Supporting Information

Bidentate Boron Lewis Acids: Synthesis by Tin Boron Exchange Reaction and Host-Guest Complex Formation

J. Louis Beckmann, Beate Neumann, Hans-Georg Stammler, Jan-Hendrik Lamm and Norbert W. Mitzel*

*Corresponding Author.

Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM_{2}
Faculty of Chemistry, University of Bielefeld
Universitätsstraße 25, 33615 Bielefeld (Germany)
E-mail: mitzel@uni-bielefeld.de

Table of Contents

Experimental Procedures 3
Syntheses 3
NMR spectra 7
NMR spectra of the adducts 12
Solid state structures of 2-(diisopropylamino)-2-boraindane and bis(2-methylphenyl)-diisopropylaminoborane 18
Crystallographic data 19
References 23

Experimental Procedures

General considerations

All reactions were performed in the absence of water and air using conventional Schlenk techniques with nitrogen as inert gas or in a glove box with argon as inert gas. For handling volatile compounds and gases, conventional high vacuum techniques were used. n-Pentane, n-hexane and diethyl ether were dried over lithium aluminum hydride. Dichloromethane and chloroform were dried over calcium hydride or with molecular sieve. Benzene and THF were dried over Na / K alloy. All solvents were degassed prior to use and stored with molecular sieve.

1,8-Bis[(trimethylstannyl)ethynyl]anthracene (1) ${ }^{[1]}$, 2-chloro-2-boraindane diethyl etherate $(\mathbf{2 a})^{[2]}$, chlorodiethylborane $(\mathbf{2 c})^{[3]}$, trimethylborane, ${ }^{[4]}$ chlorobis(pentafluorophenyl)borane (2d) ${ }^{[5]}$ and bis(pentafluorophenyl)borane ${ }^{[5,6]}$ were prepared according to literature.

NMR spectra were recorded on a Avance III 500 HD and Avance NEO 600 spectrometer at ambient temperature, unless otherwise stated. Chemical shifts were referenced to the residual proton or carbon signal of the solvent (CDCl3: ${ }^{1} \mathrm{H}: 7.26 \mathrm{ppm}$, ${ }^{13} \mathrm{C}: 77.2 \mathrm{ppm}$; $\mathrm{C}_{6} \mathrm{D}_{6}:{ }^{1} \mathrm{H}: 7.16 \mathrm{ppm},{ }^{13} \mathrm{C}: 128.1 \mathrm{ppm}$; DMSO- $\mathrm{d}_{6}:{ }^{1} \mathrm{H}: 2.50 \mathrm{ppm},{ }^{13} \mathrm{C}: 39.5 \mathrm{ppm}$) or externally (${ }^{11} \mathrm{~B}: \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, ${ }^{19} \mathrm{~F}: \mathrm{CFCl}_{3}$). Elemental analyses were carried out using an EURO EA Elemental Analyzer. SC-XRD was performed on a Rigaku Supernova diffractometer using Cu-Ka or Mo-Ka radiation.

The numbering scheme for NMR spectroscopic assignments of the anthracenes (Scheme S 1) is based on IUPAC guidelines.

Scheme S1. Numbering scheme for NMR spectroscopic assignments.

Syntheses

1,8-Bis[(2-boraindan-2-yl)ethynyl]anthracene (3a): A suspension of 2-chloro-2-boraindane diethyl etherate (2a, 1.20 g , $5.34 \mathrm{mmol})$ in n-hexane (15 mL) was added to 1,8 -bis[(trimethylstannyl)ethynyl]anthracene ($1,1.25 \mathrm{~g}, 2.26 \mathrm{mmol}$) in n-hexane $(20 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$, allowed to reach ambient temperature and was stirred for an additional hour. The suspension was centrifuged ($2000 \mathrm{rpm}, 40$ minutes) to precipitate the crude product as a yellow solid. The supernatant solution was removed, the precipitate resuspended in benzene (15 mL), stirred for additional 10 minutes and centrifuged again. The supernatant solution was removed, all volatile compounds were removed under reduced pressure and 1,8-Bis[(2-boraindan-2-yl)ethynyl]anthracene (3a, $0.92 \mathrm{~g}, 2.02 \mathrm{mmol}, 89 \%$) was obtained as a yellow solid. - ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=9.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 8.12\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 7.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H} 2 / \mathrm{H} 7$), 7.54 (dd, $\left.{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6\right), 7.17\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{\mathrm{Ph}}\right), 2.95\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
 C^{Ph}), 125.4 ($\mathrm{s}, \mathrm{C} 3 / \mathrm{C} 6$), 124.1 (s, C9), 122.9 (s, C=C-B), 120.8 (s, C ${ }^{\text {q }}$, 36.9 (s, CH2). - ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=$ 79.2 (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~B}_{2}$ ($M_{\mathrm{r}}=454.2$): C 89.91, H 5.33; found: C 89.90, H 5.36.

Chlorodimethylborane ($\mathbf{M e}_{2} \mathbf{B C l}, \mathbf{2 b}$): This protocol is a derived version of the synthesis of chlorodiethylborane ($\mathrm{Et}_{2} \mathrm{BCl}, \mathbf{2 c}$) described by Breher et al. ${ }^{[3]}$

To an ampoule filled with $\mathrm{NaBH}_{4}(15 \mathrm{mg})$, dichloromethane (10 mL) was added. Trimethylborane (20.0 mmol) and boron trichloride (10.0 mmol) were added by condensation using a high vacuum line. The reaction mixture was stirred for 5 d at
ambient temperature and additional 5 d at $40^{\circ} \mathrm{C}$. Distillation of the reaction mixture yields chlorodimethylborane $\mathbf{(2 b}, 26.4 \mathrm{mmol}$, 88%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=1.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .-$ ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=77.0$.

1,8-Bis[(dimethylboranyl)ethynyl]anthracene (3b): To a suspension of 1,8-bis[(trimethylstannyl)ethynyl]anthracene (1, $0.40 \mathrm{~g}, 0.72 \mathrm{mmol}$) in n-hexane (12 mL), chlorodimethylborane ($\mathbf{2 b}, 2.5 \mathrm{mmol}$) was added by condensation using a high vacuum line. The reaction mixture was stirred for 15 min and allowed to reach room temperature. Longer reaction times or temperatures above ambient temperature should be avoided, as these will strongly promote side reactions. All volatile compounds were removed under reduced pressure and 1,8-bis[(dimethylboranyl)ethynyl]anthracene ($\mathbf{3 b}, 0.22 \mathrm{~g}, 0.72 \mathrm{mmol}$, quant.) was obtained as a yellow solid. $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=9.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}, \mathrm{H}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right)$, $7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right), 7.48\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} / \mathrm{H} 6\right), 1.08\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, CDCl_{3}): δ [ppm] = 132.0 (s, C2/C7), 131.6 (s, Cq), 131.3 (s, Cq), 130.2 (s, C4/C5), 127.8 (s, C10), 125.3 (s, C3/C6), 124.2 (s,
 Elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~B}_{2}\left(M_{r}=306.0\right)$: C 86.35, H 6.59; found: C 85.32, H 6.09.

1,8-Bis[(diethylboranyl)ethynyl]anthracene (3c): To a suspension of 1,8-bis[(trimethylstannyl)ethynyl]anthracene (1, 1.00 g , $1.81 \mathrm{mmol})$ in n-hexane (16 mL), a solution of chlorodiethylborane ($\mathbf{2 c}, 5.5 \mathrm{mmol}$) in dichloromethane was added with a syringe at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, allowed to reach ambient temperature and was stirred for additional 0.5 h . All volatile compounds were removed under reduced pressure and 1,8-bis[(diethylboranyl)ethynyl]anthracene (3c, 0.66 $\mathrm{g}, 1.81 \mathrm{mmol}$, quant.) was obtained as a yellow solid. $-{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=9.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.45(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H} 10), 8.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right), 7.47\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6\right), 1.43$ (q, ${ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}$), $1.20\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=131.9$ (s, C2/C7), 131.6 (s, Cq), 131.3 (s, Cq), 130.0 (s, C4/C5), 127.8 (s, C10), 125.3 (s, C3/C6), 124.3 (s, C9), 121.5 (s, Cq), 118.6 (s, C=C-B), 103.9 (s, C $=\mathbf{C}-\mathrm{B}$), 21.7 (s, CH_{2}), 9.6 (s, CH_{3}). - ${ }^{11} \mathrm{~B} \mathrm{NMR} \mathrm{(160} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=74.6$ (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~B}_{2}\left(M_{r}=362.1\right)$: C 86.24, H 7.79; found: C 85.56, H 7.66.

1,8-Bis[\{bis(pentafluorophenyl)boranyl\}ethynyl]anthracene (3d): To a suspension of 1,8-bis[(trimethylstannyl)ethynyl]anthracene ($\mathbf{1}, 1.10 \mathrm{~g}, 2.00 \mathrm{mmol}$) in n-hexane (15 mL), a solution of chlorobis(pentafluorophenyl)borane ($\mathbf{2 d}, 1.90 \mathrm{~g}$, $5.00 \mathrm{mmol})$ in n-hexane $(20 \mathrm{~mL})$ was slowly added at $-80^{\circ} \mathrm{C}$ with a syringe. The reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, allowed to reach ambient temperature and was stirred for another hour. The suspension was centrifuged ($2000 \mathrm{rpm}, 20$ minutes) to precipitate the crude product as a red solid, from which the supernatant solution was removed. To purify the product, the precipitate was resuspended in n-hexane (10 mL) and stirred for 10 min . The suspension was centrifuged and the supernatant solution was removed. This washing procedure was repeated once more with n-hexane (10 mL) and then with benzene (10 mL). All volatiles were then removed under reduced pressure and 1,8-bis[\{bis(pentafluorophenyl)boranyl\}ethynyl]anthracene (3d, $1.60 \mathrm{~g}, 1.75 \mathrm{mmol}, 88 \%$) was obtained as a red solid. NMR spectroscopic data are provided in $\mathrm{C}_{6} \mathrm{D}_{6}$ and DMSO-d6 as solvent, since the solubility in CDCl_{3} is very limited. No ${ }^{11} \mathrm{~B}$ NMR signal was observed due to strong broadening. $-{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=9.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right), 7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right)$, 6.96 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6$). ${ }^{19}{ }^{9} \mathrm{~F} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=-127.6\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{o}}\right),-145.0\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{p}}\right),-160.9$ ($\mathrm{m}, \mathrm{F}^{\mathrm{Ph}-\mathrm{m} \text {) } . ~-~}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta[\mathrm{ppm}]=9.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 8.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right)$, $7.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right), 7.54\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} / \mathrm{H} 6\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ [ppm] $=147.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=242 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}\right), 138.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=247 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}\right), 136.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=247 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}\right), 131.7(\mathrm{~s}, \mathrm{C} 2 / \mathrm{C} 7), 131.2\left(\mathrm{~s}, \mathrm{C}^{\mathrm{q}}\right)$,

 - Elemental analysis calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{8} \mathrm{~B}_{2} \mathrm{~F}_{20}$ ($\mathrm{Mr}_{\mathrm{r}}=914.1$): C 55.19, H 0.88; found: C 54.80, H 0.83 .

1,8-Bis[\{2,2-bis(pentafluorophenyl)boranyl\}vinyl]anthracene (4d): To a suspension of 1,8-bis[\{bis(pentafluorophenyl)boranyl\}ethynyl]anthracene (3d, $180 \mathrm{mg}, 197 \mu \mathrm{~mol}$) in benzene (6 mL), bis(pentafluorophenyl)borane ($170 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added at ambient temperature. The reaction mixture was stirred for 1 d , the product was allowed to precipitate, and the supernatant solution was removed. After recrystallization from benzene and removal of all volatile compounds under reduced pressure, 1,8-bis[\{1,2-bis(pentafluorophenyl)boranyl\}vinyl]anthracene ($4 \mathrm{~d}, 230 \mathrm{mg}, 143 \mu \mathrm{~mol}, 73 \%$) was obtained as an orange solid. No ${ }^{11} \mathrm{~B}$ NMR signal was observed due to strong broadening. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=8.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, $8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 7.36\left(\mathrm{dd},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6\right), 7.21(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=172.0(\mathrm{~s}, \mathrm{C}=\mathrm{CH}), 155.0(\mathrm{~s}, \mathrm{C}=\mathrm{CH}), 148.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}, \mathrm{~F}=\right.$
 (d, ${ }^{1} \mathrm{~J}, \mathrm{~F}=256 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}$), 132.4 (s, C4/C5), 131.1 (s, C ${ }^{\mathrm{q}}$), 129.5 (s, C2/C7), 128.5 (s, C10), 128.1 (s, C ${ }^{\text {q }}$), 125.6 (s, C3/C6), 121.8 (s, C9), $113.8\left(\mathrm{~m}, \mathrm{C}^{\text {Ph- }}\right.$) $.-{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=-127.0\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{o}}\right),-129.1\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{o}}\right),-145.2\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{p}}\right),-146.8$ $\left(m, F^{\text {Ph-p }}\right),-160.5\left(m, F^{\text {Ph-m }}\right)$, -161.2 ($\mathrm{m}, \mathrm{F}^{\mathrm{Ph}-m}$). - Elemental analysis calcd (\%) for $\mathrm{C}_{66} \mathrm{H}_{10} \mathrm{~B}_{4} \mathrm{~F}_{40}\left(M_{r}=1606.0\right)$: C 49.36, H 0.63; found: C 48.97, H 0.60.

General procedure for the preparation of the adducts of $3 \mathrm{a}, 3 \mathrm{c}$ and 3 d with pyridine, pyrimidine and TMEDA

The respective 1:1- or 1:2-adducts were prepared in quantitative yield by adding one or two equivalents of guest (depending on the respective adduct) to a solution of host compound $\mathbf{3 a}, \mathbf{3 c}$ or $\mathbf{3 d}$. When the components were mixed, a color change from intense yellow or red towards pale yellow was observed. The adducts were characterized by various NMR spectroscopic experiments (${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, ${ }^{11} \mathrm{~B}$ NMR, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY NMR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC and HMQC NMR); the analytical data for these adducts are provided further below. Adducts of $3 \mathbf{d}$ were measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ instead of CDCl_{3} to maintain comparability (the free host $\mathbf{3 d}$ is insoluble in CDCl_{3} but soluble in $\mathrm{C}_{6} \mathrm{D}_{6}$). No NMR data are given for [3a•TMEDA] and [3d-TMEDA] because these adducts precipitate quantitatively seconds after TMEDA addition, leaving only traces of the substance in the supernatant solution. In the case of [3c-TMEDA], the majority precipitated, and only small amounts remained soluble, so this supernatant solution was analyzed by NMR spectroscopy. By cooling these solutions or reducing the amount of solvent, precipitates were also obtained for the more soluble adducts. In case of [3a•2 Py], [3c•2 Py], [3d•2 Py], [3a•TMEDA], [3c•TMEDA], [3c•Pym] and [3d•Pym], these precipitates were crystalline and provided single crystals suitable for SC X-ray diffraction (see further below for details of the SC XRD measurements). The precipitates formed were dried under reduced pressure and examined by elemental analyses. No elemental analysis of [3a•Pym] was performed as no precipitate could be obtained at all and the NMR spectra show the presence of different species in solution.

Analytical data of the adducts

3a.2 Py - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{o}}\right), 8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5$), $7.77-7.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{p}}\right.$ and $\mathrm{H} 2 / \mathrm{H} 7$), $7.41\left(\mathrm{dd},{ }^{3} \mathrm{~J} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6\right), 7.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{m}}\right.$), 7.11-7.06 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ph}}\right), 7.02-6.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Ph}}\right), 2.48\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=17.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right), 1.95\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=17.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$
 127.5 (s, C4/C5), 127.3 (s, $\mathrm{C}^{\text {Ph }}$), 127.2 (s, C10), 125.5 (s, $\mathrm{C}^{P y-m}$), 125.2 (s, C3/C6), 124.9 (s, C9), 124.9 (s, Ch), 124.2 (s, C C^{q}), 112.9 (s, C $\equiv \mathbf{C}-\mathrm{B}$), 97.6 (s, C $=\mathrm{C}-\mathrm{B}$), 34.1 (s, CH_{2}). ${ }^{11}{ }^{11} \mathrm{BNMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.7$ (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~N}_{2}\left(M_{\mathrm{r}}=612.4\right)$: C 86.30, H 5.60, N 4.57; found: C 85.99, H 5.63, N 4.64.

3a.Pym - ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=11.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}(\mathrm{CH}) \mathrm{N}), 9.73-9.45$ (br. m, 1H, H9), $8.94-8.45$ (br. m, 2H, $\mathrm{N}(\mathrm{CH}) \mathrm{C}), 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right.$), 7.32 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6$), $7.23-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}(\mathrm{CH})), 7.11-6.88$ (br. m, $8 \mathrm{H}, \mathrm{H}^{\mathrm{Ph}}$), $3.00-1.62$ (br. m, $8 \mathrm{H}, \mathrm{CH}_{2}$). $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=154.9(\mathrm{~s}, \mathrm{NCN}), 153.5(\mathrm{~s}, \mathrm{NCC}), 146.7\left(\mathrm{~s}, \mathrm{C}^{\mathrm{Ph}-1}\right), 131.5$ (s, Cq), 131.2 (s, Cq), 128.6 (s, C2/C7), 127.7 (s, C4/C5), 127.5 (s, C^{Ph}), 127.0 ($\mathrm{s}, \mathrm{C} 10$), 125.9 ($\mathrm{s}, \mathrm{C}^{\mathrm{Ph}}$), 125.5 (s, C3/C6), 125.1 (s, C9), 123.2 (s, C ${ }^{q}$), 122.8 (s, NCC), 108.7 (s, C $=\mathbf{C}-\mathrm{B}$), 99.3 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{C}-\mathrm{B}$), 34.4 (s, CH_{2}). ${ }^{11}{ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=0.7$ (s).

3a-TMEDA - Elemental analysis calcd (\%) for $\mathrm{C}_{40.2} \mathrm{H}_{40.2} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{0.6}$ (3a-TMEDA•0.2 $\mathrm{CHCl}_{3} ; M_{r}=594.3$): $\mathrm{C} 81.25, \mathrm{H} 6.82, \mathrm{~N} 4.71$; found: C 81.28, H 6.88, N 4.76 .

3c.2 Py - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=9.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\text {Py-o }}\right), 8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5), 7.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{p}}\right), 7.76\left(\mathrm{~d},{ }^{3} \mathrm{~J} \mathrm{H}, \mathrm{H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right.$), $7.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{m}}\right.$), $7.40\left(\mathrm{dd},{ }^{3}{ }^{\mathrm{J}} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H} 3 / \mathrm{H} 6), 0.73\left(\mathrm{t},{ }^{3} \mathrm{JH}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.64\left(\mathrm{dq},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=15.3 \mathrm{~Hz},{ }^{3} \mathrm{JH}_{\mathrm{H}} \mathrm{H}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right), 0.50\left(\mathrm{dq},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} \mathrm{JH}, \mathrm{H}\right.$ $\left.=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=145.7\left(\mathrm{~s}, \mathrm{C}^{\text {Py-o }}\right.$), $139.4\left(\mathrm{~s}, \mathrm{C}^{\text {Py-p }}\right), 131.9\left(\mathrm{~s}, \mathrm{C}^{\mathrm{q}}\right), 131.8\left(\mathrm{~s}, \mathrm{C}^{\mathrm{q}}\right)$, 130.9 (s, C2/C7), 127.2 (s, C4/C5), 127.2 (s, C10), 125.2 (s, C ${ }^{\text {Py-m }}$), 125.2 (s, C3/C6), 124.9 (s, C9), 124.8 (s, C ${ }^{q}$), 114.2 (s, $\mathrm{C} \equiv \mathrm{C}-\mathrm{B}$), 97.9 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{C}-\mathrm{B}$), 18.1 (s, CH_{2}), $10.8\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .-{ }^{11} \mathrm{~B} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=0.7$ (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{~N}_{2}\left(\mathrm{M}_{\mathrm{r}}=520.3\right)$: C 83.10, H 7.36, N 5.38; found: C 83.53, H 7.56, N 5.31.

3c•Pym - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] = 11.01 (br. m, 1H, N(CH)N), 9.78 (s, 1H, H9), 8.91 (br. m, 2H, N(CH)C), 8.40 (s, 1H, H10), $7.92\left(\mathrm{~d},{ }^{3}{ }^{\mathrm{H}} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 7.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}(\mathrm{CH})), 7.70\left(\mathrm{~d},{ }^{3} \mathrm{JH}_{\mathrm{H}} \mathrm{H}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right), 7.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6), 0.83\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.73\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, CDCl_{3}): δ [ppm] = 155.6 (s, NCC), 154.4 (s, NCN), 131.5 (s, C^{q}), 131.2 (s, C^{q}), 128.4 (s, C2/C7), 127.3 (s, C4/C5), 126.7 (s, C10), 125.5 (s, C3/C6), 125.3 (s, C9), 123.8 (s, C ${ }^{q}$), 122.4 (s, NCC), 109.9 (s, C=C-B), 99.1 (s, C=C-B), 18.5 (s, CH2), 10.5 (s, CH_{3}). - ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] = 1.8 (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{~N}_{2}\left(\mathrm{M}_{\mathrm{r}}=442.2\right.$): C 81.48, H 7.29, N 6.33; found: C 81.42, H 7.33, N 6.30.

3c-TMEDA $-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right)$, 7.67 (d, ${ }^{3}{ }_{\mathrm{H}}^{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7$), 7.37 (t, $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6$), $3.79-3.40$ (br. m, 4H, $\mathrm{C}_{2} \mathrm{H}_{4}$), $2.95-2.22$ (br. m, 12H, NCH3), $1.06\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.57\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=131.7\left(\mathrm{~s}, \mathrm{C}^{\mathrm{q}}\right)$, 131.7 (s, C ${ }^{q}$), 130.0 ($\mathrm{s}, \mathrm{C} 2 / \mathrm{C} 7$), 127.2 ($\mathrm{s}, \mathrm{C} 10$), 127.1 (s, C4/C5), 125.3 (s, C3/C6), 124.3 (s, C9), 112.7 (s, C三C-B), 98.6 (s , C $=\mathrm{C}-\mathrm{B}$), $55.6\left(\mathrm{~s}, \mathrm{C}_{2} \mathrm{H}_{4}\right), 46.3\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 13.2\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 12.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .-{ }^{11} \mathrm{~B} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.6$ (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~N}_{2}$ ($M_{\mathrm{r}}=478.3$): C 80.35, H 9.27, N 5.86; found: C 79.91, H 9.05, N 5.53 .

3d-2 Py - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=10.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 9), 8.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{o}}\right.$), $8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 10), 7.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7$), $7.62\left(\mathrm{~d},{ }^{3} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 7.07$ ($\mathrm{dd},{ }^{3} \mathrm{H}, \mathrm{H}=8.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6$), $6.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{Py}-\mathrm{p}}\right), 6.50(\mathrm{~m}, 4 \mathrm{H}$, $\left.H^{\text {Py-m }}\right) .-{ }^{19}$ F NMR ($\left.470 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=-132.2\left(\mathrm{~m}, \mathrm{~F}^{\text {Phoo }}\right),-157.1\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{p}}\right),-163.4\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{m}}\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=148.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=246 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}\right), 146.4\left(\mathrm{~s}, \mathrm{C}^{\mathrm{Py}-\mathrm{o}}\right), 141.6\left(\mathrm{~s}, \mathrm{C}^{\mathrm{Py}-\mathrm{p}}\right), 140.4\left(\mathrm{~d},{ }^{1} \mathrm{~J} \mathrm{C}, \mathrm{F}=250 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}\right), 137.6\left(\mathrm{~d},{ }^{1} \mathrm{~J} \mathrm{c}, \mathrm{F}=\right.$ $247 \mathrm{~Hz}, \mathrm{C}^{\text {Ph }}$), 132.8 ($\mathrm{s}, \mathrm{C} 2 / \mathrm{C} 7$), 132.1 ($\mathrm{s}, \mathrm{C}^{\text {q }}$), 132.0 (s, C ${ }^{q}$), 128.9 (s, C4/C5), 128.7 (s, C10), 125.6 (s, $\mathrm{C}^{\text {Py-m }}$), 125.5 (s, C3/C6),
 (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{52} \mathrm{H}_{18} \mathrm{~B}_{2} \mathrm{~F}_{20} \mathrm{~N}_{2}\left(\mathrm{M}_{\mathrm{r}}=1072.3\right.$): $\mathrm{C} 58.25, \mathrm{H} 1.69, \mathrm{~N} 2.61$; found: $\mathrm{C} 58.30, \mathrm{H} 1.89, \mathrm{~N} 2.52$.

3d•Pym - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ [ppm] = 11.75 (s, 1H, N(CH)N), 10.13 (s, 1H, H9), 7.98 (d, 2H, N(CH)C), 7.95 (s, 1H, $\mathrm{H} 10), 7.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 / \mathrm{H} 7\right), 7.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / \mathrm{H} 5\right), 6.99\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 / \mathrm{H} 6\right), 5.97$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}(\mathrm{CH})) .-{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta[\mathrm{ppm}]=-131.9\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{o}}\right),-153.6\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{p}}\right),-161.7\left(\mathrm{~m}, \mathrm{~F}^{\mathrm{Ph}-\mathrm{m}}\right) .-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$
 ${ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=245 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}$), $138.0\left(\mathrm{~d},{ }^{1} \mathrm{JC}, \mathrm{F}=270 \mathrm{~Hz}, \mathrm{C}^{\mathrm{Ph}}\right.$), 131.66 ($\mathrm{s}, \mathrm{C}^{\mathrm{q}}$), 131.30 ($\mathrm{s}, \mathrm{C}^{\mathrm{q}}$), 129.9 (s, C2/C7), 129.0 (s, C4/C5), 128.6 (s,
 $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta[\mathrm{ppm}]=-5.7$ (s). - Elemental analysis calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~F}_{20} \mathrm{~N}_{2}\left(\mathrm{M}_{\mathrm{r}}=994.2\right)$: C 55.57, H 1.22, N 2.82 ; found: C 55.52, H 1.19, N 2.90.

3d•TMEDA - Elemental analysis calcd (\%) for $\mathrm{C}_{48} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{~F}_{20} \mathrm{~N}_{2}$ ($M_{r}=1030.3$): C 55.96, H 2.35, N 2.72; found: C 56.00, H 2.45, N 2.64.

NMR spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{3 a}$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S3. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 a}$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Me}_{2} \mathrm{BCl}(\mathbf{2 b})$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Me}_{2} \mathrm{BCl}(\mathbf{2 b})$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S6. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{Me}_{2} \mathrm{BCl}(\mathbf{2 b})$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\mathbf{3} \mathbf{b}$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S9. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 b}$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure $\mathbf{S 1 0} .{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ in $\mathrm{CDCl}_{3}(600 \mathrm{MHz})$.

Figure $\mathbf{S 1 1 .}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz})$.

Figure S12. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 c}$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure $\mathbf{S 1 3}$. ${ }^{1} \mathrm{H}$ NMR spectrum of 3 d in $\mathrm{C}_{6} \mathrm{D}_{6}(500 \mathrm{MHz})$.

Figure S14. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 d}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(470 \mathrm{MHz})$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of 3 d in DMSO- $\mathrm{d}_{6}(500 \mathrm{MHz})$.

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT NMR spectrum of 3d in DMSO $-d_{6}(126 \mathrm{MHz})$.

Figure S17. ${ }^{19} \mathrm{~F}$ NMR spectrum of 3d in DMSO- $\mathrm{d}_{6}(470 \mathrm{MHz})$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4d in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S20. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{4 d}$ in $\mathrm{CDCl}_{3}(470 \mathrm{MHz}$).

NMR spectra of the adducts

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a} \cdot 2 \mathrm{Py}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a} \cdot 2 \mathrm{Py}^{2}$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz}$).

Figure S23. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 a} \cdot 2 \mathrm{Py}$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of 3a•Pym in $\mathrm{CDCl}_{3}(600 \mathrm{MHz})$.

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a} \cdot \mathrm{Pym}$ in $\mathrm{CDCl}_{3}(150 \mathrm{MHz})$.

Figure S26. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 a} \cdot$ Pym in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c} \cdot 2 \mathrm{Py}$ in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c} \cdot 2 \mathrm{Py}$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S29. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 c} \cdot 2 \mathrm{Py}$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ - Pym in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c} \cdot \mathrm{Pym}$ in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S32. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 c} \cdot \operatorname{Pym}$ in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$-TMEDA in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$.

Figure S34. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 c} \cdot$ TMEDA in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$.

Figure S35. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{3 c}$-TMEDA in $\mathrm{CDCl}_{3}(160 \mathrm{MHz})$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d} \cdot 2$ Py in $\mathrm{C}_{6} \mathrm{D}_{6}(500 \mathrm{MHz})$.

Figure S37. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 d} \cdot 2$ Py in $\mathrm{C}_{6} \mathrm{D}_{6}(470 \mathrm{MHz})$.

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d} \cdot 2$ Py in $\mathrm{C}_{6} \mathrm{D}_{6}(126 \mathrm{MHz})$.

Figure S39. ${ }^{11}$ B NMR spectrum of $\mathbf{3 d} \cdot 2$ Py in $\mathrm{C}_{6} \mathrm{D}_{6}(160 \mathrm{MHz})$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{~d} \cdot$ Pym in $\mathrm{C}_{6} \mathrm{D}_{6}(500 \mathrm{MHz})$.

Figure $\mathbf{S 4 1}$. ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 d} \cdot$ Pym in $\mathrm{C}_{6} \mathrm{D}_{6}(470 \mathrm{MHz})$.

Figure S42. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d} \cdot$ Pym in $\mathrm{C}_{6} \mathrm{D}_{6}(126 \mathrm{MHz})$.

Figure S43. ${ }^{11}$ B NMR spectrum of $\mathbf{3 d} \cdot \operatorname{Pym}$ in $\mathrm{C}_{6} \mathrm{D}_{6}(160 \mathrm{MHz})$.

Solid state structures of 2-(diisopropylamino)-2-boraindane and bis(2-methylphenyl)-diisopropylaminoborane

During preparation of 2-chloro-2-boraindane diethyl etherate (2a) according to a literature protocol, ${ }^{[2]}$ single crystals of the precursor 2-(diisopropylamino)-2-boraindane (I) and the by-product diisopropylamino-bis(2-methylbenzyl)borane (II) were obtained (Scheme S2). Solid state structures of both compounds were determined by single crystal X-ray diffraction. The structures of I and II are shown in Figure S44.

Scheme S2. Generation of the compounds I and II during the synthesis of 2-chloro-2-boraindane diethyl etherate (2a)

1
II
Figure S44. Molecular structures of I and II in the solid state. Hydrogen atoms are omitted for clarity. For I, one of two independent molecules in the asymmetric unit is shown. Ellipsoids are set at 50% probability. Selected distances [Å] and angles [${ }^{\circ}$] of I : $B(1)-N(1) 1.391(1), N(1)-C(9) 1.485(1), N(1)-C(12) 1.481(1), B(1)-$ $\mathrm{C}(1) 1.601$ (1), $\mathrm{B}(1)-\mathrm{C}(8) 1.603(1), \mathrm{C}(1)-\mathrm{C}(2) 1.514(1), \mathrm{C}(7)-\mathrm{C}(8) 1.518$ (1); $\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{B}(1) 125.3(1), \mathrm{C}(12)-\mathrm{N}(1)-\mathrm{B}(1) 120.5(1), \mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(12) 114.2(1), \mathrm{N}(1)-$ $\mathrm{B}(1)-\mathrm{C}(1) 125.2(1), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(8) 127.9(1), \mathrm{C}(1)-\mathrm{B}(1)-\mathrm{C}(8) 106.9(1), \mathrm{B}(1)-\mathrm{C}(1)-\mathrm{C}(2) 103.5(1), \mathrm{B}(1)-\mathrm{C}(8)-\mathrm{C}(7) 103.5(1)$; of II: $\mathrm{B}(1)-\mathrm{N}(1) 1.407(2), \mathrm{N}(1)-\mathrm{C}(17)$ $1.485(1), N(1)-C(20) 1.484(1), B(1)-C(1) 1.607(2), B(1)-C(9) 1.594(2), C(1)-C(2) 1.510(2), C(9)-C(10) 1.513(2) ; C(17)-N(1)-B(1) 124.8(1), C(20)-N(1)-B(1)$ 122.5(1), $\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(20) 112.7(1), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(1) 121.5(1), \mathrm{N}(1)-\mathrm{B}(1)-\mathrm{C}(9) 123.7(1), \mathrm{B}(1)-\mathrm{C}(1)-\mathrm{C}(2) 114.0(1), \mathrm{B}(1)-\mathrm{C}(9)-\mathrm{C}(10) 113.9(1)$.

Crystallographic data

Single crystals were examined on a Rigaku Supernova diffractometer. The crystals were kept at 100.0(1) K during data collection. Using Olex $2^{[7]}$, the structures were solved with the ShelXT ${ }^{[8]}$ structure solution program using Intrinsic Phasing and refined with the ShelXL ${ }^{[9]}$ or olex2.refine ${ }^{[10]}$ refinement package using Least Squares minimization.
[3a•2 Py] was refined as a racemic twin and a disorder of C61 to C68 over two sites was modelled with ratio 82:18. For the refinement of [3c•2 Py] and [3c-TMEDA], non-spherical atom-form factors were applied using NoSpherA2. ${ }^{[11]}$ The crystal of [3c-TMEDA] was non-merohedrically twinned, the second domain was rotated by 42.1° around [0.97 $0.22-0.08$] (reciprocal) or [0.98 0.18 0.04] (direct) with ratio 92:8. Both domains were taken into account for data reduction and refinement. In [3d•2 Py], one $\mathrm{C}_{6} \mathrm{~F}_{6}$ groups is disordered with ratio $47: 53$, rigid body restraints were applied to disordered atoms. The crystal of [$4 \mathbf{d} \cdot 2.5 \mathrm{C}_{6} \mathrm{H}_{6}$] was non-merohedrically twinned, approximate ratio $60: 40$. Both domains were taken into account during data reduction, only the reflections of the main domain and the composite ones were used for structure refinement.

Details of the X-ray investigation are given in Table S1, Table S2 and Table S3. CCDC 2337388 - 2337399 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.

Table S1. Crystallographic data for compounds 3a, 3d, 4d and [3d•2 Py].

Compound	3a	3d	[4d-2.5 $\mathrm{C}_{6} \mathrm{H}_{6}$]	[3d•2 Py]
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~B}_{2}$	$\mathrm{C}_{42} \mathrm{H}_{8} \mathrm{~B}_{2} \mathrm{~F}_{20}$	$\mathrm{C}_{81} \mathrm{H}_{25} \mathrm{~B}_{4} \mathrm{~F}_{40}$	$\mathrm{C}_{58} \mathrm{H}_{24} \mathrm{~B}_{2} \mathrm{~F}_{20} \mathrm{~N}_{2}$
Mr	454.15	914.10	1801.25	1150.41
$T[\mathrm{~K}]$	99.9(3)	100.0(1)	100.0(1)	100.0(1)
Radiation	CuKa	CuKa	Cu Ka	Cu Ka
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	$P 21 / n$	$P 2 / n$	$P \overline{1}$	$P \overline{1}$
$a[\AA]$	5.00408(14)	19.8509(2)	12.7646(9)	11.3707(7)
$b[\AA]$	20.9765(5)	7.70443(10)	16.0907(10)	12.0641(7)
$c[\AA]$	23.1586(6)	22.3199(3)	19.4943(13)	19.7225(10)
$\alpha\left[{ }^{\circ}\right]$	90	90	80.332(5)	105.644(5)
$\beta\left[{ }^{\circ}\right]$	92.490(2)	96.0176(10)	71.304(6)	96.165(5)
$v\left[{ }^{\circ}\right]$	90	90	69.470(6)	108.009(5)
Volume [\AA^{3}]	2428.62(11)	3394.80(7)	3544.8(4)	2423.3(3)
z	4	4	2	2
$\rho_{\text {calc }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.242	1.789	1.688	1.577
$\mu\left[\mathrm{mm}^{-1}\right]$	0.520	1.629	1.545	1.289
$F(000)[e]$	952	1800	1782	1152
2Θ range [${ }^{\circ}$]	5.686-152.996	5.67-152.74	$5.876-148.274$	8.002-136.502
	$-6 \leq h \leq 5$	$-25 \leq h \leq 25$	$-15 \leq h \leq 15$	$-13 \leq h \leq 13$
Index ranges	$-17 \leq k \leq 26$	$-9 \leq k \leq 9$	$-19 \leq k \leq 19$	$-14 \leq k \leq 13$
	$-27 \leq 1 \leq 28$	$-28 \leq 1 \leq 28$	$-24 \leq 1 \leq 18$	$-22 \leq 1 \leq 23$
Refl. collected	14521	56830	25292	32253
Independent refl.	5007	7084	14816	8872
$R_{\text {int }}$	0.0305	0.0297	0.0853	0.1250
Refl. with $\mathrm{I}>2 \sigma(\mathrm{l})$	4586	6380	10457	4899
Data / restraints / parameters	5007 / / / 421	7084 / 0 / 577	14816 / 0 / 1128	8872 / 162 / 827
Goodness-of-Fit on F^{2}	1.037	1.026	0.944	1.004
$R_{1} / w R_{2}[1>2 \sigma(l)]$	$0.0424 / 0.1116$	$0.0303 / 0.0809$	$0.0592 / 0.1479$	0.0632 / 0.1344
$R_{1} / w R_{2}$ (all data)	$0.0458 / 0.1149$	0.0340 / 0.0844	$0.0807 / 0.1563$	$0.1279 / 0.1731$
$\begin{gathered} \rho_{\text {fin }}(\max / \min) \\ {\left[e \AA^{-3}\right]} \end{gathered}$	0.28/-0.18	0.26/-0.20	0.46/-0.33	0.29/-0.32
CCDC	2337388	2337389	2337390	2337391

Table S2. Crystallographic data for compounds [3a•2 Py], [3a•TMEDA], [3c•2 Py] and [3c•Pym].

Compound	[3a-2 Py]	[3a-TMEDA]	[3c. 2 Py]	[3c \cdot Pym] $\cdot \mathrm{C}_{6} \mathrm{H}_{6}$
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{~N}_{2}$
M_{r}	612.35	570.36	520.365	520.30
$T[\mathrm{~K}]$	100.0(1)	100.0(1)	100.0(1)	100.0(1)
Radiation	CuKa	Cu Ka	Mo Ka	Cu Ka
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_{1}$	$P 2_{1} / n$	P2 $1_{1} \mathrm{C}$	$P 2_{1} / n$
$a[\AA]$	11.17085(16)	10.3734(3)	11.8924(3)	10.5387(1)
$b[\AA]$	18.4947(2)	19.5963(5)	16.8358(3)	20.1073(2)
$c[\AA]$	16.5929(2)	15.8553(3)	16.0803(3)	14.4086(2)
$\beta\left[{ }^{\circ}\right]$	101.4546(14)	102.198(2)	110.959(2)	103.080(2)
Volume [\AA^{3}]	3359.85(8)	3150.28(13)	3006.55(12)	2974.03(6)
z	4	4	4	4
$\rho_{\text {calc }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.211	1.203	1.150	1.162
$\mu\left[\mathrm{mm}^{-1}\right]$	0.525	0.514	0.065	0.496
$F(000)$ [e]	1288	1216	1112.3	1112
2Θ range [${ }^{\circ}$]	$5.434-152.652$	$7.272-153.556$	5.54 to 73.74	7.682-152.906
	$-14 \leq h \leq 14$	$-12 \leq h \leq 12$	$-19 \leq h \leq 19$	$-13 \leq h \leq 13$
Index ranges	$-22 \leq k \leq 23$	$-17 \leq k \leq 24$	$-27 \leq k \leq 28$	$-25 \leq k \leq 25$
	$-20 \leq 1 \leq 20$	$-19 \leq 1 \leq 19$	$-27 \leq 1 \leq 26$	$-16 \leq 1 \leq 17$
Refl. collected	65174	30802	95727	65556
Independent refl.	13796	6535	14575	6218
$R_{\text {int }}$	0.0290	0.0408	0.0384	0.0355
Refl. with l >2 $2 \sigma(\mathrm{l})$	13520	5057	11136	5463
Data / restraints / parameters	13796/1/891	6535 / 0 / 558	14575/0/703	$\begin{gathered} 6218 \text { / } 0 \text { / } \\ 365 \end{gathered}$
Goodness-of-Fit on F^{2}	1.130	1.013	1.083	1.042
$R_{1} / w R_{2}[1>2 \sigma(l)]$	$0.0687 / 0.1791$	$0.0402 / 0.0946$	0.0347 / 0.0680	$0.0412 / 0.1067$
$R_{1} /$ w R_{2} (all data)	$0.0697 / 0.1800$	$0.0580 / 0.1048$	$0.0545, \mathrm{wR}_{2}=0.0751$	$0.0473 / 0.1114$
$\begin{gathered} \rho_{\text {fin }}(\max / \min) \\ {\left[e \AA^{-3}\right]} \end{gathered}$	0.53/-0.28	0.21/-0.19	$0.38 /-0.24$	0.25/-0.19
CCDC	2337392	2337393	2337394	2337395

Table S3. Crystallographic data for compounds [3c•TMEDA], [3d•Pym], I and II.

Compound	[3c-TMEDA]	[3d•Pym]	I	II
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~N}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{~F}_{20}$	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BN}$	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{BN}$
M_{r}	478.37	994.20	215.13	321.29
$T[\mathrm{~K}]$	100.0(1)	100.0(1)	100.0(2)	100.0(1)
Radiation	Cu Ka	Cu Ka	Cu Ka	Mo Ka
Crystal system	triclinic	monoclinic	monoclinic	orthorhombic
Space group	$P \overline{1}$	$P 2_{1} / \mathrm{c}$	12/a	Pbca
$a[\AA]$	7.74992(15)	9.0213(2)	14.22709(18)	11.8738(4)
$b[\AA]$	10.6301(2)	15.6580(3)	15.98244(15)	13.8926(4)
c [\AA]	17.3419(4)	26.8420(4)	23.7578(2)	23.7305(8)
$\alpha\left[{ }^{\circ}\right]$	95.5219(16)	90	90	90
$\beta\left[{ }^{\circ}\right]$	95.4644(16)	92.696(2)	100.0828(11)	90
$Y\left[{ }^{\circ}\right]$	94.6077(16)	90	90	90
Volume [\AA^{3}]	1409.79(5)	3787.38(12)	5318.70(10)	3914.5(2)
Z	2	4	16	8
$\rho_{\text {calc }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.127	1.744	1.075	1.090
$\mu\left[\mathrm{mm}^{-1}\right]$	0.473	1.535	0.447	0.061
$F(000)[e]$	521.314	1968	1888	1408
2Θ range [${ }^{\circ}$]	$5.14-152.18$	6.538-151.662	$6.698-153.158$	$3.432-64.546$
	$-9 \leq h \leq 9$	$-10 \leq h \leq 11$	$-16 \leq h \leq 17$	$-17 \leq h \leq 17$
Index ranges	$-13 \leq k \leq 13$	$-19 \leq k \leq 19$	$-20 \leq k \leq 20$	$-20 \leq k \leq 19$
	$-21 \leq 1 \leq 20$	$-33 \leq 1 \leq 33$	$-29 \leq 1 \leq 29$	$-35 \leq 1 \leq 35$
Refl. collected	25460	46095	48401	75830
Independent refl.	5803	7640	5551	6693
$R_{\text {int }}$	0.0173	0.0543	0.0303	0.0504
Refl. with $\mathrm{I} \times 2 \sigma(\mathrm{l})$	5052	6294	5031	5117
Data / restraints / parameters	$\begin{gathered} 5803 / 0 / \\ 501 \end{gathered}$	7640 / 0 / 631	$\begin{gathered} 5551 / 0 \text { / } \\ 465 \end{gathered}$	6693 / 0 / 345
Goodness-of-Fit on F^{2}	1.060	1.027	1.033	1.038
$R_{1} / w R_{2}[/>2 \sigma(l)]$	$0.0301 / 0.0850$	0.0390 / 0.0956	$0.0362 / 0.0903$	0.0521 / 0.1330
$R_{1} / w R_{2}$ (all data)	0.0342 / 0.0869	$0.0496 / 0.1022$	0.0404 / 0.0942	$0.0713 / 0.1443$
$\rho_{\text {fin }}(\max / \min)$ [$e \AA^{-3}$]	0.32/-0.19	0.30/-0.27	0.27/-0.18	0.32/-0.21
CCDC	2337396	2337397	2337398	2337399

References

[1] P. Niermeier, S. Blomeyer, Y. K. J. Bejaoui, J. L. Beckmann, B. Neumann, H.-G. Stammler and N. W. Mitzel, Angew. Chem. Int. Ed. 2019, 58, 1965-1969.
[2] G. E. Herberich, U. Eigendorf and U. Englert, Chem. Ber. 1993, 126, 1397-1402.
[3] M. Radius and F. Breher, Chem. Eur. J. 2018, 24, 15744-15749.
[4] W. S. Rees, M. D. Hampton, S. W. Hall and J. L. Mills, Inorg. Synth. 1990, 27, 339-342.
[5] D. J. Parks, W. E. Piers and G. P. A. Yap, Organometallics 1998, 17, 5492-5503.
[6] D. J. Parks, R. E. von H. Spence and W. E. Piers, Angew. Chem. 1995, 107, 895-897.
[7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
[8] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3.
[9] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
[10] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K Howard, H. Puschmann, Acta Crystallogr. 2015, A71, 59-75.
[11] F. Kleemiss, O. V. Dolomanov, M. Bodensteiner, N. Peyerimhoff, L. Midgley, L. J. Bourhis, A. Genoni, L. A. Malaspina, D. Jayatilaka, J. L. Spencer, F. White, B. Grundkötter-Stock, S. Steinhauer, D. Lentz, H. Puschmann, S. Grabowsky, Chem. Sci., 2021, 12, 1675 - 1692.

