Supporting Information for:

Step-Wise Changes in the Excited State Lifetime of $[Eu(D_2O)_9]^{3+}$ and $[Eu(DOTA)(D_2O)]^-$ as a Function of the Number of Inner-Sphere O-H Oscillators

Contents

$[Eu(H_2O)_9]^{3+} / [Eu(D_2O)_9]^{3+}$	2
293 К	2
77 К	7
[Eu(DOTA)(H ₂ O)] ⁻ / [Eu(DOTA)(D ₂ O)] ⁻	21
293 К	21
77 K	25

[Eu(H₂O)₉]³⁺ / [Eu(D₂O)₉]³⁺ 293 K

Figure S1. Emission spectra (top) and normalised emission spectra (bottom) of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in solution at 293 K. Emission slits were kept at 5 nm.

Figure S2. Emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in solution at 293 K. Data has been fitted to mono-exponential decay function.

Figure S3. (left) Individual emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in solution at 293 K. Data has been fitted to mono-exponential decay function. (right) Residual between fit and data of fits.

X _{H/D}	А	τ
1	16.0 ± 0.10	0.109 ± 2.2E-4
0.75	7.45 ± 0.025	0.149 ± 2.0E-4
0.5	3.98 ± 0.0075	0.222 ± 2.2 E-4
0.25	2.07 ± 0.0021	0.416 ± 3.3E-4
0	1.13 ± 5.1E-4	3.386 ± 0.0048

Table S1. Fit parameters for $[Eu(H_2O)_9]^{3+}$ at 293 K.

Figure S4. Observed rate of deactivation (k_{obs}) of the ⁵D₀ state of [Eu(H₂O)₉]³⁺ in H₂O/D₂O mixtures in solution at 293 K. Data has been fitted with linear function

Figure S5. Normalised emission spectra (bottom) of $[Eu(H_2O)_9]^{3+}$ at in H_2O/D_2O mixtures in solution at 293 K. Emission slits were kept at 2 nm.

Figure S6. Emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in frozen solution at 77 K. Data has been fitted to mono-exponential decay function.

Figure S7. (left) Individual emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in frozen solution at 77 K. Data has been fitted to mono-exponential decay functions. (right) Residual between data and fit.

X _{H/D}	А	τ
1	5.50 ± 0.044	0.118 ± 4.3E-4
0.75	3.42 ± 0.018	0.160 ± 4.8E-4
0.5	2.33 ± 0.011	0.241 ± 8.4E-4
0.25	1.43 ± 0.0050	0.486 ± 0.0017
0	1.01 ± 7.1E-4	3.986 ± 0.0044

Table S2. Fit parameters for $[Eu(H_2O)_9]^{3+}$ at 77 K.

Figure S8. Emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in frozen solution at 77 K. Data has been fitted to mono-exponential (xH/D = 1, 0.75) or bi-exponential (xH/D = 0.5-0) decay functions.

Figure S9. (left) Individual emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in frozen solution at 77 K. Data has been fitted to mono-exponential ($x_{H/D} = 1$, 0.75) or bi-exponential ($x_{H/D} = 0.5$ -0) decay functions. (right) Residual of fit and data.

X _{H/D}	A ₁	$ au_1$	A ₂	τ ₂
1	5.50 ± 0.044	0.118 ± 4.3E-4	-	-
0.75	3.42 ± 0.018	0.160 ± 4.8E-4	-	-
0.5	2.32 ± 0.06	0.221 ± 0.0060	0.136 ± 0.086	0.484 ± 0.097
0.25	1.31 ± 0.017	0.368 ± 0.0051	0.272 ± 0.0021	0.973 ± 0.032
0	0.104 ± 0.0042	1.132 ± 0.062	0.940 ± 0.0048	4.201 ± 0.013

Table S3. Fit parameters for $[Eu(H_2O)_9]^{3+}$ at 77 K.

Figure S10. Average rate of deactivation ($k_{Average}$) of the ⁵D₀ state of [Eu(H₂O)₉]³⁺ in H₂O/D₂O mixtures in frozen solution at 77 K obtained from multicomponent fits. Data has been fitted with linear function.

Figure S11. Emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in frozen solution at 77 K. Data has been fitted to tri-exponential decay using a global model.

Figure S12. Amplitudes from global fit of $[Eu(H_2O)_9]^{3+}$ in mixtures of H_2O/D_2O in frozen solution at 77 K.

Figure S13. Average rate of deactivation ($k_{Average}$) of the ${}^{5}D_{0}$ state of $[Eu(H_{2}O)_{9}]^{3+}$ in $H_{2}O/D_{2}O$ mixtures in frozen solution at 77 K obtained from a tri-exponential global fit. Data has been fitted with a linear function.

Figure S14. (left) Individual emission decay traces of $[Eu(H_2O)_9]^{3+}$ in H_2O/D_2O mixtures in frozen solution at 77 K. Data has been fitted to a tri-exponential decay with a global model (right) Residual of fit and data.

	τ ₁	τ ₂	τ ₃
Global Parameter	4.247 ± 0.0090	1.331 ± 0.014	0.529 ± 0.0048
X _{H/D}	A ₁	A ₂	A ₃
0	0.923 ± 0.0029	0.115 ± 0.0037	0 ± 0*
0.025	0.367 ± 0.0024	0.593 ± 0.007	0.174 ± 0.0099
0.05	0.229 ± 0.0021	0.627 ± 0.0083	0.358 ± 0.011
0.075	0.144 ± 0.0018	0.577 ± 0.0091	0.548 ± 0.011
0.1	0.0936 ± 0.0015	0.470 ± 0.0096	0.750 ± 0.0099
0.125	0.0594 ± 0.0013	0.337 ± 0.0098	0.926 ± 0.0088
0.15	0.0232 ± 0.0013	0.264 ± 0.010	1.04 ± 0.0083

Table S4. Fit parameters for global fit of $[Eu(H_2O)_9]^{3+}$ at 77 K. *denotes fixed parameters

[Eu(DOTA)(H₂O)]⁻ / [Eu(DOTA)(D₂O)]⁻ 293 K

Figure S15. Normalised emission spectra of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in solution at 293 K. Emission slits were kept at 2 nm.

Figure S16. Emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in solution at 293 K. Data has been fitted with a mono-exponential decay function.

Figure S17. (left) Individual emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in solution at 293 K. Data has been fitted with a mono-exponential decay function. (right) Residual of fit and data.

Table S5. Fi	t parameters for	of [Eu(DOTA)(H ₂ O)]	at 293 K
--------------	------------------	---------------------------------	----------

$x_{\rm H/D}$	A	τ
1	1.21 ± 0.015	0.599 ± 0.0081
0.5	1.09 ± 0.016	0.993 ± 0.018
0	0.958 ± 0.0070	2.265 ± 0.022

Figure S18. Observed rate of deactivation (k_{obs}) of the ⁵D₀ state of [Eu(DOTA)(H₂O)]⁻ in mixtures of H₂O/D₂O in solution at 293 K. Data has been fitted with a linear function.

77 K

Figure S19. Normalised emission spectra of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K. Emission slits were kept at 2 nm.

Figure S20. Emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K. Data has been fitted with a mono-exponential decay function.

Figure S21. (left) Individual emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K. Data has been fitted with a mono-exponential decay function. (right) Residual of fit and data.

Table S6. Fit parameters for of [Eu(DOTA)(H₂O)]⁻ at 77 K

X _{H/D}	А	τ
1	1.16 ± 0.0075	0.816 ± 0.0062
0.75	1.09 ± 0.0062	0.958 ± 0.0066
0.5	1.05 ± 0.0049	1.268 ± 0.0074
0.25	1.03 ± 0.0057	1.669 ± 0.012
0	1.01 ± 0.0035	2.138 ± 0.0097

Figure S22. Observed rate of deactivation (k_{obs}) of the ⁵D₀ state of [Eu(DOTA)(H₂O)]⁻ in mixtures of H₂O/D₂O in frozen solution at 77 K. Obtained from mono-exponential fit. Data has been fitted with a linear function.

Figure S23. Emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K. Data has been fitted globally with a tri-exponential decay function.

Figure S24. (left) Individual emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K. Data has been fitted globally with a tri-exponential decay function. (right) Residual of fit and data.

	$ au_1$	τ ₂	τ ₃
Global Parameter	0.817 ± 0.006	1.518 ± 0.206	2.136 ± 0.065
X _{H/D}	A ₁	A ₂	A ₃
1	1.16 ± 0.0076	0 ± 0*	0 ± 0*
0.75	0.906 ± 0.045	0.218 ± 0.067	0 ± 0.058
0.5	0.443 ± 0.087	0.669 ± 0.093	0 ± 0.15
0.25	0.0946 ± 0.082	0.624 ± 0.11	0.334 ± 0.15
0	0 ± 0*	0 ± 0.11	1.01 ± 0.11

Table S7. Fit parameters for global fit of [Eu(DOTA)(H₂O)]⁻ at 77 K. * denotes fixed parameters.

Figure S25. Average rate of deactivation ($k_{Average}$) of the ⁵D₀ state of [Eu(DOTA)(H₂O)]⁻ in mixtures of H₂O/D₂O in frozen solution at 77 K obtained from amplitude averaged excited state lifetimes of global fit. Data has been fitted with a linear function.

Figure S26. Amplitudes from global fit of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K.

Figure S27. Emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K with simulated data using a 3-component model.

Figure S28. (left) Individual emission decay traces of $[Eu(DOTA)(H_2O)]^-$ in mixtures of H_2O/D_2O in frozen solution at 77 K with simulated data using a 3-component model. (right) Residual between simulation and data.

Figure S29. Observed rate of deactivation (k_{obs}) of the ⁵D₀ state of [Eu(DOTA)(H₂O)]⁻ obtained from excited state lifetimes used in the simulated fits.

Figure S30. Amplitudes used in simulated excited state lifetimes of [Eu(DOTA)(H₂O)]⁻.

Figure S31. Average rate of deactivation ($k_{Average}$) of the ⁵D₀ state of [Eu(DOTA)(H₂O)]⁻. Obtained from amplitude-weighted averages of simulated lifetimes. Data has been fitted with a linear function

Figure S32. ¹H-NMR (top) and ¹³C-NMR (bottom) spectra of H_4 DOTA in D_2O .

 $^{1}\text{H-NMR}$ (500 MHz, D2O) δ 3.65 (s, 8H), 3.31 (s, 16H). ¹³**C-NMR** (126 MHz, D₂O) δ 55.89, 49.85. **HRMS** (ESI⁺): m/z calculated for $C_{16}H_{28}N_4O_8$ [M+H]⁺: 405.1907; found 405.1990.

Figure S33. Paramagnetic 1H-NMR spectra of $[Eu(DOTA)(D_2O)]^-$ in D_2O .

 $\label{eq:hommassian} {}^{1}\text{H}\ \text{NMR}\ (500\ \text{MHz}, D_2\text{O})\ \delta\ 33.63,\ -1.15,\ -6.75,\ -8.09,\ -14.63,\ -16.11\ (\text{SAP}).\ 13.30,\ -2.26,\ -4.36,\ -7.26,\ -9.52\ (\text{TSAP}). \\ \text{HRMS}\ (\text{ESP}^+):\ \text{m/z\ calculated\ for\ } C_{16}H_{24}N_4O_8\text{Eu}\ [\text{M}+2\text{H}]^+:\ 555.0959,\ found:\ 555.0977. \\ \end{array}$

Figure S34. Schematic of the structure and symmetry of $[Eu(D_2O)_9]^{3+}$ (top) and $[Eu(DOTA(D_2O)]^{-}$ (bottom).