Ladder-Like Heteropolynuclear Assemblies via Cyanido Bridges and Platinum(II)-Thallium(I) Bonds: Structural and Photophysical Properties

Mina Sadeghian,^{a,b} David Gómez de Segura,^b Mohsen Golbon Haghighi,^{*,a} Nasser Safari,^a Elena Lalinde^{*,b} and M. Teresa Moreno^{*,b}

^a Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran. E-mail: <u>m_golbon@sbu.ac.ir</u>

^b Departamento de Química, Instituto de Investigación en Química (IQUR), Complejo Científico Tecnológico, Universidad de La Rioja, 26006 Logroño, Spain. E-mail: <u>elena.lalinde@unirioja.es; teresa.moreno@unirioja.es</u>

1 NMR Spectra	S2
2 Crystal Structures	S 8
3. Photophysical Properties and Theoretical Calculations	S12

1.- NMR Spectra

160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 60 58 26 24 22 20 18 16 14 12 (ppm)

Figure S1. NMR spectra of 1 in CDCl₃ at 298 K, a) ${}^{1}H$, b) ${}^{13}C{}^{1}H$, c) ${}^{19}F{}^{1}H$.

Figure S2. Selected region of the ${}^{13}C{}^{1}H$ NMR spectra of K[{Pt(bzq)(C₆F₅)(${}^{13}CN$)}Tl] (1') in CDCl₃.

Figure S3. NMR spectra of 2 in CDCl₃ at 298 K, a) ${}^{1}H$, b) ${}^{13}C{}^{1}H$, c) ${}^{19}F{}^{1}H$.

Figure S4. NMR spectra of 3 in THF-d₈ at 298 K, a) ${}^{1}H$, b) ${}^{13}C{}^{1}H$, c) ${}^{19}F{}^{1}H$.

Figure S5. NMR spectra of 4 in THF-d_8 at 298 K, a) 1H, b) $^{13}C\{^1H\},$ c) $^{19}F\{^1H\}.$

Figure S6. Selected region of the $^{13}C\{^{1}H\}$ NMR spectra of $[\{Pt(dfppy)(C_{6}F_{5})(^{13}CN)\}Tl]$ (4') in THF-d₈

2.- Crystal Structures

Table S1 . Crystal Data and Structure Refinement of ${[Pt(bzq)(C_6F_5)(CN)Tl] \cdot THF}_n$	$(3 \cdot THF)_n$
and $[{Pt(dfppy)(C_6F_5)(CN)}T1]_4 \cdot C_4H_8O_2$ [4] ₄ ·C ₄ H ₈ O ₂	

	(3·THF) _n	$[4]_4 \cdot C_4 H_8 O_2$
Empirical formula	C ₂₄ H ₁₆ F ₅ N ₂ OPtTl	$C_{76}H_{32}F_{28}N_8O_{1.22}Pt_4Tl_4$
Molecular weight	842.85	3206.45
Т (К)	293(2) K	100(2)
λ (Å)	0.71073	0.71076
Crystal system	Triclinic	Triclinic
Space group	P -1	P -1
Crystal size (mm)	$0.241\times0.058\times0.034$	$0.275 \times 0.067 \times 0.050$
a (Å)	11.887(2)	12.0740(8)
b (Å)	13.521(3)	12.6188(9)
c (Å)	14.790(3)	12.9418(9)
α (°)	74.76(3)	101.227(2)
β (°)	88.11(3)	101.332(3)
γ (°)	76.40(3)	98.078(3)
V (Å ³)	2228.1(9)	1863.3(2)
Z	4	1
ρ (calculated) (Mg/m ³)	2.513	2.858
$\mu (\text{mm}^{-1})$	13.557	16.215
F (000)	1544	1442
θ range for data collection (°)	2.235 to 27.927	2.606 to 26.373
	-15< h < 15,	-15 < h < 15,
Index ranges	$-17 \le k \le 17$,	$-15 \le k \le 15$,
C	$-19 \le 1 \le 19$	$-16 \le 1 \le 16$
Reflections collected	126056	99409
Independent reflections	10673 [R(int) = 0.0341]	7619 [R(int) = 0.0517]
Data / restraints / parameters	10673 / 0 / 613	7619 / 0 / 550
Goodness-of-fit on F ^{2[a]}	1.057	1.151
Final R indices [I>2σ(I)] ^[a]	R1 = 0.0150, wR2 = 0.0296	R1 = 0.0205, wR2 = 0.0461
R indices (all data) ^[a]	R1 = 0.0193, wR2 = 0.0311	R1 = 0.0227, wR2 = 0.0469
Largest diff. peak and hole (e Å ⁻³) (dmin/dmax)	1.445 and -0.956	2.179 and -1.138
[a] $R1 = \sum_{c} (F_{o} - F_{c}) / \sum F_{o} / F_{c}^{2} ^{2}] / (N_{obs} - N_{pair})$	$; wR_2 = [\sum w (F_o^2 - F_c^2)^2 / \sum w_{ram}]^{1/2}; w = [\sigma^2 (F_o) + (g1P)^2 + g2]^{1/2}$	$[VF_{o}^{2}]^{1/2}$; goodness of fit = { $\sum [W(F_{o}^{2} - P)^{-1}; P = [max(F_{o}^{2}; 0 + 2F_{c}^{2})/3.$

	(3.	THF) _n	
Distanc	:es (Å)	Angles	(°)
Pt(1)-C(1)	2.051(3)	C(1)-Pt(1)-N(1)	80.80(10)
Pt(1)-N(1)	2.097(2)	C(15)-Pt(1)-C(1)	93.78(11)
Pt(1)-C(15)	2.030(3)	C(14)-Pt(1)-C(1)	172.49(10)
Pt(1)-C(14)	2.024(3)	C(14)-Pt(1)-C(15)	91.75(11)
Pt(1)-Tl(1)	3.0279(7)	C(14)-Pt(1)-N(1)	93.71(10)
Pt(1)-Tl(2)	3.0402(7)	C(15)-Pt(1)-N(1)	174.54(9)
Tl(2)-O(1)	2.667(2)	C(14)-Pt(1)-Tl(1)	91.83(8)
Tl(2)-N(2)	2.723(2)	C(15)-Pt(1)-Tl(1)	104.64(8)
Tl(2)-Pt(2)	3.0140(7)	C(1)-Pt(1)-Tl(1)	81.85(8)
Pt(2)-C(35)	2.024(3)	N(1)-Pt(1)-Tl(1)	75.41(7)
Pt(2)-C(34)	2.027(3)	C(14)-Pt(1)-Tl(2)	91.87(8)
Pt(2)-C(21)	2.052(3)	C(15)-Pt(1)-Tl(2)	98.03(8)
Pt(2)-N(3)	2.097(2)	C(1)-Pt(1)-Tl(2)	92.39(8)
Pt(2)-Tl(1)#1	2.9795(6)	N(1)-Pt(1)-Tl(2)	81.60(6)
Tl(1)-N(4)	2.669(3)	Tl(1)-Pt(1)-Tl(2)	156.900(9)
		O(1)-Tl(2)-N(2)	99.56(7)
		O(1)-Tl(2)-Pt(2)	102.43(6)
		N(2)-Tl(2)-Pt(2)	93.90(6)
		O(1)-Tl(2)-Pt(1)	95.76(6)
		N(2)-Tl(2)-Pt(1)	97.27(6)
		Pt(2)-Tl(2)-Pt(1)	156.739(9)
		<u>C(35)-Pt(2)-C(34)</u>	89.84(11)
		C(35)-Pt(2)-C(21)	94.15(11)
		C(34)-Pt(2)-C(21)	174.93(10)
		C(35)-Pt(2)-N(3)	174.45(9)
		$\frac{C(34)-Pt(2)-N(3)}{C(21)-P(2)-N(2)}$	94.83(10)
		C(21)-Pt(2)-N(3)	81.03(10)
		C(35)-Pt(2)-11(1)#1	94.19(8)
		$\frac{C(34)-Pt(2)-11(1)\#1}{C(21)(21)(21)(21)(21)(21)(21)(21)(21)(21)$	93.85(8)
		U(21)-Pt(2)-11(1)#1	82.76(8)
		$\frac{N(3)-Pt(2)-11(1)\#1}{C(25) Pt(2) T1(2)}$	<u>82.34(0)</u>
		$\frac{C(33)-Pt(2)-11(2)}{C(24) Pt(2) T1(2)}$	98.0/(8)
		$\frac{U(34)-F(2)-F(2)}{U(21)}$	02 23(8)
		(21) - $\Gamma(2)$ - $\Gamma(2)$ N(2) D+(2) T1(2)	93.33(0)
		$\frac{N(3)-\Gamma(2)-11(2)}{C + C}$	04.41(0)
Distan	<u>[</u> ⁴]4 ⁻	$1 - 4 H_8 U_2$	(0)
	2 020(4)	Aligits	(°) 90.12(17)
$\frac{Pt(1)-U(1)\#1}{Dt(1)}$	2.039(4)	$\frac{U(1)\#1-Pt(1)-IN(1)\#1}{U(1)\#1}$	80.12(17)
$\frac{\Gamma(1)-\Gamma(1)\#1}{D(1)}$	2.082(4)	$\frac{C(13)\#1-F((1)-11(2))}{C(12)\#1, Dt(1), T1(2)}$	99.42(12)
$\frac{\Gamma(1) - C(12) \# 1}{D_{t}(1) - C(12) \# 1}$	2.021(3) 2.016(4)	$\frac{C(12)\#1-\Gamma((1)-\Gamma(2))}{C(1)\#1} \text{ Dr}(1) \text{ Tl}(2)$	05.00(12)
$\Gamma(1) - C(13) \# 1$ $D_{t}(1) - T1(2)$	2.010(4)	V(1)#1-F((1)-T)(2) V(1)#1-Dt(1)-T](2)	<u>93.90(11)</u> <u>90.65(10)</u>
$\Gamma((1)-\Gamma(2)$ D+(1)_T](1)#1	2.0736(3)	$\frac{1N(1)\#1-1}{C(12)\#1} \frac{Dt(1)-1}{Dt(1)}$	07.85(12)
$\frac{\Gamma(1) - \Gamma(1)\pi \Gamma}{T(2) N(2)}$	2.626(4)	$C(13)\#1^{-1}U(1)^{-1}U(1)\#1$	97.03(12)
$\frac{11(2)-1N(2)}{T1(1) N(4)}$	2.020(4)	$\frac{C(12)\#1-P((1)-11(1)\#1}{C(1)\#1}$	93.24(12)
$\frac{11(1)-1N(4)}{D(2) C(21)}$	2.390(4)	U(1)#1-P(1)-11(1)#1	$\frac{\delta 2.33(11)}{92.12(10)}$
P(2) - C(31)	2.014(4) 2.007(4)	$\frac{1N(1)\#1-FU(1)-11(1)\#1}{T1(2) Dt(1) T1(1)\#1}$	$\frac{\delta 2.13(10)}{160.722(8)}$
P(2) - C(30) $D_{t}(2) - C(10)$	2.007(4)	$\frac{11(2)-11(1)+1}{C(12)+1} = \frac{11(2)-11(1)+1}{C(12)+1}$	$\frac{102.723(0)}{98.74(17)}$
F(2) - O(17) Dt(2) N(3)	2.025(4)	$C(12)\#1-\Gamma((1)-C(12)\#1$	$\frac{00.74(17)}{03.80(18)}$
Pt(2)-T(3)	2.075(7)	C(12)#1-Pt(1)-C(1)#1	176 69(17)

 $\label{eq:table s2. Selected bond lengths (Å) and angles (°) of { [Pt(bzq)(C_6F_5)(CN)Tl] \cdot THF }_n (\mathbf{3} \cdot \mathbf{THF})_n \text{ and } [{Pt(dfppy)(C_6F_5)(CN)}Tl]_4 \cdot C_4H_8O_2 \ [\mathbf{4}]_4 \cdot C_4H_8O_2 \ [\mathbf{4}]_4$

C(13)#1-Pt(1)-N(1)#1	173.88(16)
C(12)#1-Pt(1)-N(1)#1	97.36(16)
C(30)-Pt(2)-C(31)	88.76(17)
C(30)-Pt(2)-C(19)	176.13(17)
C(31)-Pt(2)-C(19)	94.46(17)
C(30)-Pt(2)-N(3)	96.41(16)
C(31)-Pt(2)-N(3)	174.50(15)
C(19)-Pt(2)-N(3)	80.31(16)
C(30)-Pt(2)-Tl(2)	97.04(12)
C(31)-Pt(2)-Tl(2)	93.70(12)
C(19)-Pt(2)-Tl(2)	84.93(11)
N(3)-Pt(2)-Tl(2)	87.57(10)
N(2)-Tl(2)-Pt(2)	91.43(9)
N(2)-Tl(2)-Pt(1)	97.96(9)
Pt(2)-Tl(2)-Pt(1)	160.299(8)
N(4)-Tl(1)-Pt(1)#1	89.06(9)

Figure S7. Packing of the crystal structure of $(3 \cdot THF)_n$.

Figure S8. Two different views of the packing of the crystal structure of $[4]_4 \cdot C_4 H_8 O_2$.

3. Photophysical Properties and Theoretical Calculations

Compound	Media	$\lambda_{abs}/nm ~(\epsilon \ x \ 10^{-3} \ M^{-1} \ cm^{-1})$
1	THF	221(35.7), 254(34.9), 309(10.0), 341(7.0), 351(5.4), 378(3.4), 430(1.5), with tail to 450
	Solid	286, 309, 328, 347, 375, 393, 415, 427, 461 _{sh} , with tail to 500
2	THF	219(25.2), 256(29.6), 319(7.2), 353(4.6), 382(2.5), with tail to 415
L	Solid	284, 312, 322, 350, 372, 390, 426 sh, 456, 464, 471, with tail to 475
3	THF	222(34.0), 235(31.0), 248(32.0), 303(11.5), 340(6.2), 371(2.7), 420(1.4), with tail to 440
_	Solid	296, 310, 370, 422, 437, 492, 519, with tail to 575
3-MeOH	Solid	295, 311, 334, 358, 375, 399, 420, 431, 465, 499, with tail to 575
3-CH ₂ Cl ₂	Solid	287, 308, 338, 364, 391, 416, 468, 492, 527, 555, with tail to 620
3-THF	Solid	306, 325, 350, 360, 370, 375, 397, 411, 445, 475, 495, 514, 528, 580, with tail to 675
3-Et ₂ O	Solid	294, 310, 330, 342, 357, 394, 421, 447, 474, 505, with tail to 575
3-ground	Solid	290, 310, 328, 346, 379, 398, 415, 467, 496, 516, 560, with tail to 640
4	THF	222(24.1), 255(27.0), 318(7.2), 346(4.3), 374(2.3), with tail to 400
4	Solid	288, 308, 334, 365, 387, 410, 425, 458, with tail to 525
4-MeOH	Solid	295, 328, 344, 362, 387, 417, 428, 460, 492, 520, with tail to 573
4-ground	Solid	280, 290, 308, 320, 359, 376, 388, 465, with tail to 550

Table S3. Absorption data for complexes 1–4 in THF (5 \times 10⁻⁵ M) and solid state at 298 K

Figure S9. UV-Vis absorption spectra of complexes 1-4 in THF 5 \times 10⁻⁵ M at 298 K.

Figure S10. Absorption spectra in solid state of the complexes a) 1–4, b) 3, c) 4.

Table S4. Selected vertical excitation energies singlets (S _n) and first triplets computed by					
TDDFT (THF) with the orbitals involved for 1^- and 2^-					
$[Pt(bzq)(C_6F_5)(CN)]^{-}(1^{-})$					
State	λ/nm	f	Transition (% Contribution)		
T_1	467.46	0.0	H-3→LUMO (27%), HOMO→LUMO (22%),		
			HOMO→L+1 (30%)		
T ₂	443.02	0.0	HOMO→LUMO (71%), HOMO→L+1 (16%)		
T ₃	389.69	0.0	H-3→LUMO (52%), HOMO→L+1 (36%)		
<u> </u>	399.33	0.0436	$HOMO \rightarrow LUMO (95\%)$		
S ₂	374.54	0.0028	H-2→LUMO (21%), H-1→LUMO (78%)		
S ₃	352.70	0.0	H-2→LUMO (77%), H-1→LUMO (20%)		
S ₄	337.60	0.0347	H-3→LUMO (26%), HOMO→L+1 (67%)		
S ₅	317.57	0.2178	H-3→LUMO (61%), HOMO→L+1 (27%)		
<u>S</u> ₆	316.62	0.0056	$H-2 \rightarrow L+1 (17\%), H-1 \rightarrow L+1 (81\%)$		
S ₇	305.42	0.0169	H-5→LUMO (79%), H-4→LUMO (13%)		
S	304.19	0.0	H-2→L+1 (80%), $H-1→L+1$ (17%)		
<u>S9</u>	301.01	0.0321	$H-6 \rightarrow LUMO (40\%), H-3 \rightarrow L+1 (43\%)$		
<u>S₁₀</u>	298.24	0.0002	$H-5 \rightarrow LUMO (13\%), H-4 \rightarrow LUMO (85\%)$		
S ₁₁	282.97	0.0001	H-7→LUMO (95%)		
	1 1/10/14	1 1 1 1 2 2	+ 1 1 2 $+$ 1 1 $+$ 8 4 2 3 2 4 1 0 2 3 1 1 2 $+$ 1 2 1 2 1 2 1 2 1 2 $+$ 1 2 2 $+$ 1 2 2 $+$ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
S ₁₂	210.13	0.1262	$H-0 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%)$		
S ₁₂	210.13	0.1262	$H-5 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%)$ Pt(dfppy)(C ₆ F ₅)(CN)] ⁻ (2 ⁻)		
S ₁₂	λ/nm	0.1262 [F	$\frac{[H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%)}{Pt(dfppy)(C_6F_5)(CN)]^{-}(2^{-})}$ Transition (% Contribution)		
S ₁₂ State	λ/nm	0.1262 [F	$\frac{[H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%)}{Pt(dfppy)(C_6F_5)(CN)]^{-} (2^{-})}$ Transition (% Contribution)		
$\frac{S_{12}}{State}$	λ/nm 434.70	0.1262	$\begin{array}{ c c c c c c c c c c c c c c c c c c $		
$\frac{S_{12}}{State}$ $\frac{T_1}{T_2}$	λ/nm 434.70 373.98	0.1262 [F 0.0 0.0 0.0	$\begin{array}{c c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN)]^{-}(2^{-}) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H 3 \rightarrow LUMO (50\%) HOMO \rightarrow LUMO (20\%) \\ \hline \end{array}$		
$ \frac{S_{12}}{State} $ $ \frac{T_1}{T_2} $ $ T_3 $	λ/nm 434.70 373.98 366.19	0.1262 [F <i>f</i> 0.0 0.0 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ \hline \\ T_2 \\ \hline \\ T_3 \\ \hline \\ S_1 \\ \end{array}$	λ/nm 434.70 373.98 366.19 - 364.95	$ \begin{array}{c} 0.1262 \\ \hline f \\ \hline 0.0 \\ \hline 3.8 \\ \hline \end{array} $	$\begin{array}{c} H-6 \rightarrow LUMO\ (41\%), H-3 \rightarrow L+1\ (12\%), H-3 \rightarrow L+1\ (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN)]^{-}(2^{-}) \\ \hline Transition\ (\%\ Contribution) \\ \hline H-3 \rightarrow LUMO\ (20\%), HOMO \rightarrow LUMO\ (64\%) \\ \hline H-2 \rightarrow LUMO\ (41\%), H-1 \rightarrow LUMO\ (56\%) \\ \hline H-3 \rightarrow LUMO\ (50\%), HOMO \rightarrow LUMO\ (30\%) \\ \hline$		
$ \begin{array}{c} S_{12} \\ \hline State \\ \hline T_1 \\ T_2 \\ \hline T_3 \\ \hline S_1 \\ \hline S_2 \end{array} $	λ/nm 434.70 373.98 366.19 	$ \begin{array}{c} 0.1262 \\ \hline f \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline $	$\begin{array}{c} H-6 \rightarrow LUMO\ (41\%), H-5 \rightarrow L+1\ (12\%), H-3 \rightarrow L+1\ (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN) \hline (2 \) \\ \hline Transition\ (\%\ Contribution) \\ \hline H-3 \rightarrow LUMO\ (20\%), HOMO \rightarrow LUMO\ (64\%) \\ \hline H-2 \rightarrow LUMO\ (41\%), H-1 \rightarrow LUMO\ (56\%) \\ \hline H-3 \rightarrow LUMO\ (50\%), HOMO \rightarrow LUMO\ (30\%) \\ \hline \hline HOMO \rightarrow LUMO\ (97\%) \\ \hline H-2 \rightarrow LUMO\ (40\%), H-1 \rightarrow LUMO\ (60\%) \end{array}$		
S_{12} State T_1 T_2 T_3 S_1 S_2 S_3	λ/nm 434.70 373.98 366.19 364.95 358.52 339.47	0.1262 f 0.0 0.0 0.0 0.0 0.0 0.0338 0.0061 0.0001	$\begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN) \hline (2 \hline) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline \hline HOMO \rightarrow LUMO (97\%) \\ \hline H-2 \rightarrow LUMO (40\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (39\%) \\ \hline \end{array}$		
S_{12} State T_1 T_2 T_3 S_1 S_2 S_3 S_4	$\frac{\lambda/\text{nm}}{434.70}$ $\frac{434.70}{373.98}$ 366.19 $-\overline{364.95}$ 358.52 339.47 309.60	$ \begin{array}{c} 0.1262 \\ \hline f \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0338 \\ \hline 0.0061 \\ \hline 0.0001 \\ \hline 0.1026 \\ \hline \end{array} $	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN) \hline (2 \hline) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline$		
S_{12} State T_1 T_2 T_3 S_1 S_2 S_3 S_4 S_5	λ/nm 434.70 373.98 366.19 	0.1262 f 0.0 0.0 0.0 0.0 0.0338 0.0061 0.0001 0.1026 0.0491	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN) \hline (2 \) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline H-2 \rightarrow LUMO (50\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-5 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (35\%), H-3 \rightarrow LUMO (15\%), HOMO \rightarrow L+1 \\ \end{array}$		
S_{12} State T_1 T_2 T_3 S_1 S_2 S_3 S_4 S_5	λ/nm 434.70 373.98 366.19 358.52 339.47 309.60 302.02	0.1262 f 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.001 0.1026 0.0491	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN) \hline (2 \hline) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline HOMO \rightarrow LUMO (97\%) \\ \hline H-2 \rightarrow LUMO (40\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-5 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (35\%), H-3 \rightarrow LUMO (15\%), HOMO \rightarrow L+1 \\ (46\%) \\ \end{array} $		
S_{12} S_{12} S_{12} S_{12} T_{1} T_{2} T_{3} S_{1} S_{2} S_{3} S_{4} S_{5} S_{6}	$\begin{array}{r} \lambda/nm \\ \hline \lambda/nm \\ \hline 434.70 \\ \hline 373.98 \\ \hline 366.19 \\ \hline 364.95 \\ \hline 358.52 \\ \hline 339.47 \\ \hline 309.60 \\ \hline 302.02 \\ \hline 292.62 \end{array}$	$[F] 0.1262 \\ [F] f \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0061 \\ 0.0001 \\ 0.1026 \\ 0.0491 \\ 0.0009 \\ 0.0000 \\ 0$	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN)]^{-}(2^{-}) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline H-2 \rightarrow LUMO (50\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (39\%) \\ \hline H-5 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (35\%), H-3 \rightarrow LUMO (15\%), HOMO \rightarrow L+1 \\ (46\%) \\ \hline H-4 \rightarrow LUMO (94\%) \\ \end{array} $		
$ \begin{array}{r} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ T_2 \\ \hline \\ T_3 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ S_4 \\ \hline \\ S_5 \\ \hline \\ \\ S_6 \\ \hline \\ S_7 \\ \end{array} $	λ/nm 434.70 373.98 366.19 - 358.52 339.47 309.60 302.02 292.62 290.02	$[10.1262] \\ [1] \\ f \\ \hline f \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline 0.0338 \\ 0.0061 \\ \hline 0.0001 \\ 0.1026 \\ 0.0491 \\ \hline 0.0009 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{r} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ \hline \\ T_2 \\ \hline \\ T_3 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ S_4 \\ \hline \\ S_5 \\ \hline \\ S_6 \\ \hline \\ S_7 \\ \hline \\ S_8 \\ \hline \end{array} $	λ/nm 434.70 373.98 366.19 358.52 339.47 309.60 302.02 292.62 290.02 288.87	0.1262 f 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.0061 0.0001 0.1026 0.0491 0.0009 0.0 0.2186	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{r} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ \hline \\ T_2 \\ \hline \\ T_3 \\ \hline \\ S_2 \\ \hline \\ S_1 \\ \hline \\ S_2 \\ \hline \\ S_3 \\ \hline \\ S_4 \\ \hline \\ S_5 \\ \hline \\ S_6 \\ \hline \\ S_7 \\ \hline \\ S_8 \\ \hline \\ S_9 \\ \hline \end{array} $	λ/nm 434.70 373.98 366.19 - 364.95 358.52 339.47 309.60 302.02 292.62 290.02 288.87 277.28	$[F] 0.1262 \\ [F] f \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0061 \\ 0.0001 \\ 0.1026 \\ 0.0001 \\ 0.0009 \\ 0.0 \\ 0.2186 \\ 0.0001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00000 \\ 0.00000 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.000000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0$	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN)]^{-}(2^{-}) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline H-2 \rightarrow LUMO (50\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (15\%), HOMO \rightarrow L+1 \\ (46\%) \\ \hline H-4 \rightarrow LUMO (94\%) \\ \hline H-2 \rightarrow L+1 (41\%), H-1 \rightarrow L+1 (58\%) \\ \hline H-5 \rightarrow LUMO (30\%), HOMO \rightarrow L+1 (50\%) \\ \hline H-2 \rightarrow L+1 (57\%), H-1 \rightarrow L+1 (39\%) \\ \hline \end{array} $		
$\begin{array}{c} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ T_2 \\ T_3 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ S_4 \\ S_5 \\ \hline \\ S_6 \\ \hline \\ S_7 \\ \hline \\ S_8 \\ \hline \\ S_9 \\ \hline \\ S_{10} \\ \hline \end{array}$	λ/nm 434.70 373.98 366.19	$[F] 0.1262 \\ [F] f \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0061 \\ 0.0001 \\ 0.1026 \\ 0.0491 \\ 0.0009 \\ 0.0 \\ 0.2186 \\ 0.0001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.000001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.00001 \\ 0.000001 \\ 0.0000001 \\ 0.000001 \\ 0.0000000000$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ T_2 \\ T_3 \\ \hline \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ \hline \\ S_6 \\ S_7 \\ \hline \\ S_6 \\ S_7 \\ \hline \\ S_8 \\ S_9 \\ \hline \\ S_{10} \\ \hline \\ S_{11} \\ \hline \end{array}$	λ/nm 434.70 373.98 366.19 364.95 358.52 339.47 309.60 302.02 292.62 290.02 288.87 277.28 267.78 261.05	$[F] 0.1262 \\ [F] f \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0061 \\ 0.0001 \\ 0.0001 \\ 0.0009 \\ 0.0 \\ 0.0009 \\ 0.0 \\ 0.2186 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0989 \\ 0.0 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0.0989 \\ 0.0 \\ 0.0000 \\ 0$	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN) \hline (2 \hline) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ \hline H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline H-2 \rightarrow LUMO (50\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-5 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (35\%), H-3 \rightarrow LUMO (15\%), HOMO \rightarrow L+1 \\ (46\%) \\ \hline H-2 \rightarrow L+1 (41\%), H-1 \rightarrow L+1 (58\%) \\ \hline H-5 \rightarrow LUMO (30\%), HOMO \rightarrow L+1 (50\%) \\ \hline H-2 \rightarrow L+1 (57\%), H-1 \rightarrow L+1 (39\%) \\ \hline H-8 \rightarrow LUMO (12\%), H-6 \rightarrow LUMO (84\%) \\ \hline H-7 \rightarrow LUMO (10\%), H-5 \rightarrow L+1 (18\%), H-3 \rightarrow L+1 (42\%) \\ \end{array} $		
$\begin{array}{c} S_{12} \\ \hline \\ State \\ \hline \\ T_1 \\ T_2 \\ T_3 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ S_2 \\ S_3 \\ \hline \\ S_4 \\ S_5 \\ \hline \\ S_6 \\ \hline \\ S_7 \\ \hline \\ S_8 \\ \hline \\ S_9 \\ \hline \\ S_{10} \\ \hline \\ S_{11} \\ \hline \\ S_{12} \\ \hline \end{array}$	λ/nm 434.70 373.98 366.19 364.95 358.52 339.47 309.60 302.02 292.62 290.02 288.87 277.28 267.78 255.74	$\begin{array}{c c} 0.1262 \\ \hline & \\ \hline f \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0 \\ \hline 0.0338 \\ \hline 0.0061 \\ \hline 0.0001 \\ \hline 0.0001 \\ \hline 0.0009 \\ \hline 0.0 \\ \hline 0.2186 \\ \hline 0.0001 \\ \hline 0.0001 \\ \hline 0.0989 \\ \hline 0.0682 \\ \hline \end{array}$	$ \begin{array}{c} H-6 \rightarrow LUMO (41\%), H-3 \rightarrow L+1 (12\%), H-3 \rightarrow L+1 (34\%) \\ \hline Pt(dfppy)(C_6F_5)(CN)]^{-}(2^{-}) \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (20\%), HOMO \rightarrow LUMO (64\%) \\ H-2 \rightarrow LUMO (41\%), H-1 \rightarrow LUMO (56\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (30\%) \\ \hline H-2 \rightarrow LUMO (50\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (25\%), H-3 \rightarrow LUMO (66\%) \\ \hline H-5 \rightarrow LUMO (35\%), H-3 \rightarrow LUMO (15\%), HOMO \rightarrow L+1 \\ (46\%) \\ \hline H-2 \rightarrow L+1 (41\%), H-1 \rightarrow L+1 (58\%) \\ \hline H-2 \rightarrow L+1 (57\%), H-1 \rightarrow L+1 (39\%) \\ \hline H-8 \rightarrow LUMO (12\%), H-6 \rightarrow LUMO (84\%) \\ \hline H-7 \rightarrow LUMO (10\%), H-2 \rightarrow L+3 (45\%), H-1 \rightarrow L+3 (24\%) \\ \hline \end{array} $		

state in THF for 1 and 2					
$[Pt(bzq)(C_6F_5)(CN)]^{-}(1^{-})$					
MO	eV	Pt	bzq	CN	C ₆ F ₅
LUMO+5	0.63	3	1	0	96
LUMO+4	0.62	1	2	0	97
LUMO+3	0.51	40	10	3	46
LUMO+2	0.14	8	87	2	2
LUMO+1	-0.82	5	94	1	0
LUMO	-1.39	3	96	0	0
HOMO	-5.17	30	63	6	0
HOMO-1	-5.50	71	7	1	21
HOMO-2	-5.54	50	1	5	43
HOMO-3	-5.84	40	55	1	4
HOMO-4	-5.97	2	1	0	97
HOMO-5	-6.21	55	38	5	2
		[Pt(dfppy)	$(C_6F_5)(CN)$] (2)	
MO	eV	Pt	dfppy	CN	C ₆ F ₅
LUMO+5	0.58	5	1	1	94
LUMO+4	0.58	1	3	0	96
LUMO+3	0.44	38	13	3	46
LUMO+2	0.16	20	72	5	3
LUMO+1	-0.57	1	99	0	0
LUMO	-1.29	7	92	1	1
НОМО	-5.46	41	50	9	0
HOMO-1	-5.61	58	7	2	34
HOMO-2	-5.64	63	0	3	33
HOMO-3	-5.95	19	73	2	6
HOMO-4	-6.01	2	4	0	94
HOMO-5	-6.15	69	28	0	3

Figure S11. Selected frontier molecular orbitals for a) 1⁻ and b) 2⁻ in the ground state in THF.

$[Pt(bzq)(C_6F_5)($	(CN) = (1)
SOMO	SOMO-1

Figure S12. Plots and composition (%) of frontier MOs of the first triplet state and spin distribution for the lowest triplet excited state in the mononuclear 1^- and 2^- in THF.

$[Pt(bzq)(C_6F_5)(CN)Tl(THF)_3]$ 3·(THF) ₃					
State	λ/nm	f	Transition (% Contribution)		
		,	H-3→LUMO (26%), HOMO→LUMO (19%),		
T_1	464.984011	0.0	HOMO→L+1 (36%)		
T ₂	437.42357	0.0	HOMO→LUMO (74%), HOMO→L+1 (15%)		
T ₃	384.563699	0.0	H-3→LUMO (43%), HOMO→L+1 (34%)		
$\overline{S_1}$	389.321537	0.0501	HOMO→LUMO (95%)		
S ₂	362.66223	0.0206	H-1→LUMO (97%)		
S ₃	344.063651	0.0122	H-2→LUMO (95%)		
S_4	329.883292	0.0316	H-3→LUMO (36%), HOMO→L+1 (58%)		
S ₅	311.484616	0.1623	H-3 \rightarrow LUMO (47%), H-1 \rightarrow L+1 (13%),		
S.	306 821096	0.0462	$H_1 \rightarrow I + 1 (85\%)$		
56	500.821070	0.0402	$H_{-5} \rightarrow I I I MO (13\%) H_{-3} \rightarrow I + 1 (12\%) H_{-2} \rightarrow I + 1$		
S_7	299.766288	0.0137	(64%)		
S ₈	298.776626	0.0057	H-4→LUMO (94%)		
S ₉	294.94561	0.0207	H-5 \rightarrow LUMO (21%), H-3 \rightarrow L+1 (33%), H-2 \rightarrow L+1 (30%)		
Sta	291 910947	0.0517	$H_{-6} \rightarrow I I I MO (79\%) H_{-5} \rightarrow I I I MO (10\%)$		
S10	278 821006	0.0253	H_{-}^{-} HIMO (30%) HOMO \rightarrow L+2 (47%)		
511	270.021000	0.0233	$H_{10} \rightarrow LUMO (23\%) H_{9} \rightarrow LUMO (26\%) H_{-}$		
S ₁₂	277.417293	0.0047	$8 \rightarrow LUMO (33\%)$		
$[Pt(dfnnv)(C_{F_{2}})(CN)T](THF)_{2}] 4(THF)_{3}$					
	[]	Pt(dfppy)	(C ₆ F ₅)(CN)Tl(THF) ₃] 4·(THF) ₃		
State	[] λ/nm	Pt(dfppy) f	(C ₆ F ₅)(CN)Tl(THF) ₃] 4(THF) ₃ Transition (% Contribution)		
State T ₁	[] λ/nm 432.479896	Pt(dfppy) <i>f</i> 0.0	(C ₆ F ₅)(CN)TI(THF) ₃] 4(THF) ₃ Transition (% Contribution) H-3→LUMO (14%), HOMO→LUMO (68%)		
State T ₁ T ₂	[] \lambda/nm 432.479896 364.667598	Pt(dfppy) f 0.0 0.0	(C ₆ F ₅)(CN)Tl(THF) ₃] 4(THF) ₃ Transition (% Contribution) H-3→LUMO (14%), HOMO→LUMO (68%) H-2→LUMO (39%), H-1→LUMO (54%)		
State T1 T2 T3	[] λ/nm 432.479896 364.667598 358.25051	f 0.0 0.0 0.0	(C ₆ F ₅)(CN)Tl(THF) ₃] 4(THF) ₃ Transition (% Contribution) H-3→LUMO (14%), HOMO→LUMO (68%) H-2→LUMO (39%), H-1→LUMO (54%) H-3→LUMO (50%), HOMO→LUMO (24%)		
$ State T_1 T_2 - T_3 - S_1 - S_1 $	[]	f 0.0 0.0 0.0 0.0 0.0 0.0	$ \begin{array}{c} (C_6F_5)(CN)Tl(THF)_3 \end{bmatrix} 4(THF)_3 \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \end{array} $		
$ State T_1 T_2 T_3 S_1 S_2 $	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174	f 0.0 0.0 0.0 0.0 0.0 0.0 0.0386	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (\% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline \end{array} $		
$ State T_1 T_2 T_3 S_1 S_2 S_3 S $	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023	f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \end{array} $		
	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823	f 0.0 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01 0.1163	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-3 \rightarrow LUMO (86\%) \\ \hline \end{array} $		
$State$ T_1 T_2 $-T_3$ $-S_1$ S_2 S_3 S_4 S_5	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687	f 0.0 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01 0.1163 0.0308	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-3 \rightarrow LUMO (86\%) \\ \hline H-5 \rightarrow LUMO (52\%), H-4 \rightarrow LUMO (25\%), \\ \hline HOMO \rightarrow L+1 (18\%) \\ \end{array} $		
State T_1 T_2 $-\frac{T_3}{S_1}$ S_2 S_3 S_4 S_5 S_6	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687 292.434221	f 0.0 0.0 0.0 0.0 0.0 0.01 0.1163 0.0308 0.0095	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-3 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-5 \rightarrow LUMO (52\%), H-4 \rightarrow LUMO (25\%), \\ \hline HOMO \rightarrow L+1 (18\%) \\ H-5 \rightarrow LUMO (17\%), H-4 \rightarrow LUMO (74\%) \\ \end{array} $		
$ State T_1 T_2 T_3 S_1 S_2 S_3 S_4 S_5 S_6 S_7 $	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687 292.434221 279.973211	f 0.0 0.0 0.0 0.0 0.0 0.01 0.1163 0.0308 0.0095 0.1422	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-3 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-5 \rightarrow LUMO (52\%), H-4 \rightarrow LUMO (25\%), \\ \hline HOMO \rightarrow L+1 (18\%) \\ \hline H-5 \rightarrow LUMO (17\%), H-4 \rightarrow LUMO (74\%) \\ \hline H-5 \rightarrow LUMO (14\%), H-1 \rightarrow L+1 (18\%), \\ \hline HOMO \rightarrow L+1 (48\%) \\ \end{array} $		
	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687 292.434221 279.973211 278.758317	f 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01 0.1163 0.0308 0.0095 0.1422 0.0549	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-3 \rightarrow LUMO (86\%) \\ \hline H-5 \rightarrow LUMO (52\%), H-4 \rightarrow LUMO (25\%), \\ \hline HOMO \rightarrow L+1 (18\%) \\ \hline H-5 \rightarrow LUMO (17\%), H-4 \rightarrow LUMO (74\%) \\ \hline H-5 \rightarrow LUMO (14\%), H-1 \rightarrow L+1 (18\%), \\ \hline HOMO \rightarrow L+1 (48\%) \\ \hline H-2 \rightarrow L+1 (35\%), H-1 \rightarrow L+1 (39\%), HOMO \rightarrow L+1 \\ (15\%) \end{array} $		
State T_1 T_2 $- \frac{T_3}{S_1} - \frac{S_1}{S_2}$ S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687 292.434221 279.973211 278.758317 271.452767	f 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01 0.1163 0.0308 0.0095 0.1422 0.0549 0.0008	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-3 \rightarrow LUMO (86\%) \\ \hline H-5 \rightarrow LUMO (52\%), H-4 \rightarrow LUMO (25\%), \\ \hline HOMO \rightarrow L+1 (18\%) \\ \hline H-5 \rightarrow LUMO (17\%), H-4 \rightarrow LUMO (74\%) \\ \hline H-5 \rightarrow LUMO (14\%), H-1 \rightarrow L+1 (18\%), \\ \hline HOMO \rightarrow L+1 (48\%) \\ \hline H-2 \rightarrow L+1 (35\%), H-1 \rightarrow L+1 (39\%), HOMO \rightarrow L+1 \\ (15\%) \\ \hline H-7 \rightarrow LUMO (77\%), H-6 \rightarrow LUMO (11\%) \\ \end{array} $		
State T_1 T_2 $-\overline{S_1}$ S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_{10}	λ/nm 432.479896 364.667598 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687 292.434221 279.973211 278.758317 271.452767 269.933894	f 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01 0.1163 0.0308 0.0095 0.1422 0.0549 0.0008 0.0138	$ \begin{array}{c} (C_{6}F_{5})(CN)Tl(THF)_{3}] 4(THF)_{3} \\ \hline Transition (% Contribution) \\ \hline H-3 \rightarrow LUMO (14\%), HOMO \rightarrow LUMO (68\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (54\%) \\ \hline H-3 \rightarrow LUMO (50\%), HOMO \rightarrow LUMO (24\%) \\ \hline HOMO \rightarrow LUMO (96\%) \\ \hline H-2 \rightarrow LUMO (39\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-2 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (60\%) \\ \hline H-3 \rightarrow LUMO (59\%), H-1 \rightarrow LUMO (38\%) \\ \hline H-5 \rightarrow LUMO (52\%), H-4 \rightarrow LUMO (25\%), \\ \hline HOMO \rightarrow L+1 (18\%) \\ \hline H-5 \rightarrow LUMO (17\%), H-4 \rightarrow LUMO (74\%) \\ \hline H-5 \rightarrow LUMO (14\%), H-1 \rightarrow L+1 (18\%), \\ \hline HOMO \rightarrow L+1 (48\%) \\ \hline H-2 \rightarrow L+1 (35\%), H-1 \rightarrow L+1 (35\%) \\ \hline H-2 \rightarrow L+1 (49\%), H-1 \rightarrow L+1 (35\%) \\ \end{array} $		
State T_1 T_2 $- \frac{T_3}{S_1} - T$	λ/nm 432.479896 364.667598 358.25051 358.25051 354.704287 343.463174 333.36023 307.208823 292.931687 292.434221 279.973211 278.758317 271.452767 266.504743	f 0.0 0.0 0.0 0.0 0.0428 0.0386 0.01 0.1163 0.0308 0.0095 0.1422 0.0549 0.0008 0.0138 0.0056	$(C_{6}F_{5})(CN)TI(THF)_{3}] 4(THF)_{3}$ Transition (% Contribution) H-3→LUMO (14%), HOMO→LUMO (68%) H-2→LUMO (39%), H-1→LUMO (54%) H-3→LUMO (50%), HOMO→LUMO (24%) HOMO→LUMO (96%) H-2→LUMO (39%), H-1→LUMO (60%) H-2→LUMO (59%), H-1→LUMO (38%) H-3→LUMO (86%) H-5→LUMO (52%), H-4→LUMO (25%), HOMO→L+1 (18%) H-5→LUMO (17%), H-4→LUMO (74%) H-5→LUMO (17%), H-4→LUMO (74%) H-5→LUMO (14%), H-1→L+1 (18%), HOMO→L+1 (48%) H-2→L+1 (35%), H-1→L+1 (39%), HOMO→L+1 (15%) H-7→LUMO (77%), H-6→LUMO (11%) H-2→L+1 (49%), H-1→L+1 (35%) H-9→LUMO (27%), H-7→LUMO (10%), H-		

Table S6. Selected vertical excitation energies singlets (S_n) and first triplets computed by TD-DFT with the orbitals involved for $3 \cdot (THF)_3$ and $4 \cdot (THF)_3$.

[Pt(bzq)(C ₆ F ₅)(CN)Tl(THF) ₃] 3(THF) ₃							
МО	eV	Pt	Tl	bzq	CN [–]	C_6F_5	THF
LUMO+5	0.14	4	11	6	0	78	2
LUMO+4	-0.13	13	28	40	1	15	4
LUMO+3	-0.28	22	42	15	1	14	5
LUMO+2	-0.54	9	42	41	3	2	3
LUMO+1	-1.27	5	5	87	2	0	0
LUMO	-1.83	4	2	93	0	1	0
НОМО	-5.68	21	1	73	4	0	1
HOMO-1	-5.98	65	17	4	1	6	7
HOMO-2	-6.05	26	1	6	6	62	0
HOMO-3	-6.36	16	0	77	1	6	0
HOMO-4	-6.43	1	0	3	0	95	0
HOMO-5	-6.81	32	0	53	12	0	2
[Pt(dfppy)(C ₄ F ₅)(CN)Tl(THF) ₂] 4(THF) ₂							
		[Pt(df	ppy)(C ₆ F ₅)(CN)Tl(THF)3] 4·(THF)	3	
МО	eV	[Pt(df Pt	ppy)(C ₆ F ₅ Tl)(CN)Tl(dfppy	THF)3] 4·(THF) CN ⁻	C ₆ F ₅	THF
MO LUMO+5	eV 0.08	Pt(dfPt2	ppy)(C₆F₅ Tl 1)(CN)Tl(dfppy 4	THF) ₃] 4·(THF) CN 0	³ C ₆ F ₅ 92	THF 0
MO LUMO+5 LUMO+4	eV 0.08 -0.01	[Pt(df Pt 2 6	ppy)(C₆F₅ Tl 1 14)(CN)Tl(dfppy 4 26	THF)3] 4 (THF) CN 0 1	C ₆ F ₅ 92 52	THF 0 1
MO LUMO+5 LUMO+4 LUMO+3	eV 0.08 -0.01 -0.36	[Pt(df Pt 2 6 25	TI 1 14 32)(CN)Tl(dfppy 4 26 13	THF)3] 4 (THF) CN 0 1 2	C ₆ F ₅ 92 52 24	THF 0 1 4
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2	eV 0.08 -0.01 -0.36 -0.65	[Pt(df Pt 2 6 25 11	ppy)(C₆F₅ Tl 1 14 32 47)(CN)Tl(dfppy 4 26 13 35	THF)3] 4·(THF) CN 0 1 2 4	C ₆ F ₅ 92 52 24 2	THF 0 1 4 1
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1	eV 0.08 -0.01 -0.36 -0.65 -1.01	[Pt(df Pt 2 6 25 11 1	ppy)(C₆F₅ Tl 1 14 32 47 3)(CN)Tl(dfppy 4 26 13 35 96	THF)3] 4 (THF) CN 0 1 2 4 0	$ \begin{array}{r} & C_6 F_5 \\ \hline 92 \\ \hline 52 \\ \hline 24 \\ \hline 2 \\ 0 \\ \end{array} $	THF 0 1 4 1 0
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO	eV 0.08 -0.01 -0.36 -0.65 -1.01 -1.79	[Pt(df Pt 2 6 25 11 1 8	I I 1 14 32 47 3 5)(CN)Tl(dfppy 4 26 13 35 96 85	THF)3] 4 (THF) CN 0 1 2 4 0 1	C ₆ F ₅ 92 52 24 2 0 1	THF 0 1 4 1 0 0 0
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO	eV 0.08 -0.01 -0.36 -0.65 -1.01 -1.79 -6.04	[Pt(df Pt 2 6 25 11 1 8 30	ppy)(C₆F₅ Tl 1 14 32 47 3 5 1)(CN)Tl(dfppy 4 26 13 35 96 85 63	THF)3] 4·(THF) CN 0 1 2 4 0 1 6	C ₆ F ₅ 92 52 24 2 0 1 0	THF 0 1 4 1 0 0 0
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1	eV 0.08 -0.01 -0.36 -0.65 -1.01 -1.79 -6.04 -6.17	[Pt(df Pt 2 6 25 11 1 8 30 46	I I 1 14 32 47 3 5 1 8)(CN)Tl(dfppy 4 26 13 35 96 85 63 7	THF)3 4-(THF) CN 0 1 2 4 0 1 6 1 1	C ₆ F ₅ 92 52 24 2 0 1 0 35	THF 0 1 4 1 0 0 0 2
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO HOMO-1 HOMO-2	eV 0.08 -0.01 -0.36 -0.65 -1.01 -1.79 -6.04 -6.17 -6.18	Pt(df 2 6 25 11 1 8 30 46 47	ppy)(C ₆ F ₅ Tl 1 14 32 47 3 5 1 8 10)(CN)Tl(dfppy 4 26 13 35 96 85 63 7 1	THF)3] 4 (THF) CN 0 1 2 4 0 1 6 1 4	$ \begin{array}{r} C_6F_5 \\ 92 \\ 52 \\ 24 \\ 2 \\ $	THF 0 1 4 1 0 0 0 2 2
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO-1 HOMO-1 HOMO-2 HOMO-3	eV 0.08 -0.01 -0.36 -0.65 -1.01 -1.79 -6.04 -6.17 -6.18 -6.43	[Pt(df Pt 2 6 25 11 1 8 30 46 47 11	ppy)(C ₆ F ₅ Tl 1 14 32 47 3 5 1 8 10 0)(CN)Tl(dfppy 4 26 13 35 96 85 63 7 1 83	THF)3 4-(THF) CN 0 1 2 4 0 1 6 1 4 3 3	$ \begin{array}{r} & \mathbf{C_6F_5} \\ 92 \\ 52 \\ 24 \\ 2 \\ 0 \\ 1 \\ 0 \\ 35 \\ 36 \\ 2 \\ \end{array} $	THF 0 1 4 1 0 0 0 2 2 1
MO LUMO+5 LUMO+4 LUMO+3 LUMO+2 LUMO+1 LUMO HOMO-1 HOMO-1 HOMO-2 HOMO-3 HOMO-4	eV 0.08 -0.01 -0.36 -0.65 -1.01 -1.79 -6.04 -6.17 -6.18 -6.43 -6.43 -6.52	[Pt(df Pt 2 6 25 11 1 8 30 46 46 47 11 1	ppy)(C ₆ F ₅ Tl 1 14 32 47 3 5 1 8 10 0 0)(CN)Tl(dfppy 4 26 13 35 96 85 63 7 1 83 1	THF)3 4-(THF) CN 0 0 1 2 4 0 1 6 1 4 3 0 0	C ₆ F ₅ 92 52 24 2 0 1 0 35 36 2 97	THF 0 1 4 1 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0

Table S7. Composition (%) of Frontier MOs in terms of ligands and metals in the ground state for 3·(THF)₃ and 4·(THF)₃.

Figure S13. Selected frontier molecular orbitals for the models a) $3\cdot(THF)_3$ and b) $4\cdot(THF)_3$ in the ground state.

			$[Pt(bzq)(C_6F_5)(CN)]^{-}(1^{-})$
State	λ/nm	f	Transition (% Contribution)
T ₁	506.66	-	HOMO→LUMO (87%)
T ₂	474.62	-	H-3→LUMO (24%), HOMO→L+1 (37%)
T ₃	463.63	-	H-1→LUMO (95%)
S ₁	456.60	0.0144	HOMO→LUMO (96%)
S ₂	452.78	0.0009	H-1→LUMO (98%)
S ₃	418.34	0.0	H-2→LUMO (97%)
S ₄	375.33	0.0163	H-3→LUMO (20%), HOMO→L+1 (73%)
S ₅	367.07	0.0019	H-1→L+1 (98%)
S ₆	348.64	0.1402	H-3→LUMO (58%), HOMO→L+1 (23%)
S ₇	347.49	0.0	H-2→L+1 (97%)
S ₈	336.85	0.0034	H-4→LUMO (85%), H-3→LUMO (13%)
S ₉	326.40	0.0225	H-5→LUMO (60%), H-3→L+1 (28%)
S ₁₀	323.58	0.0	H-6→LUMO (92%)
S ₁₁	314.45	0.0186	H-7→LUMO (19%), H-5→LUMO (24%), H-3→L+1 (43%)
S ₁₂	301.05	0.0524	$H-7 \rightarrow LUMO (62\%), H-5 \rightarrow L+1 (11\%), H-3 \rightarrow L+1 (13\%)$
			[Pt(dfppy)(C ₆ F ₅)(CN)] ⁻ (2 ⁻)
State	λ/nm	f	Transition (% Contribution)
T ₁	458.17	-	HOMO→LUMO (77%)
T ₂	431.88	-	H-1→LUMO (94%)
	399.85		H-4→LUMO (59%), HOMO→LUMO (18%)
S ₁	415.27	0.0022	H-1→LUMO (97%)
S ₂	409.74	0.0138	HOMO→LUMO (96%)
S ₃	386.68	0.0	H-2→LUMO (95%)
S_4	337.51	0.0253	H-4→LUMO (56%), HOMO→L+1 (38%)
S ₅	333.77	0.0	$H-1 \rightarrow L+1 (95\%)$
<u>S</u> ₆	329.89	0.0645	$H-4\rightarrow LUMO (35\%), HOMO\rightarrow L+1 (59\%)$
S ₇	320.14	0.0002	H-3→LUMO (99%)
<u> </u>	316.04	0.0	$H-2 \rightarrow L+1 (93\%)$
<u>S9</u>	302.06	0.068	$H-5 \rightarrow LUMO (62\%), H-4 \rightarrow L+1 (31\%)$
S ₁₀	300.63	0.0	$H-6 \rightarrow LUMO (88\%)$
S ₁₁	279.61	0.14/6	$H-3 \rightarrow LUMO (21\%), H-4 \rightarrow L+1 (53\%)$
S ₁₂	2/9.60	0.0047	$H- / \rightarrow LUMU (86\%)$
	3 (optimize	ed model P	$t_4 T I_4$ based on the reported crystallographic structure)
State	λ/nm	f	Transition (% Contribution)
T ₁	537.24	-	HOMO→LUMO (90%)
T ₂	488.15	-	H-1→L+1 (75%)
	472.83		$H-13 \rightarrow L+2$ (12%), $H-3 \rightarrow L+2$ (40%), $H-3 \rightarrow L+7$ (15%)
S ₁	443.43	0.0791	H-1→LUMO (24%), HOMO→LUMO (66%)
S ₂	439.78	0.0008	H-1→LUMO (56%), HOMO→LUMO (32%)
S ₃	431.18	0.1502	H-1→LUMO (11%), H-1→L+1 (12%), HOMO→L+1 (69%)
S ₄	422.88	0.0835	H-3→LUMO (27%), H-2→LUMO (52%)
S ₅	418.81	0.0023	H-1→L+2 (16%), HOMO→L+2 (71%)
S ₆	414.94	0.0248	H-3→LUMO (32%), H-2→LUMO (19%), H-2→L+1 (15%)
S ₇	412.03	0.005	H-3 \rightarrow LUMO (14%), H-1 \rightarrow L+1 (59%), HOMO \rightarrow L+1 (13%)

Table S8. Selected vertical excitation energies singlets (S_n) and first triplets computed by TDDFT (Solid State) with the orbitals involved for 1^- , 2^- , 3 and 4.

S ₈	408.04		H-3→LUMO (13%), H-3→L+1 (31%), H-2→LUMO (19%),							
		0.0091	H-2→L+1 (16%)							
S ₉	403.63	0.0018	H-5→LUMO (10%), H-4→LUMO (79%)							
S ₁₀	401.99	0.0029	H-5→LUMO (62%), H-4→LUMO (15%)							
S ₁₁	398.69	0.0015	$\frac{1}{1} H-3 \rightarrow L+1 (36\%), H-2 \rightarrow L+1 (46\%)$							
S ₁₂	395.96	0.0168	H-3→L+1 (11%), H-3→L+2 (14%), H-2→L+2 (11%), H-							
			1→L+3 (21%), HOMO→L+3 (11%)							
	4 (optimized model Pt_4Tl_4)									
State	λ/nm	f	Transition (% Contribution)							
		-								
T ₁	439.30	-	H-1→L+2 (19%), HOMO→LUMO (11%), HOMO→L+3							
			(16%)							
T ₂	439.29	-	H-1→L+3 (11%), HOMO→L+2 (15%)							
	438.65		H-11 \rightarrow L+1 (32%), H-10 \rightarrow LUMO (33%)							
S ₁	383.64	0.0018	$H-2 \rightarrow \overline{LUMO(19\%)}, \overline{H-1} \rightarrow \overline{LUMO(59\%)}$							
S ₂	383.54	0.2258	HOMO→LUMO (89%)							
S ₃	378.34	0.0	H-2→LUMO (70%), H-1→LUMO (20%)							
S ₄	375.37	0.0643	H-3→LUMO (93%)							
S_5	366.52	0.0	H-4→LUMO (27%), H-1→LUMO (12%), HOMO→L+1							
			(42%)							
S ₆	365.08	0.1146	H-5→LUMO (20%), H-2→L+1 (22%), H-1→L+1 (37%)							
S ₇	364.05	0.0	H-4→LUMO (56%), HOMO→L+1 (37%)							
S ₈	361.82	0.0301	H-5→LUMO (61%), H-1→L+1 (33%)							
S 9	358.91	0.019	H-10→LUMO (15%), H-2→L+1 (59%)							
S ₁₀	357.86	0.0	H-11→LUMO (17%), H-3→L+1 (59%)							
S ₁₁	355.72	0.0	H-11→LUMO (34%), H-10→L+1 (18%), H-3→L+1 (31%)							
S ₁₂	354.94	0.0336	H-11→L+1 (16%), H-10→LUMO (38%), H-2→L+1 (15%),							
			H-1→L+1 (14%)							

Table S9. Composition (%) of Frontier MOs in terms of ligands and metals in the ground state in solid state for 1⁻, 2⁻, 3 and 4.

$[Pt(bzq)(C_6F_5)(CN)]^{-1}$								
МО	CN ⁻	C ₆ F ₅						
LUMO+5	3.31	3	1	0	95			
LUMO+4	3.30	3	18	0	79			
LUMO+3	3.16	42	10	3	46			
LUMO+2	2.47	4	94	1	1			
LUMO+1	1.46	3	96	1	0			
LUMO	0.84	3	97	0	0			
HOMO	-2.55	44	41	14	0			
HOMO-1	-2.70	93	3	0	5			
HOMO-2	-2.75	31	6	10	53			
HOMO-3	-3.25	68	19	0	12			
HOMO-4	-3.27	8	1	0	90			

HOMO-5	-3.65	20	61		18 1				
[Pt(dfppy)(C ₆ F ₅)(CN)] ⁻									
MO	eV	Pt	dfppy	CN		C ₆ F ₅			
LUMO+5	3.21	5	1		1	94			
LUMO+4	3.21	1	7	0		92			
LUMO+3	3.03	40	13		3	44			
LUMO+2	2.64	13	83		3	1			
LUMO+1	1.62	1	99		0	0			
LUMO	0.99	5	93		1	0			
НОМО	-2.82	51	32		17	0			
HOMO-1	-2.87	90	4		0	7			
HOMO-2	-2.91	33	4	9		54			
HOMO-3	-3.35	0	0	0		99			
HOMO-4	-3.42	75	21	1		3			
HOMO-5	-3.70	13	84	2		1			
3 (optimized model Pt_4Tl_4 based on the reported crystallographic structure)									
МО	eV	Pt	Tl	bzq	CN [–]	C ₆ F ₅	THF		
LUMO+5	-1.66	5	14	78	2	1	0		
LUMO+4	-1.78	4	13	80	2	0	0		
LUMO+3	-1.94	5	5	89	1	1	0		
LUMO+2	-2.01	5	3	90	1	1	0		
LUMO+1	-2.19	8	10	78	2	2	0		
LUMO	-2.33	9	12	75	2	2	0		
НОМО	-5.36	46	32	12	4	5	2		
HOMO-1	-5.49	47	30	12	3	7	0		
HOMO-2	-5.71	18	1	60	3	19	0		
HOMO-3	-5.73	19	1	74	3	3	0		
HOMO-4	-5.81	24	1	16	3	56	0		
HOMO-5	-5.83	23	2	6	3	66	0		
		4 (optimi	zed model F	Pt_4Tl_4					
MO	eV	Pt	Tl	dfppy	CN ⁻	C ₆ F ₅			
LUMO+5	-1.59	4	58	34	2	2			
LUMO+4	-1.61	7	61	28	2	3			
LUMO+3	-1.96	7	3	88	1	1			
LUMO+2	-1.97	7	7	82	2	1			
LUMO+1	-2.37	12	18	67	2	2			
LUMO	-2.51	15	25	53	5	2			
НОМО	-6.18	34	9	50	3	3			
HOMO-1	-6.21	32	10	53	2	3			
HOMO-2	-6.22	25	4	17	3	51			
HOMO-3	-6.24	24	3	9	2	61			
HOMO-4	-6.34	33	9	21	3	35			
HOMO-5	-6.35	32	11	32	2	23			

Figure S14. Selected frontier molecular orbitals for a) 1 and b) 2 and in the ground state in solid state.

Figure S15. Plots and composition (%) of frontier MOs of the first triplet state in solid state for 3 and 4.

Figure S16. Plots and composition (%) of frontier MOs of the first triplet state in solid-state and spin distribution for the lowest triplet excited state for 1^- and 2^- .

Figure S17. Normalized excitation and emission spectra of a) 1, b) 2 in the solid state at 298 and 77 K; c) 1, d) 2 in THF 5×10^{-5} M at 77 K; e) 1, 2 in PS at 5% wt at 298 K.

d)

Figure S18. Normalized excitation (dashed line) and emission (solid line) spectra of a) **3**, b) **4** in THF 5×10^{-5} M at 77 K.

Figure S19. Normalized emission spectra of the compounds 3, 4 in PS at 5% wt at 298K.

T(K)	3-	3-ground	3-MeOH	3-THF	3-Et ₂ O	3-CH ₂ Cl ₂	4-	4-	4-MeOH
	Pristine	_					Pristine	ground	
298	595(460)	606,	583(415)	639(405)	606(415)	558 _{sh} ,	546(460)	558,	590(460)
		$631_{sh}(460)$				632(415)		610,	
								642	
								(500)	
77	658(525)	662(525)	650(530)	709(600)	624,691	720(615)	563(450)	567,	662(520)
					(580)			670	
								(480)	

Table S10. Photoluminescence Properties of 3, 4 in Solid State, $\lambda_{em}(\lambda_{ex})/nm$

Figure S20. Normalized excitation (dashed line) and emission (solid line) spectra of complex a) **3-MeOH**, b) **3-Ground**, c) **3-Et₂O**, d) **3-THF**, e) **3-CH₂Cl₂** in the solid state at 298 and 77 K.

Figure S21. Normalized excitation (dashed line) and emission (solid line) spectra of complex a) **4-MeOH**, b) **4-Ground** in the solid state at 298 and 77 K.