }}$, the $\left\langle B_{d i p}\right\rangle$ that best represent the low temperature heat capacity tail are estimated as ca. 6, 24 and 28 mT respectively for $\mathbf{1 , 2} 2$ and 3.

[^2]Table S1. Crystallographic and refinement parameters for the structures of compounds 2 and 3.

|  | 2 | 3 |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{82} \mathrm{H}_{64} \mathrm{Co}_{2} \mathrm{~N}_{18}$, 2( $\mathrm{PF}_{6}$ ), $\mathrm{SiF}_{6}$, $0.415\left(\mathrm{C}_{7} \mathrm{H}_{8}\right), 3.756\left(\mathrm{CH}_{4} \mathrm{O}\right)$ | $\begin{aligned} & \mathrm{C}_{90} \mathrm{H}_{72} \mathrm{CO}_{2} \mathrm{~N}_{18}, 4\left(\mathrm{ClO}_{4}\right), \\ & 0.5\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right), 9\left(\mathrm{CH}_{4} \mathrm{O}\right), 2\left(\mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$ |
| FW ( $\mathrm{g} \mathrm{mol}^{-1}$ ) | 2009.95 | 2282.78 |
| $T$ (K) | 100 | 100 |
| Wavelength ( $\AA$ ) | 0.7288 | 0.71073 |
| Crystal system | monoclinic | monoclinic |
| Space group | Cc | $P 2_{1} / \mathrm{n}$ |
| $a(\AA)$ | 22.5655(10) | 22.9697(11) |
| $b(\AA)$ | 26.8138(10) | 18.0372(10) |
| $c(\AA)$ | 17.7992(7) | 27.1574(12) |
| $\alpha\left({ }^{\circ}\right)$ | 90 | 90 |
| $\beta\left({ }^{\circ}\right)$ | 125.705(3) | 94.966(2) |
| $V\left({ }^{\circ}\right)$ | 90 | 90 |
| $V\left(\AA^{3}\right)$ | 8745.3(7) | 11209.3(10) |
| Z | 4 | 4 |
| $\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.527 | 1.352 |
| $\mu\left(\mathrm{mm}^{-1}\right)$ | 0.565 | 0.474 |
| Independent reflections ( $\mathrm{R}_{\text {int }}$ ) | 21947 (0.0300) | 15564 (0.0722) |
| parameters / restraints | 1269 / 250 | 1508 / 429 |
| Flack parameter | 0.506(11) | - |
| Goodness-of-fit | 1.037 | 1.038 |
| Final R1 / wR2 [l>2 ${ }^{\text {(I) }}$ ] | 0.0450 / 0.1251 | 0.0935 / 0.2502 |
| Final R1 / wR2 [all data] | 0.0482 / 0.1281 | 0.1324 / 0.2801 |
| largest diff. peak / hole (e $\AA^{3}$ ) | 1.194 / -0.883 | 1.920 / -1.119 |

Table S2. Hydrogen bonds involving the guest anion in the structures of compounds 1,8 2, and 3.

|  | D-H $\cdots$ A | D-H ( ${ }^{\text {a }}$ ) | H $\cdots \mathrm{A}(\AA)$ | D $\cdots \mathrm{A}(\AA)$ | D-H $\cdots$ A ( ${ }^{\circ}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N3-H3B $\cdots{ }^{\text {Cl1 }}{ }^{\text {a }}$ | 0.88 | 3.16 | 3.555(9) | 110.1 |
|  | N4-H4B $\cdots \mathrm{Cl} 1^{\text {a }}$ | 0.88 | 3.46 | 2.779(10) | 152.3 |
|  | N9-H9A $\cdots$ Cl1 | 0.88 | 2.49 | 3.257(6) | 145.8 |
|  | N10-H10B $\cdots$ Cl1 ${ }^{\text {a }}$ | 0.88 | 3.11 | 3.637(8) | 120.4 |
|  | N15-H15A $\cdots$ Cl1 | 0.88 | 2.38 | 3.136(6) | 144.1 |
|  | N16-H16B $\cdots$ Cl1 ${ }^{\text {a }}$ | 0.88 | 2.73 | 3.418(6) | 135.4 |
| 2 | N3-H3A $\cdots$ F3 | 0.88 | 1.99 | 2.835(4) | 159.9 |
|  | N4-H4B $\cdots$ F6 | 0.88 | 1.93 | 2.750(4) | 154.2 |
|  | N9-H9A $\cdots$ F4 | 0.88 | 1.91 | 2.720(4) | 152.1 |
|  | N10-H10B $\cdots$ F2 | 0.88 | 2.15 | 2.955(4) | 151.2 |
|  | N15-H15A $\cdots$ F1 | 0.88 | 1.83 | 2.665(4) | 157.9 |
|  | N16-H16B $\cdots$ F5 | 0.88 | 1.79 | 2.622(4) | 156.4 |
| 3 | N3-H3A $\cdots{ }^{\text {O }} 1^{\text {a }}$ | 0.88 | 2.81 | 3.130(10) | 102.8 |
|  | $\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\text {a }}$ | 0.88 | 3.40 | 3.804(10) | 111.2 |
|  | N9-H9A $\cdots$ O1 | 0.88 | 2.19 | 2.845(10) | 130.9 |
|  | N10-H10B $\cdots$ O4 ${ }^{\text {a }}$ | 0.88 | 3.27 | 3.675(10) | 110.5 |
|  | N15-H15A $\cdots{ }^{\text {O }}{ }^{\text {a }}$ | 0.88 | 3.01 | 3.401(10) | 108.8 |
|  | $\mathrm{N} 16-\mathrm{H} 16 \mathrm{~B} \cdots{ }^{\text {O }}{ }^{\text {a }}$ | 0.88 | 3.52 | 3.997(10) | 116.7 |

${ }^{\text {a }}$ Note that these hydrogens form a stronger hydrogen bond with acceptors from lattice solvent molecules (or the outer Cl counterion in the case of 1)

[^3]Table S3. Bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$ describing the coordination environment of the $\mathrm{Co}(\mathrm{II})$ ions in the structures of compounds $1,{ }^{7} 2$ and 3.

| 1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Co1-N14 | $2.099(6)$ | Co2-N11 | $2.099(6)$ |
| Co1-N8 | $2.100(7)$ | Co2-N5 | $2.104(6)$ |
| Co1-N2 | $2.106(6)$ | Co2-N17 | $2.119(7)$ |
| Co1-N7 | $2.141(6)$ | Co2-N18 | $2.128(6)$ |
| Co1-N13 | $2.204(6)$ | Co2-N6 | $2.173(6)$ |
| Co1-N1 | $2.213(6)$ | Co2-N12 | $2.180(6)$ |
|  |  |  |  |
| N14-Co1-N7 | $157.7(2)$ | N11-Co2-N18 | $162.8(2)$ |
| N2-Co1-N13 | $161.0(2)$ | N17-Co2-N6 | $167.7(2)$ |
| N8-Co1-N1 | $166.3(2)$ | N5-Co2-N12 | $167.9(2)$ |
|  |  |  |  |
| 2 |  |  |  |
| Co1-N8 | $2.108(3)$ | Co2-N5 | $2.090(3)$ |
| Co1-N14 | $2.115(3)$ | Co2-N17 | $2.114(3)$ |
| Co1-N2 | $2.134(3)$ | Co2-N11 | $2.123(3)$ |
| Co1-N13 | $2.154(3)$ | Co2-N18 | $2.129(3)$ |
| Co1-N1 | $2.166(3)$ | Co2-N6 | $2.148(3)$ |
| Co1-N7 | $2.171(3)$ |  | $2.172(3)$ |
| N8-Co1-N1 | $161.86(13)$ | N5-Co2-N12 |  |
| N2-Co1-N13 | $164.50(12)$ | N11-Co2-N18 | $159.85(13)$ |
| N14-Co1-N7 | $166.92(13)$ | N17-Co2-N6 | $165.47(12)$ |
|  |  |  | $169.13(12)$ |
| 3 |  |  |  |
| Co1-N14 | $2.078(5)$ | Co2-N12B / N12 | $2.047(19) / 2.223(15)$ |
| Co1-N8 | $2.124(6)$ | Co2-N17 | $2.090(6)$ |
| Co1-N2 | $2.124(6)$ | Co2-N11 | $2.094(6)$ |
| Co1-N7 | $2.133(6)$ | Co2-N5 | $2.107(6)$ |
| Co1-N13 | $2.149(6)$ | Co2-N6 | $2.138(6)$ |
| Co1-N1 | $2.169(6)$ | Co2-N18 | $2.149(6)$ |
| N2-Co1-N7 | $165.6(2)$ |  |  |
| N8-Co1-N13 | $169.1(2)$ | N11-Co2-N6 | $168.7(3)$ |
| N14-Co1-N1 | $172.4(2)$ | N5-Co2-N18 |  |
|  |  |  | $171.8(8) / 172.1(15)$ |



Figure S1. ORTEP representation of the supramolecular cation $\left.\mathrm{Cl} @\left[\mathrm{Co}_{2}(\mathrm{~L} 1)_{3}\right]\right)^{3+}$ of 1 with hetero atoms labelled. Only H from $\mathrm{N}-\mathrm{H}$ groups are shown. Hydrogen bonds are shown as red dotted lines.


Figure S2. ORTEP representation of the supramolecular $\mathrm{SiF}_{6} @\left[\mathrm{Co}_{2}(\mathrm{~L} 1)_{2}(\mathrm{~L} 2)\right]^{2+}$ of $\mathbf{2}$ with hetero atoms labelled. Only H from $\mathrm{N}-\mathrm{H}$ groups are shown. Hydrogen bonds are shown as red dotted lines.


Figure S3. Representation of one $\left(\mathrm{SiF}_{6} @\left[\mathrm{Co}_{2}(\mathrm{~L} 1)_{2}(\mathrm{~L} 2)\right]\right)^{2+}$ unit from 2 (red) together with its four first neighbors in the crystal lattice (the latter with blue, purple and grey balls representing Co, N and C respectively). The interactions with these neighbors are $\pi \cdots \pi$ interactions emphasized by contacts between the centroids (red balls linked by dashed black lines) of the aromatic rings involved. H atoms not shown for clarity.


Figure S4. ORTEP representation of the supramolecular $\mathrm{SiF}_{6} @\left[\mathrm{Co}_{2}(\mathrm{~L} 1)_{2}(\mathrm{~L} 2)\right]^{2+}$ of 2 with hetero atoms labelled. Only H from $\mathrm{N}-\mathrm{H}$ groups are shown. Hydrogen bonds are shown as red dotted lines.


Figure S5. Representation of one $\left(\mathrm{ClO}_{4} @\left[\mathrm{Co}_{2}(\mathrm{~L} 2)_{3}\right]\right)^{3+}$ unit from 3 (red) together with its seven first neighbors in the crystal lattice (the latter with dark blue, light blue and grey representing Co, N and C respectively). The interactions with these neighbors are $\pi \cdots \pi$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions emphasized by contacts between the centroids (red balls linked by dashed black lines) of the aromatic rings involved or between centroids and the carbon atom of the $\mathrm{C}-\mathrm{H}$ group involved (also linked by dashed black lines). H atoms not shown for clarity.


Figure S6. Left: temperature dependence of $\chi T$ for compounds 1, 2 and 3, as indicated. Right: magnetization isotherms at 2 and 5 K for compounds 1, 2 and 3, as indicated.


Figure S7. Left: temperature dependence of $\chi T$ for compounds 1 , and 4 normalized per Co(II) ion, as indicated. Right: magnetization isotherms at 2 K for compounds 1, and 4 normalized per $\mathrm{Co}(\mathrm{II})$ ion, as indicated.

## CASSCF-SO calculations

Due to the large separation between $\mathrm{Co}(\mathrm{II})$ ions, we assume that the measured magnetic properties in 1-3 arise from the independent contribution of each ion. Thus, for each compound we define two analogues ( $\mathbf{X}^{\mathbf{a}}$ and $\mathbf{X}^{\mathbf{b}}$ ) where one of the Co (II) ions has been substituted by its structurally analogous diamagnetic $\mathrm{Zn}(\mathrm{II})$ ion.
A possible magnetic interaction between the $\mathrm{Co}(\mathrm{II})$ centres in each compound is calculated as

$$
\overline{\bar{J}}_{a b}^{d i p}=-\frac{\mu_{B}^{2} \mu_{0}}{4 \pi} \frac{1}{\left\|\vec{R}_{b a}\right\|^{3}}\left[\overline{\bar{g}}_{a} \overline{\bar{g}}_{b}-3\left(\overline{\bar{g}}_{a} \vec{R}_{b a}\right)\left(\vec{R}_{b a}^{T} \overline{\bar{g}}_{n}\right)\right]
$$

Where the minus sign comes from a $\widehat{H}=-\hat{S}_{a} \overline{\bar{J}}_{a b}^{d i p} \hat{S}_{b}$ formalism, so $J^{d i p}=\Delta E$. One should use a conversion factor of $5.034 \mathrm{E}+22$ between Joules and $\mathrm{cm}^{-1}$. In what follows, the gtensors are calculated at different levels of theory.

The electronic structure and g-tensors of compounds $\mathbf{1}^{\mathrm{a}, \mathrm{b}} \mathbf{- 3}^{\mathbf{a}, \mathrm{b}}$ have been investigated at the complete active space self-consistent field (CASSCF) level using OpenMolcas.v21. ${ }^{9}$ Scalar relativistic effects were taken into account through the ANO-RCC basis set library, ${ }^{10,11}$ in combination with a second-order Douglas-Kroll-Hess Hamiltonian transformation - depending on the atom, the quality of the basis set varied: VQZP for the Co atoms, VTZP for Co-coordinating atoms, VDZP for Zn and counterion guest atoms and VDZ for the remaining atoms. Cholesky decomposition of the two-electron integrals with a threshold of $10^{-8}$ was performed to save disk space and reduce computational demand. The molecular orbitals (MOs) were optimized in a state averaged CASSCF calculations within each spin manifold defined by 7 electrons in the $53 d$ orbitals: 10 roots for the spin quartet ( ${ }^{4} \mathrm{~F},{ }^{4} \mathrm{P}$ ) and 40 roots for the spin doublet ( ${ }^{2} \mathrm{G},{ }^{2} \mathrm{P},{ }^{2} \mathrm{H},{ }^{2} \mathrm{D},{ }^{2} \mathrm{D},{ }^{2} \mathrm{~F}$ ). Then, using the restricted-active-space state-interaction spin-orbit (RASSI-SO) formalism, ${ }^{12,13}$ these spinfree wavefunctions ( 10 quartet and 40 doublet states) were mixed, with spin-orbit coupling matrix elements calculated by the atomic-mean-field approximation ${ }^{12}$ to the Breit-Pauli Hamiltonian. Finally, working with these CASSCF-RASSI-SO wavefunctions, simulations of magnetisation and susceptibility curves were obtained using the SINGLE_ANISO module. ${ }^{14}$ The results following this procedure are presented in Tables S4-S6.
Knowing that i) the first three free ion terms of a $d^{7}$ electronic configuration are ${ }^{4} \mathrm{~F},{ }^{4} \mathrm{P}$ and ${ }^{2} \mathrm{G}$ and that ii) in an octahedral ligand field these split into ${ }^{4} \mathrm{~A}_{2 \mathrm{~g}}+{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}+{ }^{4} \mathrm{~T}_{2 \mathrm{~g}},{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ and ${ }^{2} \mathrm{~A}_{1 \mathrm{~g}}+$ ${ }^{2} \mathrm{E}_{g}+{ }^{2} \mathrm{~T}_{1 g}+{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$, respectively, ${ }^{15}$ the calculated pattern of the spin-free states (Tables S4S6) can be tentatively classified as follows: from the ${ }^{4} \mathrm{~F}$, the ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}+{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ states make up the lowest six roots, which are well isolated from the ${ }^{4} \mathrm{~A}_{2 g}$ (ca. $17000 \mathrm{~cm}^{-1}$ ); the ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ states from the ${ }^{4} \mathrm{P}$ term appear much higher in energy (ca. $25000 \mathrm{~cm}^{-1}$ ). Finally, the doublet ${ }^{2} \mathrm{E}_{\mathrm{g}}$ and triplets ${ }^{2} \mathrm{~T}_{1 g}+{ }^{2} \mathrm{~T}_{2 g}$ terms from the parent ${ }^{2} G$ make up for states $7-8$ and $10-15$, respectively. Focusing now on the spin-orbit coupled states, we see the pairing of states forming Kramers doublets (KD). The first 12 KDs span ca $9000 \mathrm{~cm}^{-1}$ and are well isolated from the $13^{\text {th }} \mathrm{KD}$ (ca. $14000 \mathrm{~cm}^{-1}$ ) - inspection of their wavefunction composition reveals

[^4]that first 12 KDs are almost $100 \%$ composed by the first six spin-only states, i.e., linear combinations of the ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}+{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ states coming from the ${ }^{4} \mathrm{~F}$ free ion term. This pattern is maintained for all 1-3 compounds and follows what has been observed for other $\mathrm{Co}(\mathrm{II})$ complexes, where the magnetic properties are dominated by the ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ states. ${ }^{15}$
Compound 1 presents a large variation of the g-tensors and energy splitting of the lowlying states when comparing the two coordination pockets (Table S4), which translates into a noticeable difference in the magnetic susceptibility. This is likely due to the different distances between coordinating ligands in each pocket. Compounds 2 and 3 do not present such marked differences and their susceptibilities and magnetisation curves are virtually superimposable. Finally, the calculated dipolar coupling vectors are presented in Table S10-S12; considering only the main component, 1 presents a value twice as big as that for 3. This is in contrast with estimates from heat capacity measurements, that point to an averaged dipolar field <Bdip> of c.a. 6, 24 and 28 mT respectively for 1, 2 and 3.

Applying the same CASSCF-RASSI-SO procedure outlined above but with a larger basis set (VQZP for the Co atoms, VTZP for Co-coordinating atoms, VDZP for the remaining atoms) for 1a did not change the results (Table S7).
Applying the same CASSCF-RASSI-SO procedure outlined above but with a larger active space consisting of 7 electrons in 10 orbitals (both 3- and 4-d orbitals) for 1a did not change the results either (Table S8).

Table S4. Energies $\left(\mathrm{cm}^{-1}\right)$ of spin-only and spin-orbit coupled states of 1 calculated at the CAS(7,5)SCF-SO-RASSI with 10 quartets and 40 doublets level, using the crystal structure. For spin-only states, lighter and darker grey indicate quartet and doublets spin multiplicities, respectively. For spin-orbit coupled states, each row is a Kramers doublet, where the $g$-values of the first 12 doublets are also shown.

| $1{ }^{\text {a }}$ |  |  |  |  | $1{ }^{\text {b }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spin-only | Spin-orbit |  |  |  | Spin-only | Spin-orbit |  |  |  |
| $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $g_{x}$ | $g_{y}$ | $g_{z}$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $E\left(\mathrm{~cm}^{-1}\right)$ | $g_{x}$ | $g_{y}$ | $g_{z}$ |
| 0.00 | 0.00 | 2.833 | 4.526 | 5.617 | 0.00 | 0.00 | 2.028 | 3.250 | 6.976 |
| 341.90 | 223.75 | 0.452 | 0.517 | 5.329 | 582.22 | 150.51 | 1.615 | 1.726 | 5.616 |
| 539.48 | 534.84 | 2.144 | 2.826 | 3.862 | 1254.59 | 754.45 | 1.212 | 3.039 | 5.302 |
| 7815.37 | 928.34 | 0.134 | 0.423 | 3.450 | 7397.33 | 1017.95 | 0.809 | 0.875 | 3.749 |
| 7930.15 | 1070.72 | 0.634 | 2.060 | 2.685 | 7807.70 | 1563.22 | 1.019 | 1.834 | 5.130 |
| 8244.53 | 1185.60 | 0.229 | 0.291 | 3.456 | 7990.47 | 1667.05 | 1.294 | 1.408 | 4.148 |
| 13349.80 | 8172.20 | 1.310 | 1.610 | 5.715 | 14370.36 | 7653.32 | 0.057 | 0.086 | 6.458 |
| 13834.87 | 8207.54 | 1.601 | 2.493 | 4.869 | 14836.35 | 7705.95 | 2.143 | 3.764 | 3.919 |
| 16977.32 | 8317.04 | 1.283 | 2.911 | 4.456 | 15973.19 | 8070.07 | 1.593 | 2.871 | 4.976 |
| 19924.64 | 8385.66 | 0.782 | 0.916 | 4.527 | 20129.49 | 8119.24 | 0.894 | 1.240 | 4.892 |
| 20148.53 | 8637.71 | 0.046 | 0.080 | 6.273 | 20479.89 | 8275.78 | 0.424 | 0.483 | 6.060 |
| 20173.81 | 8745.13 | 2.180 | 3.286 | 3.368 | 20568.06 | 8387.00 | 2.145 | 2.855 | 3.614 |
| 20253.64 | 13752.08 |  |  |  | 20725.11 | 14651.13 |  |  |  |
| 20585.48 | [ $\cdots$ ] |  |  |  | 20887.65 | [ $\cdots$ ] |  |  |  |
| 20706.20 | 74217.87 |  |  |  | 21184.87 | 74068.60 |  |  |  |
| 24483.18 |  |  |  |  | 24404.27 |  |  |  |  |
| 24799.30 |  | - |  |  | 24518.93 |  | - |  |  |
| 25083.24 |  |  |  |  | 25026.24 |  |  |  |  |
| 25977.91 |  |  |  |  | 25808.15 |  |  |  |  |
| [ $\cdots$ ] |  |  |  |  | $[\cdots]$ |  |  |  |  |
| 73594.48 |  |  |  |  | 73599.23 |  |  |  |  |

Table S5. Energies $\left(\mathrm{cm}^{-1}\right)$ of spin-only and spin-orbit coupled states of 2 calculated at the CAS(7,5)SCF-SO-RASSI with 10 quartets and 40 doublets level, using the crystal structure. For spin-only states, lighter and darker grey indicate quartet and doublets spin multiplicities, respectively. For spin-orbit coupled states, each row is a Kramers doublet, where the g -values of the first 12 doublets are also shown.

| $2^{\text {a }}$ |  |  |  |  | $2^{\text {b }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spin-only | Spin-orbit |  |  |  | Spin-only | Spin-orbit |  |  |  |
| $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $g_{x}$ | $g_{y}$ | $g_{z}$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $g_{x}$ | $g_{y}$ | $g_{z}$ |
| 0.00 | 0.00 | 2.738 | 3.657 | 6.456 | 0.00 | 0.00 | 3.029 | 3.334 | 6.551 |
| 260.61 | 232.01 | 0.846 | 1.412 | 4.937 | 82.99 | 262.90 | 0.254 | 1.839 | 3.470 |
| 609.64 | 519.52 | 1.477 | 2.822 | 3.456 | 512.64 | 460.30 | 0.836 | 1.258 | 2.047 |
| 7746.85 | 902.17 | 0.211 | 0.383 | 3.397 | 7351.69 | 873.65 | 0.291 | 0.482 | 3.290 |
| 7758.01 | 1123.54 | 0.799 | 1.743 | 3.850 | 7501.06 | 1101.17 | 0.633 | 1.079 | 4.419 |
| 7927.69 | 1228.39 | 0.844 | 0.947 | 3.589 | 7588.77 | 1203.44 | 1.323 | 1.564 | 3.367 |
| 13638.84 | 8075.74 | 1.517 | 2.467 | 5.385 | 13850.12 | 7793.21 | 0.671 | 1.072 | 6.051 |
| 13773.61 | 8125.58 | 0.432 | 2.180 | 3.867 | 13968.24 | 7837.19 | 1.840 | 3.066 | 4.545 |
| 16568.03 | 8167.43 | 0.461 | 1.487 | 3.130 | 15988.17 | 7954.80 | 1.292 | 2.230 | 5.233 |
| 19943.23 | 8241.21 | 0.722 | 0.961 | 3.923 | 19927.39 | 8013.36 | 1.042 | 1.414 | 4.287 |
| 20054.90 | 8350.24 | 0.071 | 0.098 | 5.893 | 19986.59 | 8090.88 | 0.047 | 0.072 | 5.720 |
| 20235.57 | 8484.38 | 2.340 | 2.927 | 3.296 | 20200.39 | 8232.73 | 2.394 | 2.758 | 3.353 |
| 20352.21 | 14052.74 | - |  |  | 20270.30 | 14336.92 | - |  |  |
| 20391.85 | [ $\cdots$ ] |  |  |  | 20326.78 | [ $\cdots$ ] |  |  |  |
| 20569.47 | 74015.97 |  |  |  | 20504.30 | 73747.18 |  |  |  |
| 24271.04 |  |  |  |  | 24072.84 |  |  |  |  |
| 24698.22 |  |  |  |  | 24434.90 |  |  |  |  |
| 24849.87 |  |  |  |  | 24488.91 |  |  |  |  |
| 25867.54 |  |  |  |  | 25560.42 |  |  |  |  |
| [ $\cdots$ ] |  |  |  |  | [ $\cdots$ ] |  |  |  |  |
| 73385.96 | - |  |  |  | 73007.17 | - |  |  |  |

Table S6. Energies $\left(\mathrm{cm}^{-1}\right)$ of spin-only and spin-orbit coupled states of $\mathbf{3}$ calculated at the CAS(7,5)SCF-SO-RASSI with 10 quartets and 40 doublets level, using the crystal structure. For spin-only states, lighter and darker grey indicate quartet and doublets spin multiplicities, respectively. For spin-orbit coupled states, each row is a Kramers doublet, where the g -values of the first 12 doublets are also shown.

| $3^{\text {a }}$ |  |  |  |  | $3{ }^{\text {b }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spin-only | Spin-orbit |  |  |  | Spin-only | Spin-orbit |  |  |  |
| $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $g_{x}$ | $g_{y}$ | $g_{z}$ | $E\left(\mathrm{~cm}^{-1}\right)$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | $g_{x}$ | $g_{y}$ | $g_{z}$ |
| 0.00 | 0.00 | 2.852 | 4.980 | 5.202 | 0.00 | 0.00 | 2.723 | 4.356 | 5.858 |
| 384.14 | 228.79 | 0.009 | 0.181 | 5.343 | 348.77 | 222.92 | 0.488 | 0.824 | 5.237 |
| 446.23 | 536.12 | 2.590 | 2.823 | 3.663 | 562.39 | 546.07 | 1.897 | 2.900 | 4.022 |
| 7727.07 | 960.21 | 0.308 | 0.617 | 2.694 | 8059.82 | 940.56 | 0.035 | 0.538 | 3.168 |
| 8192.80 | 1022.84 | 0.302 | 0.775 | 1.946 | 8177.91 | 1078.87 | 0.462 | 0.806 | 3.837 |
| 8240.68 | 1146.19 | 0.529 | 0.538 | 3.289 | 8268.96 | 1195.37 | 1.190 | 1.345 | 3.294 |
| 13134.45 | 8108.82 | 0.216 | 0.261 | 6.345 | 13307.07 | 8406.46 | 1.258 | 2.406 | 5.340 |
| 13848.50 | 8159.99 | 2.090 | 3.651 | 4.058 | 13600.11 | 8443.06 | 1.287 | 1.839 | 5.206 |
| 17090.26 | 8529.50 | 1.867 | 2.450 | 5.461 | 17296.09 | 8526.51 | 0.982 | 1.766 | 5.443 |
| 19885.17 | 8590.38 | 0.218 | 1.613 | 3.817 | 19921.79 | 8595.08 | 1.094 | 1.904 | 3.488 |
| 20088.16 | 8661.66 | 0.219 | 0.436 | 4.776 | 20161.11 | 8677.27 | 0.060 | 0.259 | 5.527 |
| 20126.78 | 8804.75 | 2.156 | 2.336 | 3.734 | 20257.82 | 8822.42 | 2.370 | 2.749 | 3.373 |
| 20272.30 | 13546.26 | - |  |  | 20375.66 | 13705.99 | - |  |  |
| 20397.60 | [...] |  |  |  | 20499.69 | [...] |  |  |  |
| 20862.92 | 74500.84 |  |  |  | 20694.78 | 74566.37 |  |  |  |
| 24413.25 |  |  |  |  | 24651.69 |  |  |  |  |
| 24720.94 |  |  |  |  | 24823.42 |  |  |  |  |
| 25432.10 |  |  |  |  | 25387.38 |  |  |  |  |
| 25929.36 |  |  |  |  | 26006.06 |  |  |  |  |
| [ $\cdots$ ] |  |  |  |  | $[\cdots]$ |  |  |  |  |
| 73915.06 | - |  |  |  | 73969.47 | - |  |  |  |

Table S7. Energies ( $\mathrm{cm}^{-1}$ ) of spin-only and spin-orbit coupled states of $1^{\text {a }}$ calculated at the CAS(7,5)SCF-SO-RASSI, with 10 quartets and 40 doublets and larger basis set level, using the crystal structure. For spin-only states, lighter and darker grey indicate quartet and doublets spin multiplicities, respectively. For spin-orbit coupled states, each row is a Kramers doublet, where the g-values of the first 12 doublets are also shown. Percentage errors relative to the CAS(7,5)SCF-SO-RASSI results (Table S4) are also shown

| $1^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spin-only |  | Spin-orbit |  |  |  |  |  |  |  |
| $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | \% ${ }^{\text {err }}$ | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | \% ${ }^{\text {err }}$ | $g_{x}$ | \% ${ }^{\text {err }}$ | $g_{y}$ | \% ${ }^{\text {err }}$ | $g_{z}$ | \% ${ }^{e r r}$ |
| 0.00 | 0 | 0.00 | 0 | 2.825 | 0 | 4.495 | -1 | 5.650 | 1 |
| 339.63 | -1 | 223.20 | 0 | 0.470 | 4 | 0.554 | 7 | 5.325 | 0 |
| 548.00 | 2 | 535.41 | 0 | 2.099 | -2 | 2.838 | 0 | 3.876 | 0 |
| 7788.27 | 0 | 926.55 | 0 | 0.167 | 20 | 0.423 | 0 | 3.460 | 0 |
| 7909.01 | 0 | 1075.71 | 0 | 0.642 | 1 | 1.983 | -4 | 2.842 | 6 |
| 8221.28 | 0 | 1190.17 | 0 | 0.327 | 30 | 0.384 | 24 | 3.464 | 0 |
| 13373.72 | 0 | 8145.39 | 0 | 1.200 | -9 | 1.456 | -11 | 5.805 | 2 |
| 13855.69 | 0 | 8180.75 | 0 | 1.670 | 4 | 2.643 | 6 | 4.790 | -2 |
| 16925.05 | 0 | 8295.26 | 0 | 1.302 | 1 | 2.939 | 1 | 4.475 | 0 |
| 19923.38 | 0 | 8362.36 | 0 | 0.774 | -1 | 0.916 | 0 | 4.549 | 0 |
| 20146.09 | 0 | 8614.17 | 0 | 0.041 | -13 | 0.075 | -7 | 6.264 | 0 |
| 20174.35 | 0 | 8721.09 | 0 | 2.178 | 0 | 3.293 | 0 | 3.363 | 0 |
| 20258.44 | 0 | 13775.09 |  |  |  |  |  |  |  |
| 20580.95 | 0 | [ $\cdots$ ] |  |  |  |  |  |  |  |
| 20701.47 | 0 | 74192.09 |  |  |  |  |  |  |  |
| 24457.26 | 0 |  |  |  |  |  |  |  |  |
| 24784.53 | 0 |  |  |  |  |  |  |  |  |
| 25059.89 | 0 |  |  |  |  |  |  |  |  |
| 25970.85 | 0 |  |  |  |  |  |  |  |  |
| [ $\cdot \cdot]$ |  |  |  |  |  |  |  |  |  |
| 73568.94 | 0 |  |  |  |  |  |  |  |  |

Table S8. Energies ( $\mathrm{cm}^{-1}$ ) of spin-only and spin-orbit coupled states of $1^{\mathrm{a}}$ calculated at the CAS(7,10)SCF-SO-RASSI with 10 quartets and 40 doublets level using the crystal structure. For spin-only states, lighter and darker grey indicate quartet and doublets spin multiplicities, respectively. For spin-orbit coupled states, each row is a Kramers doublet, where the $g$-values of the first 12 doublets are also shown. Percentage errors relative to the CAS $(7,5)$ SCF-SO-RASSI results (Table S4) are also shown.

| $1^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spin-only |  | Spin-orbit |  |  |  |  |  |  |  |
| $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | \%err | $\mathrm{E}\left(\mathrm{cm}^{-1}\right)$ | \% ${ }^{\text {err }}$ | $g_{x}$ | \% ${ }^{\text {err }}$ | $g_{y}$ | \% ${ }^{\text {err }}$ | $g_{z}$ | \%err |
| 0.00 | 0 | 0.00 | 0 | 2.746 | -3 | 4.452 | -2 | 5.665 | 1 |
| 353.65 | 3 | 207.32 | -8 | 0.519 | 13 | 0.565 | 8 | 5.362 | 1 |
| 561.73 | 4 | 531.41 | -1 | 2.056 | -4 | 2.858 | 1 | 4.011 | 4 |
| 8498.77 | 8 | 894.98 | -4 | 0.188 | 29 | 0.478 | 12 | 3.472 | 1 |
| 8615.36 | 8 | 1047.65 | -2 | 0.660 | 4 | 2.141 | 4 | 2.746 | 2 |
| 8945.77 | 8 | 1160.95 | -2 | 0.227 | -1 | 0.276 | -5 | 3.528 | 2 |
| 12221.95 | -9 | 8824.38 | 7 | 1.550 | 15 | 1.986 | 19 | 5.544 | -3 |
| 12732.21 | -9 | 8852.35 | 7 | 1.452 | -10 | 2.122 | -17 | 5.119 | 5 |
| 18320.89 | 7 | 8967.67 | 7 | 1.299 | 1 | 2.799 | -4 | 4.587 | 3 |
| 19440.99 | -2 | 9032.67 | 7 | 0.920 | 15 | 1.052 | 13 | 4.566 | 1 |
| 19656.55 | -3 | 9302.21 | 7 | 0.039 | -18 | 0.065 | -23 | 6.266 | 0 |
| 19748.43 | -2 | 9401.98 | 7 | 2.168 | -1 | 3.351 | 2 | 3.417 | 1 |
| 19921.00 | -2 | 12601.18 |  | - |  |  |  |  |  |
| 20336.21 | -1 | [ $\cdots$ ] |  |  |  |  |  |  |  |
| 20479.07 | -1 | 72039.44 |  |  |  |  |  |  |  |
| 23863.33 | -3 | - |  |  |  |  |  |  |  |
| 24166.09 | -3 |  |  |  |  |  |  |  |  |
| 24477.17 | -2 |  |  |  |  |  |  |  |  |
| 25506.36 | -2 |  |  |  |  |  |  |  |  |
| [ $\cdots$ ] |  |  |  |  |  |  |  |  |  |
| 71391.78 |  |  |  |  |  |  |  |  |  |

Table S9. $\vec{J}^{\text {dip }}\left(\mathrm{cm}^{-1}\right)$ components calculated between the $g$-tensors of the ground Kramers for $1^{\text {a }}$ and $1^{\text {b }}$ respectively, at the CAS(5,7)SCF-SO-RASSI level of theory (Table 4). parameters.

| $\overline{\bar{g}}_{a}$ |  |  | $\overline{\bar{g}}_{b}$ |  |  | $\vec{J}_{a b}^{d i p}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 3.434 | -0.767 | 0.384 | 4.971 | -1.517 | -1.886 | -0.0019 |
| -0.767 | 4.820 | 0.796 | -1.517 | 3.379 | 0.356 | -0.0067 |
| 0.384 | 0.796 | 4.722 | -1.886 | 0.356 | 3.903 | -0.016 |

Table S10. $\overrightarrow{\boldsymbol{J}}^{\text {dip }}\left(\mathrm{cm}^{-1}\right)$ components calculated between the $g$-tensors of the ground Kramers doublet for $\mathbf{2}^{\mathbf{a}}$ and $\mathbf{2}^{\mathrm{b}}$ respectively, at the CAS(5,7)SCF-SO-RASSI level of theory (Table 5). parameters.

| $\overline{\bar{g}}_{a}$ |  |  | $\overline{\bar{g}}_{b}$ |  |  | $\vec{J}_{a b}^{d i p}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4.896 | -1.340 | -0.919 | 5.393 | 1.4047 | -0.671 | -0.0034 |
| -1.340 | 4.799 | 0.391 | 1.405 | 4.101 | -0.617 | -0.0075 |
| -0.919 | 0.391 | 3.156 | -0.671 | -0.617 | 3.420 | -0.012 |

Table S11. $\overrightarrow{\boldsymbol{J}}^{\text {dip }}\left(\mathrm{cm}^{-1}\right)$ components calculated between the $g$-tensors of the ground Kramers doublet for $3^{\text {a }}$ and $3^{\text {b }}$ respectively, at the CAS $(5,7)$ SCF-SO-RASSI level of theory. Parameters (Table 6).

| $\overline{\bar{g}}_{a}$ |  |  | $\overline{\bar{g}}_{b}$ |  |  | $\vec{J}_{a b}^{\text {dip }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 2.942 | -0.352 | -0.281 | 3.063 | 0.258 | -0.900 | -0.0022 |
| -0.352 | 5.121 | 0.028 | 0.258 | 4.768 | -0.619 | -0.0066 |
| -0.281 | 0.028 | 4.970 | -0.900 | -0.620 | 5.106 | -0.0085 |



Figure S8. Semi-log $\chi T$ vs. $T$ comparative plot of experimental (grey dots) and CASSCF-RASSI-SO calculated (red solid lines) for compounds 1, 2 and 3. Data were acquired under $200(2-20 \mathrm{~K})$ and $3000(2-300 \mathrm{~K})$ Oe dc field, and compared satisfactorily with data derived from zero-field ac susceptibility in the $2-10 \mathrm{~K}$ range give similar values of $\chi$, ensuring these represent the equilibrium susceptibility.


Figure S9. Frequency dependence of the in-phase (top) and out-of-phase (bottom) ac magnetic susceptibility of compounds 2 (left) and 3 (right) at 2 K and increasing applied dc fields as indicated. Lines are fits of the experimental data to the Cole-Cole expressions for the real and imaginary susceptibility.


Figure S10. Low frequency dependence of the in-phase (top) and out-of-phase (bottom) ac magnetic susceptibility of compounds 1 (left) and 2 (middle) and 3 (right) at 2 K and increasing fields as indicated. Lines are fits of the experimental data to a bimodal model in the case of 1 and 2, and trimodal model in the case of 3.


Figure S11. Field dependence of the magnetization relaxation rates of compounds 1-4, as indicated. Smaller symbols correspond to a second (and third in the case of 3) slower relaxation mode that becomes dominant at the highest fields. Full lines are fits of the faster component to the expressions $\tau^{-1}=\mathrm{CB}+\mathrm{D}\left(1+\mathrm{E} B^{2}\right) /\left(1+\mathrm{F} B^{2}\right)$ (see text and Table S13).


Figure S12. Frequency dependence of the in-phase (top) and out-of-phase (bottom) ac magnetic susceptibility of compounds 2 (left) and 3 (right) at 0.03 T and increasing temperatures as indicated. Lines are fits of the experimental data to the Cole-Cole expressions for the real and imaginary susceptibility.


Figure S13. Frequency dependence of the in-phase (top) and out-of-phase (bottom) ac magnetic susceptibility of compounds 2 (left) and 3 (right) at 0.1 T and increasing temperatures as indicated. Lines are fits of the experimental data to the Cole-Cole expressions for the real and imaginary susceptibility.


Figure S14. Temperature dependence of the magnetization relaxation rates of compounds 2 and 3 under a 0.03 T applied field. Full lines are a fit to $\tau^{-1}=A T^{2}+B T^{m}$ (see Table S14).


Figure S15. Temperature dependence of the magnetization relaxation rates of compounds 1, 2, 3 and 4 under a 0.1 T applied field, as indicated, showing the two components of the simulation (red lines) using the expression $\tau^{-1}=A T^{2}+B T^{m}$ (see Table S14): the phononbottlenecked direct process (dotted grey lines) and the Raman process (dashed grey lines).


Figure S16. Temperature dependence of the magnetization relaxation rates of compounds $1-4$ under a 0.1 T applied field in the range for which the data can be reproduced with a single power law $\sim T^{n}$, with $n=2.88,2.98,2.59$ and 2.93 respectively (full lines).

Table S12. Parameters that provide the best fit to the field dependence of the relaxation rate $\tau^{-1}$ for compounds 1-4.

$$
\tau^{-1}=\mathrm{C} B^{n}+\mathrm{D}\left(\frac{1+\mathrm{E} B^{2}}{1+\mathrm{F} B^{2}}\right)
$$

|  | $\mathrm{C}\left(\mathrm{T}^{-\mathrm{n}} \mathrm{s}^{-1}\right)$ | n | $\mathrm{D}\left(\mathrm{s}^{-1}\right)$ | $\mathrm{E}\left(\mathrm{T}^{-2}\right)$ | $\mathrm{F}\left(\mathrm{T}^{-2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $1.62(2) \times 10^{5}$ | $2.57(3)$ | $5.5(4) \times 10^{3}$ | $1877(160)$ | 3200 |
| $\mathbf{2}$ | $9.41(3) \times 10^{5}$ | $3.6(1)$ | $9.8(2) \times 10^{3}$ | 1200 | 2400 |
| $\mathbf{3}$ | $36(2) \times 10^{5}$ | $3.1(1)$ | $31(2) \times 10^{3}$ | 2900 | 3600 |
| $\mathbf{4}$ | $4.35(6) \times 10^{4}$ | 4 | $4.4(4) \times 10^{3}$ | 1490 | 3300 |

Table S13. Parameters that provide the best fit to the temperature dependence of the relaxation rate $\tau^{-1}$ for compounds 1-4.

$$
\tau^{-1}=\mathrm{A} T^{2}+\mathrm{B} T^{m}
$$

|  | $B(\mathrm{~T})$ | $\mathrm{A}\left(\mathrm{K}^{-2} \mathrm{~s}^{-1}\right)$ | $\mathrm{B}\left(\mathrm{K}^{-\mathrm{m}} \mathrm{s}^{-1}\right)$ | m |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | $849(33)$ | $20(4)$ | $4.6(1)$ |
| $\mathbf{2}$ | 0.1 | $1103(30)$ | $24.5(1)$ | 5 |
|  | 0.03 | $1453(20)$ | $49(11)$ | $4.5(2)$ |
| $\mathbf{3}$ | 0.1 | $6700(50)$ | $26(3)$ | 5 |
|  | 0.03 | $6635(50)$ | $16.1(3)$ | 5 |
| $\mathbf{4}$ | 0.1 | $513(25)$ | $3.2(4)$ | $5.4(1)$ |



Figure S17. Representative SEM images of the polycrystalline samples used in the magnetic study at two different magnifications: 1, top; 2, middle; 3, bottom. Analysis over various images confirmed the absence of significantly larger crystals, the crystallites being relatively homogeneous, with representative largest dimensions in the 0.5-25, 0.5-10 and $0.5-10 \mu \mathrm{~m}$ ranges, respectively for $\mathbf{1 , 2} 2$ and 3.


Figure S18. Specific heat of 1,2 and 3 in zero applied field, as indicated. The full green lines are the calculated Debye heat capacity for the adequate number of atoms and Debye temperature $\theta$ that best reproduces the lower temperature lattice heat capacity. Note how these calculated Debye heat capacity significantly surpass the experimental ones.


[^0]:    ${ }^{1}$ M. Darawsheh, L. A. Barrios, O. Roubeau, S. J. Teat, G. Aromí, Chem., Eur. J. 2016, 22, 8635-8645.
    ${ }^{2}$ R. Diego, A. Pavlov, M. Darawsheh, D. Aleshin, J. Nehrkorn, Y. Nelyubina, O. Roubeau, V. Novikov, G. Aromí, Inorg. Chem. 2019, 58, 9562-9566.
    ${ }^{3}$ M. Darawsheh, L. A. Barrios, O. Roubeau, S. J. Teat, G. Aromí, Angew. Chem., Int. Ed. 2018, 57, 1350913513.

[^1]:    ${ }^{4}$ G. M. Sheldrick, 2012, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
    ${ }^{5}$ G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3-8
    ${ }^{6}$ G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8

[^2]:    ${ }^{7}$ S. Gómez-Coca, A. Urtizberea, E. Cremades, P. J. Alonso, A. Camón, E. Ruiz, F. Luis, Nature Commun., 2014, 5:4300

[^3]:    ${ }^{8}$ R. Diego, A. Pavlov, M. Darawsheh, D. Aleshin, J. Nehrkorn, Y. Nelyubina, O. Roubeau, V. Novikov and G. Aromí, Inorg. Chem. 2019, 58, 9562-9566

[^4]:    ${ }^{9}$ G. L. Manni et al, J. Chem. Theory Comput. 2023, 19, 20, 6933-6991
    ${ }^{10}$ B. O. Roos, R. Lindh, P.-A.. Malmqvist,V. Veryazov and P.-O. Widmark, J. Phys. Chem. A. 2004, 108, 2851-2858
    ${ }^{11}$ B. O. Roos, R. Lindh, P.-Å. Malmqvist,V. Veryazov and P.-O. Widmark, J. Phys. Chem. A. 2005, 109, 6575-6579
    ${ }^{12}$ H. Bernd et al, Chem. Phys. Lett. 1996, 251, 365-371
    ${ }^{13}$ P. Å., Malmqvist, Chem. Phys. Lett. 2002, 357, 230-240
    ${ }^{14}$ L. Ungur and L. F. Chibotaru, Chem. Eur. J. 2017, 23, 3708-3718
    ${ }^{15}$ F. Lloret et al., Inorg. Chim. Acta 2008, 361,3432-3445

