Electronic Supplementary Information (ESI)

for

Evolution of Mn-Bi₂O₃ from the Mn-doped Bi₃O₄Br electro(pre)catalyst during the oxygen evolution reaction

Avinava Kundu^{#†}, Ashish Kumar Dhillon^{#†}, Ruchi Singh[†], Sanmitra Barman^{*‡}, Soumik Siddhanta^{*†} and Biswarup Chakraborty^{*†}

[†]Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India

[‡]Center for Advanced Materials and Devices (CAMD), BML Munjal University, Haryana, India

[#] Authors contributed equally

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India

*<u>sanmitra.barman@bmu.edu.in</u>, *<u>soumik@chemistry.iitd.ac.in</u> and *<u>cbiswarup@chemistry.iitd.ac.in</u>

Table of Contents

ontents	Page
	number
1. Characterization of the Mn-doped and Prsitine Bi ₃ O ₄ Br Sample	S3-S16
2. References	

Figure S1: FTIR spectra recorded for Mn-Bi₃O₄Br and Bi₃O₄Br powder sample.

Figure S2: Mott-Schottky analysis of the (a) $Mn-Bi_3O_4Br$ and (b) Bi_3O_4Br powder samples.

Figure S3: FESEM images of the $Mn-Bi_3O_4Br$ collected at different magnification confirming the layered type structure.

Figure S4: FESEM images of pristine Bi₃O₄Br powder samples in different magnifications and different places of bulk materials.

Figure S5: TEM images of pristine Bi₃O₄Br powder samples with different magnifications.

Figure S6: XPS survey spectra recorded for Mn-doped Bi₃O₄Br and pristine Bi₃O₄Br powder sample.

Figure S7: X-band (9.4 GHz) EPR spectra of $Mn-Bi_3O_4Br$ (red) and Bi_3O_4Br (grey), recorded at room temperature.

Figure S8: CV scan recored with Bi_3O_4Br on GC electrode within a potential window of 0.9 to 1.9 V vs RHE. (Scan starts and ends: 0.9 V, potential switch: 1.9 V, scan rate 5 mV s⁻¹, 1 M KOH as electrolyte, without iR-correction)

Figure S9: FESEM images (at different magnifications) of the Mn-Bi₃O₄Br sample drop-casted on the nickel foam.

Figure S10: LSV study recorded in between 1.2 to 1.8 V vs RHE for Mn- Bi_3O_4Br and Bi_3O_4Br/NF using graphite rod as a counter electrode.

Figure S11: Powder X-ray diffraction pattern of the as-synthesised Bi_3O_4Br (red), Mn-Bi_3O_4Br (black) and a different Mn-containg Bi_3O_4Br labelled as high Mn- Bi_3O_4Br (green). Black bars at the bottom ICDD data (84-0793) of Bi_3O_4Br .

Figure S12: CV cycles of the different amount of Mn-doped in Bi_3O_4Br sample (labelled as high Mn- Bi_3O_4Br) on GC electrode. (Scan starts and ends: 0.9 V, potential switch: 1.9 V, scan rate 5 mV s⁻¹, 1 M KOH as electrolyte)

Figure S13: Comparison of polarograms obtained from the linear sweep voltammetry (LSV) recorded in between 1.2 to 1.8 V vs RHE for Mn-Bi₃O₄Br/NF, High Mn-Bi₃O₄Br/NF and Bi₃O₄Br/NF.

Figure S14: Mass activity of the $Mn-Bi_3O_4Br/NF$ and Bi_3O_4Br/NF electrode.

Table	S1.	Performance	of 7	7%	Mn	doped	Bi ₃ O ₄ Br	and	comparision	of
differen	nt pu	ire Mn-based	OER	ele	ectroc	catalyst	s.			

Catalyst	Electrolyte	Overpotential	Reference
Mn-Bi ₃ O ₄ Br	1 M KOH	337	This Work
Metal-doped MnO ₂	1 M KOH	390	1
α-MnO ₂	0.1 M KOH	508	2
MnO _x NWs	0.1 M KOH	519	3
Ni–MnO ₂	1 M KOH	330	4
a-MnS	1 M KOH	292	5
MnO ₂ /CQD	1 M KOH	343	6
MnSe/CC	1 M KOH	310	7
MnSe@MWCNT/CC	1 M KOH	290	7
MnO _x /OCNT	0.1 M KOH	520	8
MnGa ₄	1 M KOH	291	9
LiMn(H ₂ O) ₂ [BP ₂ O ₈]	1 M KOH	228	10

Figure S15: Tafel slope analysis of the $Mn-Bi_3O_4Br/NF$ and High $Mn-Bi_3O_4Br/NF$ electrode obtained from the LSV curves.

Figure S16: CV cycles recorded in between 0.89 V and 0.99 V vs RHE (in the capacitive region) for (a) Mn-Bi₃O₄Br/NF and (b) Bi₃O₄Br/NF. The scan rate was varied from 25 mV s⁻¹ to 200 mV s⁻¹.

Figure S17: (a) ECSA normalized polarization curves, and (b) corresponding Tafel plot for $Mn-Bi_3O_4Br$, Bi_3O_4Br , and bare NF.

Figure S18: Nyquist plot from the data obtained from the EIS recorded in between 100 kHz and 0.01 Hz frequency range with Mn-Bi₃O₄Br, High Mn-Bi₃O₄Br and Bi₃O₄Br.

Figure S19: EDX spectra of the $Mn-Bi_3O_4Br/NF$ electrode after post-OER CA at 1.6 V for over 12 h.

Figure S20: GC chromatogram of the evolved H_2 and O_2 from the full cell electrolyser developed with Mn-Bi₃O₄Br(+)/(-)GR after electrolysis at 2.5 V. The peak at retention time 1.1 and 1.3 is of H_2 and N_2 , while the O_2 peak appeared at retention time 8.8.

Figure S21: A wet analysis of the electrolyte after 12 h OER CA at 1.6 V CA with $Mn-Bi_3O_4Br$. Left: pre-OER CA electrolyte and right: pale yellow AgBr precipitate (right) obtained by addition of AgNO₃ solution (after acid treatment).

References

(1) Ye, Z.; Li, T.; Ma, G.; Dong, Y.; Zhou, X. Metal-Ion (Fe, V, Co, and Ni)-Doped MnO₂ Ultrathin Nanosheets Supported on Carbon Fiber Paper for the Oxygen Evolution Reaction. *Adv. Funct. Mater.* **2017**, *27* (44), 1704083.

(2) Zhuang, Q.; Ma, N.; Yin, Z.; Yang, X.; Yin, Z.; Gao, J.; Xu, Y.; Gao, Z.; Wang, H.; Kang, J.; Xiao, D.; Li, J.; Li, X.; Ma, D. Rich Surface Oxygen Vacancies of MnO2 for Enhancing Electrocatalytic Oxygen Reduction and Oxygen Evolution Reactions. *Adv. Energy Sustainability Res.* **2021**, *2* (8), 2100030.

(3) Luo, X.-F.; Wang, J.; Liang, Z.-S.; Chen, S.-Z.; Liu, Z.-L.; Xu, C.-W. Manganese oxide with different morphology as efficient electrocatalyst for oxygen evolution reaction. *Int. J. Hydrog. Energy* **2017**, *42* (10), 7151-7157.

(4) Yang, Y.; Su, X.; Zhang, L.; Kerns, P.; Achola, L.; Hayes, V.; Quardokus, R.; Suib, S. L.; He, J. Intercalating MnO2 Nanosheets With Transition Metal Cations to Enhance Oxygen Evolution. *ChemCatChem* **2019**, *11* (6), 1689-1700.

(5) Pujari, R. B.; Gund, G. S.; Patil, S. J.; Park, H. S.; Lee, D.-W. Anion-exchange phase control of manganese sulfide for oxygen evolution reaction. *J. Mater. Chem. A* **2020**, *8* (7), 3901-3909.

(6) Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? *Carbon* **2019**, *143*, 430-446.

(7) Singh, H.; Marley-Hines, M.; Chakravarty, S.; Nath, M. Multi-walled carbon nanotube supported manganese selenide as a highly active bifunctional OER and ORR electrocatalyst. *J. Mater. Chem. A* **2022**, *10* (12), 6772-6784.

(8) Antoni, H.; Xia, W.; Masa, J.; Schuhmann, W.; Muhler, M. Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction. *Phys. Chem. Chem. Phys.* **2017**, *19* (28), 18434-18442.

(9) Menezes, P. W.; Walter, C.; Hausmann, J. N.; Beltrán-Suito, R.; Schlesiger, C.; Praetz, S.; Yu. Verchenko, V.; Shevelkov, A. V.; Driess, M. Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach. *Angew. Chem. Int. Ed.* **2019**, *58* (46), 16569-16574.

(10) Menezes, P. W.; Walter, C.; Chakraborty, B.; Hausmann, J. N.; Zaharieva, I.; Frick, A.; von Hauff, E.; Dau, H.; Driess, M. Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. *Adv. Mater.* **2021**, *33* (9), 2004098.