<Electronic Supporting Information>

Self-assembly of Ni(II) with chiral ligand pair vs mixture of chiral ligand pair: structural features and recognition ability of Ni₂L₄ cages

Jihun Han,^{‡a} Hyo Jeong Back,^{‡a} Mohammad M. Hossain,^b Ok-Sang Jung,^{*a} and Young-A Lee^{*c}

^aDepartment of Chemistry, Pusan National University, Busan 46241, Republic of Korea

^bDepartment of Electrochemistry, Korea Institute of Materials Science, Changwon 51508, Republic of Korea

^cDepartment of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea

*Correspondence and requests for materials should be addressed to O.-S. Jung: <u>oksjung@pusan.ac.kr</u> Y.-A. Lee: <u>ylee@jbnu.ac.kr</u>

‡ These authors equally contributed to this work.

Fig. S2 IR spectra of *s*,*r*-L (a), *r*,*s*-L (b), [2Cl@Ni₂Cl₂(*s*,*r*-L)₄(H₂O)₂]·4C₄H₈O₂·EtOH (c),

 $[2Cl@Ni_{2}Cl_{2}(r,s-L)_{4}(H_{2}O)_{2}] \cdot 4C_{4}H_{8}O_{2} \cdot EtOH (d), and [2Cl \cdot 2H_{2}O@Ni_{2}Cl_{2}(s,r-L)_{2}(r,s$

 $L_{2}(H_{2}O_{2}]\cdot7C_{4}H_{8}O_{2}$ (e).

Fig. S3 TG curves of $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ (a), $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ (b), and $[2Cl\cdot 2H_2O@Ni_2Cl_2(s,r-L)_2(r,s-L)_2(H_2O)_2] \cdot 7C_4H_8O_2$ (c).

Fig. S4 CD spectra for *s*,*r*-L (black line) and *r*,*s*-L (blue line) in MeOH.

Fig. S5 Packing structures of $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ in a axis (a), b axis (b), c axis (c), $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ in a axis (d), b axis (e), c axis (f),

and $[2Cl\cdot 2H_2O@Ni_2Cl_2(s,r-L)_2(r,s-L)_2(H_2O)_2]\cdot 7C_4H_8O_2$ in a axis (g), b axis (h) and c axis (i).

Fig. S6 ESI-mass fragments of $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH (a)$,

 $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH (b), and <math>[2Cl\cdot 2H_2O@Ni_2Cl_2(s,r-L)_2(r,s-L)_2(H_2O)_2] \cdot 7C_4H_8O_2 (c).$

Fig. S7 Cyclic voltammetry (CV) signals of *l*-tryptophan only (green line), *d*-tryptophan only (pink line), the cage (black line) and that cage in presence of 1.0 mM *l*-tryptophan (blue line) and *d*-tryptophan (red line). [2Cl@Ni₂Cl₂(*s*,*r*-L)₄(H₂O)₂]·4C₄H₈O₂·EtOH (a); [2Cl@Ni₂Cl₂(*r*,*s*-L)4(H₂O)₂]·4C₄H₈O₂·EtOH (b); [2Cl·2H₂O@Ni₂Cl₂(*r*,*s*-L)₂(*s*,*r*-L)₂(H₂O)₂]·7C₄H₈O₂ (c). Cyclic voltammetry (CV) signals of *l*-cysteine only (green line), *d*-cysteine only (pink line), the cage (black line) and that cage in presence of 1.0 mM *l*-cysteine (blue line) and *d*-cysteine (red line). [2Cl@Ni₂Cl₂(*s*,*r*-L)₄(H₂O)₂]·4C₄H₈O₂·EtOH (d);

 $[2Cl@Ni_{2}Cl_{2}(r,s-L)4(H_{2}O)_{2}] \cdot 4C_{4}H_{8}O_{2} \cdot EtOH (e); [2Cl\cdot 2H_{2}O@Ni_{2}Cl_{2}(r,s-L)_{2}(s,r-L)A(H_{2}O)_{2}] \cdot 4C_{4}H_{8}O_{2} \cdot EtOH (e); [2Cl\cdot 2H_{2}O@Ni_{2}Cl_{2}(r,s-L)A(H_{2}O)_{2}] \cdot 4C_{4}H_{8}O_{2} \cdot EtOH (e); [2Cl\cdot 2H_{2}O@Ni_{2}Cl_{2}(r,s-L)A(H_{2}O)_{2}(s,r-L)A(H_{2}O)_{2}] \cdot 4C_{4}H_{8}O_{2} \cdot EtOH (e); [2Cl\cdot 2H_{2}O@Ni_{2}Cl_{2}(r,s-L)A(H_{2}O)_{2}(s,r-L)A(H_{2}O)_{2}$

 $L_{2}(H_{2}O_{2}) \cdot 7C_{4}H_{8}O_{2}(f).$

Fig. S8 Cyclic voltammetry (CV) signals of *l*-histidine only (green line), *d*-histidine only (pink line), the cage (black line) and that cage in presence of 1.0 mM *l*-histidine (blue line) and *d*-histidine (red line). $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2]\cdot4C_4H_8O_2\cdotEtOH$ (a); $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2]\cdot4C_4H_8O_2\cdotEtOH$ (b); $[2Cl\cdot2H_2O@Ni_2Cl_2(r,s-L)_2(s,r-L)_2(H_2O)_2]\cdot7C_4H_8O_2$ (c). Cyclic voltammetry (CV) signals of *l*-phenylalanine only (green line), *d*-phenylalanine only (pink line), the cage (black line) and that cage in presence of 1.0 mM *l*-phenylalanine (blue line) and *d*-phenylalanine (red line). $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2]\cdot4C_4H_8O_2\cdotEtOH$ (d); $[2Cl@Ni_2Cl_2(r,s-L)4(H_2O)_2]\cdot4C_4H_8O_2\cdotEtOH$ (e); $[2Cl\cdot2H_2O@Ni_2Cl_2(r,s-L)_2(s,r-L)_2(s,r-L)_2(s,r-L)_2(H_2O)_2]\cdot7C_4H_8O_2$ (f).

 $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH + l-tryptophan$

 $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH + d$ -tryptophan

 $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH + l-tryptophan$

 $[2Cl@Ni_2Cl_2(\textit{r,s-L})_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH + d\text{-tryptophan}$

Fig. S9 Computational simulation of ligand moiety of chiral cages and tryptophan via MM2 calculation: $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ with *l*-tryptophan (a), $[2Cl@Ni_2Cl_2(s,r-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ with *d*-tryptophan (b), $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH$ with *l*-tryptophan (c), and $[2Cl@Ni_2Cl_2(r,s-L)_4(H_2O)_2] \cdot 4C_4H_8O_2 \cdot EtOH +$ *d*-tryptophan (d). The energy differences had been calculated by Chem3D with MM2 method.

	$[2Cl@Ni_2Cl_2(s,r-L)_4]$	$[2Cl@Ni_2Cl_2(r,s-L)_4]$	$[2Cl \cdot 2H_2O@Ni_2Cl_2(r,s-L)_2$	
	$(H_2O)_2$]·4C ₄ H ₈ O ₂ ·EtOH	$(H_2O)_2$]·4C ₄ H ₈ O ₂ ·EtOH	$(s,r-L)_2(H_2O)_2]$ ·/C ₄ H ₈ O ₂	
Formula	$C_{102}H_{110}N_{12}O_{23}Ni_2Cl_4$	$C_{102}H_{110}N_{12}O_{23}Ni_2Cl_4$	$C_{112}H_{132}N_{12}O_{30}Ni_2Cl_4$	
$M_{ m w}$	2131.23	2131.23	2385.51	
Cryst. sys.	Orthorhombic	Orthorhombic	Monoclinic	
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	212121 C2/c	
a (Å)	14.855(3)	14.854(3)	14.854(3) 30.615(6)	
<i>b</i> (Å)	26.201(5)	26.201(5)	15.581(2)	
<i>c</i> (Å)	26.599(5)	26.589(5)	23.797(4)	
α (°)	-	-	-	
β (°)	-	-	90.285(7)°	
γ (°)	-	-	-	
$V(Å^3)$	10353(4)	10348(4)	11351(3)	
Ζ	4	4	4	
ho (g cm ⁻³)	1.367	1.368	1.396	
μ (mm ⁻¹)	0.519	0.426	0.509	
R _{int}	0.1115	0.0540	0.1347	
GoF on F^2	0.957	1.002	1.046	
$R_1 [I > 2\sigma(I)]^a$	0.0666	0.0624	0.1322	
wR_2 (all data) ^b	0.1942	0.1926	0.4158	
$aR_1 = \Sigma F_0 - F_c / \Sigma F_0 $, ^b $wR_2 = (\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2])^{1/2}$			

Table S1 Crystallographic data.

[2Cl@Ni ₂ Cl ₂ (s,r-L) ₄		[2Cl@Ni ₂ Cl ₂ (r,s-L) ₄		[2Cl·2H ₂ O@Ni ₂ Cl ₂ (r,s-L) ₂		
$(H_2O)_2]\cdot 4C_4H_8O_2\cdot EtOH$		$(H_2O)_2]$ ·4C ₄ H ₈ O ₂ ·EtOH		$(s, r-L)_2(H_2O)_2] \cdot 7C_4H_8O_2$		
Cl(1)-Ni(1)	2.386(1)	Cl(1)-Ni(1)	2.387(1)	Ni(1)-N(2A)	2.105(7)	
O(1)-Ni(1)	2.060(3)	O(1)-Ni(1)	2.057(3)	Ni(1)-O(1)	2.106(5)	
Ni(1)-N(2B)	2.117(4)	Ni(1)-N(2D)	2.111(3)	Ni(1)-N(11A)#1	2.115(7)	
Ni(1)-N(2D)	2.117(4)	Ni(1)-N(2B)	2.112(3)	Ni(1)-N(2B)#1	2.118(7)	
Ni(1)-N(2C)	2.133(4)	Ni(1)-N(2A)	2.131(3)	Ni(1)-N(11B)	2.138(7)	
Ni(1)-N(2A)	2.135(4)	Ni(1)-N(2C)	2.132(3)	Ni(1)-Cl(1)	2.383(2)	
O(1)-Ni(1)-N(2B)	89.8(2)	O(1)-Ni(1)-N(2D)	89.8(1)	N(2A)-Ni(1)-O(1)	90.4(2)	
O(1)-Ni(1)-N(2D)	88.8(2)	O(1)-Ni(1)-N(2B)	88.7(1)	N(2A)-Ni(1)-N(11A)#1	176.6(3)	
N(2B)-Ni(1)-N(2D)	178.1(2)	N(2D)-Ni(1)-N(2B)	178.1(1)	O(1)-Ni(1)-N(11A)#1	87.7(2)	
O(1)-Ni(1)-N(2C)	92.2(1)	O(1)-Ni(1)-N(2A)	91.8(1)	N(2A)-Ni(1)-N(2B)#1	90.5(3)	
N(2B)-Ni(1)-N(2C)	88.7(2)	N(2D)-Ni(1)-N(2A)	88.7(1)	O(1)-Ni(1)-N(2B)#1	86.2(2)	
N(2D)-Ni(1)-N(2C)	90.1(2)	N(2B)-Ni(1)-N(2A)	90.2(1)	N(11A)#1-Ni(1)-N(2B)#1	92.1(3)	
O(1)-Ni(1)-N(2A)	89.4(1)	O(1)-Ni(1)-N(2C)	89.8(1)	N(2A)-Ni(1)-N(11B)	86.7(3)	
N(2B)-Ni(1)-N(2A)	91.4(2)	N(2D)-Ni(1)-N(2C)	91.4(1)	O(1)-Ni(1)-N(11B)	89.5(2)	
N(2D)-Ni(1)-N(2A)	89.8(2)	N(2B)-Ni(1)-N(2C)	89.8(1)	N(11A)#1-Ni(1)-N(11B)	90.5(3)	
N(2C)-Ni(1)-N(2A)	178.4(2)	N(2A)-Ni(1)-N(2C)	178.5(1)	N(2B)#1-Ni(1)-N(11B)	174.8(2)	
O(1)-Ni(1)-Cl(1)	178.2(1)	O(1)-Ni(1)-Cl(1)	178.28(8)	N(2A)-Ni(1)-Cl(1)	91.7(2)	
N(2B)-Ni(1)-Cl(1)	90.9(1)	N(2D)-Ni(1)-Cl(1)	90.89(8)	O(1)-Ni(1)-Cl(1)	176.6(2)	
N(2D)-Ni(1)-Cl(1)	90.6(1)	N(2B)-Ni(1)-Cl(1)	90.61(9)	N(11A)#1-Ni(1)-Cl(1)	90.4(2)	
N(2C)-Ni(1)-Cl(1)	89.5(1)	N(2A)-Ni(1)-Cl(1)	89.81(9)	N(2B)#1-Ni(1)-Cl(1)	91.1(2)	
N(2A)-Ni(1)-Cl(1)	88.9(1)	N(2C)-Ni(1)-Cl(1)	88.66(9)	N(11B)-Ni(1)-Cl(1)	93.4(2)	
L		[[⁻ -X ⁺ J/2,-Y ⁺ 1/2,-Z ⁺ 1				

Table S2 Selected bond length (Å) and angle (°).