Supporting information for

Recycling primary lithium batteries using a coordination chemistry approach: recovery of

lithium and manganese residues in the form of industrially important materials

Rafał Petrus,^{a,*} Adrian Kowaliński,^a Tadeusz Lis^b

^aFaculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370 Wrocław, Poland

^bFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland

Corresponding author:

Dr. Rafał Petrus, D.Sc., rafal.petrus@pwr.edu.pl

Contents

X-Ray Crystallog	graphy of 1-9		•••••						.S2
Continuous-shap	e measurements	of	the	coord	lination	envi	ronment	around	Li
atoms in 1-10			•••••		•••••			S5,	S27
Molecular struct	are of 6, 7a and4a	••••••	•••••			•••••		S6,	S26
¹ H, ¹³ C, ⁷ Li NMI	R and IR spectra of	4-8				•••••			.S7
¹ H-DOSY NMR	spectra of 1-8								S19
Details of perf	ormed reactions	of lith	ium	battery	anodes	with	methyl	salicylate	and
ROH			•••••						.S23
NMR study of de	composition produ	cts of o	rgani	c electrol	ytes				.S37
TEM analysis of	cathode material								.S38

Crystallographic Data for Compounds 1 - 9.

Crystal	1_m	1_0	2	3
Chemical formula	$C_{10}H_{15}LiO_5$	$C_{10}H_{15}LiO_5$	C ₁₆ H ₁₅ LiO ₆	$C_{20}H_{26}Li_2O_8$
Formula Mass	222.16	222.16	310.22	408.29
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	C2/c	$Pna2_1$	<i>P</i> 2 ₁ /c	<i>C</i> 2/c
a/Å	19.757 (8)	16.660 (6)	4.978 (10)	23.405 (4)
b/Å	6.8303 (15)	10.120 (2)	11.479 (2)	8.959 (12)
$c/\text{\AA}$	18.858 (9)	7.004 (17)	26.144 (5)	20.406 (3)
a/°				
$eta / ^{\circ}$	115.43 (5)		94.95 (2)	94.63(2)
γ/°				
Unit cell volume/Å ³	2298.2 (18)	1180.9 (6)	1488.4 (5)	4264.8 (11)
Temperature/K	100	100	100	100
Ζ	8	4	4	8
Radiation type	ΜοΚα	ΜοΚα	CuKα	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.101	0.098	0.881	0.096
No. of reflections measured	5504	12820	34153	20355
No. of independent reflections	2500	2557	2804	4647
No. of observed $(I > 2\sigma(I))$ reflections	2194	2473	2351	4475
R _{int}	0.0151	0.0165	0.0548	0.0468
Final R_I values $(I > 2\sigma(I))$	0.0387	0.0245	0.0467	0.0773
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0991	0.0667	0.1224	0.1967
Final R_1 values (all data)	0.0452	0.0256	0.0549	0.0787
Final $wR(F^2)$ values (all data)	0.1040	0.0673	0.1292	0.1972
Goodness of fit on F^2	1.049	1.061	1.070	1.210
Δρmax/eÅ ⁻³	0.340	0.200	0.318	0.365
Δρmin/eÅ ⁻³	-0.270	-0.153	-0.370	-0.351

 Table S1. Crystal and data collection parameters for compounds 1 - 9.

Crystal	4_m	4_t	4a	5
Chemical formula	$C_{16}H_{18}Li_2O_8$	$C_{16}H_{18}Li_2O_8$	$C_{16.80}H_{19.60}Li_2O_8$	$C_{46}H_{60}Li_4O_{20}$
Formula Mass	352.18	352.18	363.40	960.70
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	$P2_{1}/n$	<i>P</i> ī ī	C2/c	<i>P</i> ī 1
a/Å	6.431 (16)	6.442 (3)	26.154 (5)	10.112 (2)
b/Å	10.351(2)	10.346 (2)	10.384 (18)	11.581 (3)
$c/{ m \AA}$	24.580(6)	12.498 (2)	6.473 (11)	11.920 (3)
a/°		99.32 (2)		76.17 (2)
$eta /^{\circ}$	90.61 (3)	91.04 (2)	102.25 (3)	85.10 (2)
γ/°		90.12 (2)		65.65 (3)
Unit cell volume/Å ³	1636.1 (7)	821.8 (4)	1717.9 (6)	1234.7 (6)
Temperature/K	100	100	100	100
Ζ	4	2	4	1
Radiation type	CuKa	CuKa	CuKa	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.952	0.948	0.924	0.099
No. of reflections measured	11081	5688	7773	22577
No. of independent reflections	2896	2994	1650	5956
No. of observed $(I > 2\sigma(I))$ reflections	2624	2195	1540	5366
R _{int}	0.0375	0.0710	0.0230	0.0156
Final R_1 values $(I > 2\sigma(I))$	0.0672	0.1079	0.0373	0.0313
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1856	0.2720	0.0990	0.0825
Final R_1 values (all data)	0.0710	0.1235	0.0394	0.0347
Final $wR(F^2)$ values (all data)	0.1916	0.3029	0.1005	0.0842
Goodness of fit on F^2	1.063	1.100	1.079	1.065
Δρmax/eÅ ⁻³	0.686	0.987	0.292	0.355
$\Delta \rho min/e Å^{-3}$	-0.334	-0.550	-0.469	-0.189

Crystal	7	7a	9
Chemical formula	$C_{54}H_{54}Li_6O_{18}$	$C_{51}H_{48}Li_6O_{18}$	$C_{57.24}H_{64.48}Li_6O_{23.62}$
Formula Mass	1032.61	990.53	1172.00
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> ī ī	<i>P</i> ī ī	Pī
a/Å	8.377 (2)	8.285 (2)	10.823 (3)
b/Å	12.233 (3)	12.146 (4)	12.501 (3)
$c/{ m \AA}$	13.360 (3)	13.254 (4)	13.588 (4)
a/°	68.71 (3)	67.26 (3)	102.57 (2)
$eta /^{\circ}$	80.75 (3)	78.53 (2)	108.41 (2)
γ/°	89.55 (3)	87.65 (2)	111.69 (2)
Unit cell volume/Å ³	1257.2 (6)	1204.6 (7)	1499.8 (8)
Temperature/K	100	100	100
Ζ	1	1	1
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα
Absorption coefficient, μ/mm^{-1}	0.100	0.101	0.099
No. of reflections measured	9334	9615	11032
No. of independent reflections	5460	5160	6274
No. of observed $(I > 2\sigma(I))$ reflections	4533	4306	4071
R _{int}	0.0204	0.0155	0.0387
Final R_I values $(I > 2\sigma(I))$	0.0370	0.0392	0.0739
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0867	0.0907	0.1851
Final R_1 values (all data)	0.0488	0.0509	0.1100
Final $wR(F^2)$ values (all data)	0.0942	0.0970	0.2227
Goodness of fit on F^2	1.028	1.050	1.051
Δρmax/eÅ ⁻³	0.284	0.283	0.406
Δpmin/eÅ ⁻³	-0.224	-0.215	-0.322

compound	atom	donor atoms	polyhedron	S
				parameter
1orthorhombic	Li1	O4	tetrahedron	0.774
1 monoclinic	Li1	O_4	tetrahedron	0.945
2	Li1	O4	tetrahedron	3.116
3	Li1	O4	tetrahedron	2.616
	Li2	O4	tetrahedron	2.520
4monoclinic	Li1	O4	tetrahedron	1.293
	Li2	O4	tetrahedron	1.216
4triclinic	Li1	O_4	tetrahedron	1.260
	Li2	O4	tetrahedron	1.256
4a	Li1	O4	tetrahedron	1.261
5	Li1	O4	tetrahedron	1.349
	Li2	O4	tetrahedron	1.539
6	Li1	O4	axially vacant trigonal bipyramid	2.431
	Li2	O_4	tetrahedron	2.444
	Li3	O4	axially vacant trigonal bipyramid	2.326
7	Li1	O4	tetrahedron	2.498
	Li2	O_4	tetrahedron	2.341
	Li3	O4	tetrahedron	2.553
7a	Li1	O4	tetrahedron	2.570
	Li2	O4	tetrahedron	2.497
	Li3	O4	tetrahedron	2.366
9	Li1	O_4	tetrahedron	1.766
	Li2	O_4	tetrahedron	1.085
	Li3	O4	tetrahedron	1.511

 Table S2. Continuous-shape measurements (CShM) of the coordination environment around Li in 1-9.

Figure S1. Molecular structure of $[Li_6(OAr)_6]$ (6) for ArOH = methyl salicylate. Displacement ellipsoids are drawn at the 25% probability level. The hydrogen atoms of the alkyl groups are omitted for clarity [symmetry code: (i) -x+1, -y+1, -z+1]. Reproduced by permission of The Royal Society of Chemistry.¹

Figure S2. Molecular structure of $[Li_6(OAr)_6]$ (**7a**), for ArOH = methyl salicylate (0.5), ethyl salicylate (0.5). Displacement ellipsoids are drawn at the 25% probability level. The hydrogen atoms of the alkyl groups are omitted for clarity [symmetry code: (i) -x+1, -y+1, -z+1].

Figure S4. ⁷Li NMR spectrum of 3.

Figure S6. FTIR-ATR spectrum of 3.

Figure S8. ⁷Li NMR spectrum of 4.

Figure S10. FTIR-ATR spectrum of 4.

Figure S12. ⁷Li NMR spectrum of 5.

Figure S14. FTIR-ATR spectrum of 5.

Figure S16. ⁷Li NMR spectrum of 7.

Figure S18. FTIR-ATR spectrum of 7.

Figure S19. ¹H NMR spectrum of **8**. * - assigned EGME residues.

Figure S20. ⁷Li NMR spectrum of 8.

Figure S22. FTIR-ATR spectrum of 8.

Figure S23. ¹H NMR spectrum of **8**·2EGME. After the dissolution of **8**·2EGME the precipitation of **8** upon the excess of alcohol was observed.

Figure S24. ⁷Li NMR spectrum of 8·2EGME.

Figure S25. ¹³C NMR spectrum of **8**·2EGME. After the dissolution of **8**·2EGME the precipitation of **8** upon the excess of alcohol was observed.

Figure S26. FTIR-ATR spectrum of 8.2EGME.

Figure S27. ¹H-DOSY NMR spectrum of 1 in THF-d₈.

Figure S28. ¹H-DOSY NMR spectrum of 2 in THF-d₈.

Figure S30. ¹H-DOSY NMR spectrum of 4 in THF-d₈.

Figure S32. ¹H-DOSY NMR spectrum of 7 in THF-d₈.

Figure S33. ¹H-DOSY NMR spectrum of 8·2 EGME in THF-d₈.

Table S3. Formula weights (Fws) and hydrodynamic radii (r_H) of 1 - 8 estimated from the Stokes-Einstein Gierer-Wirtz method.

compound	$\log(D)$	T (K)	Fw (g/mol)	Fw _{calc} (g/mol)	r _{x-ray} (Å)	$r_{\rm H}({\rm \AA})$
1	-9.172	297.15	222.16 (1)	1006	4.90 (1)	8.60
			948.48 (6)		7.39 (6)	
2	-8.942	297.15	310.23	320	6.24	5.87
3	-9.182	294.95	436.35 (3)	989	5.62 (3)	8.55
			1032.64 (7)		8.81 (7)	
4	-9.175	296.25	352.19 (4)	993	6.26	8.56
			948.48 (6)			
5	-9.180	300.45	960.72 (5)	1164	10.28	9.03
			1212.80 (8)			
6	-9.160	293.15	948.48	924	7.39	8.36
7	-9.165	300.55	1032.64	1082	8.81	8.89
8·2EGME	-9.181	299.35	1212.80 (8)	1130	9.95	8.94
			1364.99 (8 ·2EGME)			

Battery type	Battery quantity	Li content (g)		
PANASONIC CR2430	2	0.09		
PANASONIC CR2032	3	0.07		
PANASONIC CR2016	1	0.03		
GP CR2430	2	0.09		
IKEA CR2032	2	0.07		
DURACELL CR2032	2	0.07		
VARTA CR2032	2	0.07		
MAXELL CR2032	1	0.07		
TOSHIBA CR2430	1	0.075		
TianQiu CR 2032	3	0.057		
MULTICOMP CR2032	5	0.07		
\sum weight of battery: 78.46 g	$\sum 24$	$\sum 1.686$		
Recovery compound: 6 - 5.73 g				
Separated cathode material: 29.49 g				
Content of metals in 1g of cathode material: Li - 0.02192g, Mn - 0.4266g				

Table S4. Recovery of lithium from lithium batteries by reaction with methyl salicylate/MeOH.

Table S5. Recovery of lithium from lithium batteries by reaction with methyl salicylate/MeOH.

Battery type	Battery quantity	Li content (g)		
CR2430	1	0.09		
CR2032	14	0.07		
CR2016	1	0.03		
\sum weight of battery: 46.21 g	$\sum 16$	∑ 1.100		
Recovery compound: 6 - 10.36 g				
Separated cathode material: n.d. g				
Content of metals in 1g of cathode material: Li - 0.02418 g, Mn - 0.41389 g				

Table S6. Recovery of lithium from lithium batteries by reaction with methyl salicylate/MeOH.

Battery type	Battery quantity	Li content (g)		
PANASONIC CR2430	11	0.09		
ROHSCELL 2430	1	0.09		
GP CR2430	2	0.09		
TOSHIBA CR2430	11	0.075		
\sum weight of battery: 108.5 g	$\sum 25$	$\sum 2.085$		
Recovery compound: 6 - 3.46 g, Li ₂ CO ₃ - 4.46 g				
Separated cathode material: 37.81 g				
Content of metals in 1g of cathode material before Li ₂ CO ₃ and LiClO ₄ isolation: Li - 0.03128 g,				
Mn - 0.4554 g.				

Battery type	Battery quantity	Li content (g)
MITSHUBISI CR2032E	1	0.064
MAXELL CR2032	3	0.07
MULTICOMP CR2032	4	0.07
IKEA CR2032	6	0.07
PANASONIC CR2032	4	0.07
VARTA CR2032	5	0.07
\sum weight of battery: 69.66 g	$\sum 23$	∑ 1.604
Recovery compound: 2 - 14.64 g		

Table S7. Recovery of lithium from lithium batteries by reaction with methyl salicylate/ⁱPrOH.

Battery type	Battery quantity	Li content (g)		
IKEA CR2032	4	0.07		
MITSHUBISI CR2032E	1	0.064		
MAXELL CR2032	6	0.07		
MULTICOMP CR2032	1	0.07		
ENERGIZER 2032	3	0.109		
2032	7	0.07		
2025	2	0.048		
2016	1	0.023		
T&E 2032	1	0.07		
\sum weight of battery: 74.22 g	$\sum 26$	$\sum 1.840$		
Recovery compound: 7 - 12.1 g, Li ₂ CO ₃ - 2.98 g				
Separated cathode material: 24.07 g				
Content of metals in 1g of cathode material before Li ₂ CO ₃ and LiClO ₄ isolation: Li - 0.01813 g,				
Mn - 0.41026 g.				

Battery type	Battery quantity	Li content (g)		
2032	10	0.07		
MAXELL CR2032	1	0.07		
ENERGIZER 2032	1	0.109		
IKEA CR2032	1	0.07		
DURACELL 2032	1	0.07		
TOSHIBA 2032	1	0.07		
FREEGO 2032	2	0.066		
VARTA 2032	1	0.07		
VINNIC 2032	1	0.07		
RUBIN 2032	1	0.07		
\sum weight of battery: 58.66 g	$\sum 20$	∑ 1.431		
Recovery compound: 5 - 16.71 g				

Table S9. Recovery of lithium from lithium batteries by reaction with methyl salicylate/EGME.

Table S10. Recovery of lithium from primary lithium battery anodes by reaction with H₂O.

Battery type	Battery quantity	Li content (g)	
PANASONIC CR2032	4	0.07	
MITSUBISHI CR2032	1	0.064	
MAXELL CR2032	7	0.07	
ENERGIZER 2032	7	0.109	
SONY 2032	5	0.07	
\sum weight of battery: 70.50 g	$\sum 24$	∑ 1.947	
Recovery compound: LiOH·H ₂ O - 2.15 g, Li ₂ CO ₃ - 2.01 g			
Separated cathode material: 27.24 g			
Content of metals in 1g of cathode material before Li ₂ CO ₃ and LiClO ₄ isolation: Li - 0.02865 g,			
Mn - 0.4074 g.			
Content of Li in 1g of cathode material after Li ₂ CO ₃ and LiClO ₄ isolation: Li - 0.00689 g.			

Table S11. Recovery of lithium from primary lithium battery anodes by reaction with methyl salicylate.

Battery type	Battery quantity	Li content (g)
Varta CR123A,	3	0.58
Duracell Ultra CR2	1	0.30
\sum weight of battery: 61.37 g	$\sum 4$	$\sum 2.04$
Recovery compound: 2 - 11.20 g		

 Table S12. Recovery of lithium from primary lithium battery anodes by reaction with methyl salicylate/EtOH_(hydrous).

Battery type	Battery quantity	Li content (g)
AAA ⁺ Energizer lithium	16	0.5
\sum weight of battery: 120.38 g	$\sum 16$	$\sum 8.0$
Recovery compound: 4 - 78.60 g or 7 - 64.80 g		

Figure S34. Molecular structure of $[Li(OAr)(H_2O)]_2$ (**4a**) for ArOH = methyl salicylate (0.6), ethyl salicylate (0.4). Displacement ellipsoids are drawn at the 25% probability level. [symmetry code: (i) -x+0.5, -y+1.5, -z]. The structure contains disorder aromatic ligand molecules ArO⁻ = methyl salicylate (0.6), ethyl salicylate (0.4).

Figure S35. FTIR-ATR spectrum of 10.

Figure S36. ¹H NMR spectrum in CD₃OD of decomposition products of electrolyte solvents: HCOOLi, CH₃COOLi, 1,2-propanediol and triethylene glycol dimethyl ether; * -solvent residues.

Figure S37. EDS analysis of the cathode material with different C: Mn: O content. The copper element comes from the use of copper-carbon grids.

Figure S38. EDS analysis of the cathode material with different C: Mn: O content. The copper element comes from the use of copper-carbon grids.

Figure S39. The selected area electron diffraction (SAED) pattern of cathode material, β -MnO₂ (red) and Li_xMn₂O₄ (green).

Figure S40. TEM micrographs of cathode material containing rod-shaped nanocrystals of β -MnO₂ (a-c), nanocrystals of Li_xMn₂O₄ (d-f), and a mixture of both (g-i).

¹ Petrus, R.; Fałat, P.; Sobota, P. Use of lithium aryloxides as promoters for preparation of α -hydroxy acid esters, *Dalton Trans.* **2020**, *49*, 866-876.