Supporting Information

Influence of acid-base equilibrium on interactions of some monofunctional coumarin Pd(II) complexes with biologically relevant nucleophiles-comprehensive kinetic study

Žiko Milanovića,*, Zoran Markovića, ${ }^{\text {a,b }}$, Ana Kesića , Snežana Jovanović Stevićc, Biljana Petrovićd, Edina Avdovića
${ }^{a}$ University of Kragujevac, Institute of Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
${ }^{b}$ Department of Natural Science and Mathematics, State University of Novi Pazar, Vuka Karadžića bb, 36300, Novi Pazar, Serbia
${ }^{c}$ University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
${ }^{d}$ University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia

[^0]
Table of contents:

Table S1	Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C 1}$ and L-Cys in 25 mM Hepes buffer and $50 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH}=7.2)$ at 288 K and 298 K	9
Table S2	Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C 1}$ and nucleophiles in 25 mM Hepes buffer and $50 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH}=$ 7.2) at 310 K	10
Table S3	Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C 2}$ and L-Cys in 25 mM Hepes buffer and $50 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH}=7.2)$ at 288 K and 298 K	11
Table S4	Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C 2}$ and nucleophiles in 25 mM Hepes buffer and $50 \mathrm{mM} \mathrm{NaCl}(\mathrm{pH}=$ 7.2) at 310 K .	12
Figure S1	Kinetic trace for the reaction of $\mathbf{C} 2$ complex $\left(1 \times 10^{-4} \mathrm{M}\right)$ with \mathbf{L} Met $\left(4 \times 10^{-3} \mathrm{M}\right)$ at $\mathrm{pH}=7.2(25 \mathrm{mM}$ Hepes with addition 50 mM NaCl) and 310 K	13
Figure S2	Eyring plots for the reaction of $\mathbf{C 1}$ and $\mathbf{C 2}$ with L-Cys at $\mathrm{pH}=7.2$ (25 mM HEPES with addition 50 mM NaCl).	14
Table S5	Molar fractions ($f, \%$) of differently represented acid-base species of $\mathbf{L}-\mathbf{C y s}$ amino acid at different pH values.	14
Figure S3	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C1-SH-Cys transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++G(d, p)$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.	15
Figure S4	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C1-$\mathbf{O}-\mathbf{C y s}^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.	16
Figure S5	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C1-S-Cys ${ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen	17

	atom, yellow - sulfur.	
Figure S6	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-O-Cys transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.	18
Figure S7	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-SH-Cys transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur	19
Figure S8	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2$\mathbf{O - C y s}{ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.	20
Figure S9	Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-S-Cys ${ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur	21
Table S6	Summed total energies (G (Hartree)) of reaction participants (local minima and maxima) obtained from IRC calculations	22
Table S7	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for transition states (TS) of $\mathbf{C 1}$ compound	23
Table S8	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for transition states (TS) of $\mathbf{C} 2$ compound	24
Figure S10	Optimized geometries of pre-reaction (PRC) complexes between the investigated compounds, $\mathbf{C} 1$ and $\mathbf{C 2}$, and acid-base forms of \mathbf{L} -Cys/L-Cys ${ }^{-}$with intramolecular hydrogen bond (interrupted line)	25

	obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd theory in the water. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur	
Table S9	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for pre-reaction complexes (PRC) of $\mathbf{C} \mathbf{1}$ compound	26
Table S10	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for pre-reaction complexes (PRC) of $\mathbf{C} 2$ compound	27
Figure S11	Optimized geometries of post-reaction (PoRC) complexes between the investigated compounds, $\mathbf{C 1}$ and $\mathbf{C 2}$, and acid-base forms of \mathbf{L} -Cys/L-Cys ${ }^{-}$with intramolecular hydrogen bond (interrupted line) obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd theory in the water. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.	28
Table S11	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for post-reaction complexes (PoRC) of $\mathbf{C 1}$ compound	29
Table S12	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for post-reaction complexes (PoRC) of $\mathbf{C} 2$ compound	30
Figure S12	Optimized geometries of products formed in the reaction between the investigated compounds, $\mathbf{C 1}$ and $\mathbf{C 2}$, and acid-base forms of \mathbf{L} $\mathbf{C y s} / \mathrm{L}^{-\mathrm{Cys}^{-}}$with intramolecular hydrogen bond (interrupted line) obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd theory in the water. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur	31
Table S13	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for products of $\mathbf{C 1}$ compound	32
Table S14	The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for products of $\mathbf{C} \mathbf{2}$ compound	33
Table S15	Calculated values of kinetic parameters: Gibbs activation energy	34

	$\left(\Delta G_{\mathrm{a}}\right)$, reaction rate constants (k), effective values of rate constants (k^{eff}) and the sum of effective values of rate constants ($k^{\text {eff, sum })}$ [M^{-} ${ }^{1} \mathrm{~S}^{-1}$] estimated at 288 K and 298 K .	
Figure S13	Experimental UV-Vis spectra in Hepes buffer (25 mM Hepes and 50 mM NaCl) of $\mathbf{C 1}$ (red line) and the mixture of $\mathbf{C 1}$ and L-Cys in the ratio 1:1 (black line)	34
Figure S14	Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a $1: 1$ mixture of $\mathbf{C} 1$ and L-Cys (black line) and simulated spectrum of the C1-S-Cys ${ }^{-}$product (orange line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign $" * "$ and the vertical dashed line represent the oscillator strength value.	35
Figure S15	Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a $1: 1$ mixture of $\mathbf{C} 1$ and L-Cys (black line) and simulated spectrum of the C1-O-Cys product (blue line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.	36
Figure S16	Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a $1: 1$ mixture of $\mathbf{C} 1$ and L-Cys (black line) and simulated spectrum of the C1-O-Cys ${ }^{-}$product (purple line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.	37
Figure S17	Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a $1: 1$ mixture of $\mathbf{C} \mathbf{1}$ and L-Cys (black line) and simulated spectrum of the C1-HS-Cys product (green line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.	38

To quantify the molar fractions of acid-base species, the relationship between the acid constants (Ka) and the $p \mathrm{~K}_{\mathrm{a}}$ values as well as the expression for the equilibrium constant of the deprotonation process was used:

$$
\begin{gather*}
K a_{1}=10^{-p K a 1} \tag{1s}\\
K a_{2}=10^{-p K a 2} \tag{2s}\\
K a_{3}=10^{-p K a 3} \tag{3s}\\
K a_{4}=10^{-p K a 4} \tag{4s}\\
K a_{1}=\frac{\left[A_{n}-R^{-}\right]\left[H^{+}\right]}{\left[A_{n}-R H\right]} \tag{5s}\\
K a_{2}=\frac{\left[A_{n}-R^{2-}\right]\left[H^{+}\right]}{\left[A_{n}-R^{-}\right]} \tag{6s}\\
K a_{3}=\frac{\left[A_{n}-R^{3-}\right]\left[H^{+}\right]}{\left[A_{n}-R^{2-}\right]} \tag{7s}\\
K a_{4}=\frac{\left[A_{n}-R^{4-}\right]\left[H^{+}\right]}{\left[A_{n}-R^{3-}\right]} \tag{8s}
\end{gather*}
$$

Molar fractions (f) of the represented acid-base species, were calculated using the following equations:

$$
\begin{gather*}
f\left(A_{n}-R^{4-}\right)=\frac{1}{1+\beta_{1}\left[H^{+}\right]+\beta_{2}\left[H^{+}\right]^{2}+\beta_{2}\left[H^{+}\right]^{2}+\beta_{4}\left[H^{+}\right]^{4}} \tag{9s}\\
f\left(A_{n}-R^{3-}\right)=\beta_{1}\left[H^{+}\right] f\left(A_{n}-R^{4-}\right) \tag{10s}\\
f\left(A_{n}-R^{2-}\right)=\beta_{2}\left[H^{+}\right]^{2} f\left(A_{n}-R^{3-}\right) \tag{11s}\\
f\left(A_{n}-R^{-}\right)=\beta_{3}\left[H^{+}\right]^{3} f\left(A_{n}-R^{2-}\right) \tag{12s}
\end{gather*}
$$

where $\left[\mathrm{H}^{+}\right]$represents the concentration of hydrogen ions at physiological pH in this case $\left(\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-8} \mathrm{M}\right)$, while β represents global formation equilibrium constants:

$$
\begin{gather*}
\beta_{1}=10^{p K a 4} \tag{13s}\\
\beta_{2}=10^{p K a 4+p K a 3} \tag{14s}\\
\beta_{3}=10^{p K a 4+p K a 3+p K a 2} \tag{15s}\\
\beta_{4}=10^{p K a 4+p K a 3+p K a 2+p K a 1} \tag{16s}
\end{gather*}
$$

Table S1. Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C 1}$ and \mathbf{L}-Cys in 25 mM Hepes buffer and 50 mM $\mathrm{NaCl}(\mathrm{pH}=7.2)$ at 288 K and 298 K .

Ligand	$\mathbf{T}[\mathbf{K}]$	$\boldsymbol{\lambda}[\mathbf{n m}]$	$\mathbf{1 0}^{\mathbf{3}} \mathbf{C}_{\mathbf{L}}[\mathbf{M}]$	$\mathbf{k}_{\text {obsd }}\left[\mathbf{s}^{\mathbf{- 1}}\right]$
$\mathbf{L - C y s}$	288	260	1	$53.85(6)^{\mathbf{a}}$
		2	$97.80(6)$	
	3	$140.66(5)$		
	4	$200.34(4)$		
	298	5	$246.45(5)$	
	1	$61.10(4)$		
	2	$112.68(6)$		
	3	$171.90(5)$		
	4	$230.10(6)$		
		5	$290.70(5)$	

[^1]Table S2. Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C 1}$ and nucleophiles in 25 mM Hepes buffer and 50 $\mathrm{mM} \mathrm{NaCl}(\mathrm{pH}=7.2)$ at 310 K .

Nucleophile	$\lambda / \mathbf{n m}$	$10^{3} \mathrm{C}_{\mathrm{L}} / \mathrm{M}$	$\mathbf{k}_{\text {obsd }} / \mathbf{s}^{-1}$
L-Cys	260	1	68.98(6) ${ }^{\text {a }}$
		2	160.05(5)
		3	250.58(5)
		4	307.36(6)
		5	374.06(5)
L-Met	285	1	14.83(4)
		2	31.52(5)
		3	45.90(5)
		4	61.47(4)
		5	76.33(6)
5'-GMP	315	1	2.90(4)
		2	5.20(6)
		3	7.29(4)
		4	10.57(6)
		5	13.10(5)

[^2]Table S3. Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C} 2$ and \mathbf{L}-Cys in 25 mM Hepes buffer and 50 mM $\mathrm{NaCl}(\mathrm{pH}=7.2)$ at 288 K and 298 K.

Ligand	$\mathbf{T}[\mathbf{K}]$	$\boldsymbol{\lambda}[\mathbf{n m}]$	$\mathbf{1 0}^{\mathbf{3}} \mathbf{C}_{\mathbf{L}}[\mathbf{M}]$	$\mathbf{k}_{\text {obsd }}\left[\mathbf{s}^{\mathbf{- 1}}\right]$
$\mathbf{L - C y s}$	288	265	1	$76.60(5)^{\mathrm{a}}$
		2	$138.44(6)$	
		3	$208.10(5)$	
		4	$278.54(5)$	
		5	$347.90(5)$	
	298	1	$87.20(5)$	
		2	$160.77(6)$	
		4	$255.50(5)$	
		5	$320.68(4)$	
			$408.80(5)$	

[^3]Table S4. Observed pseudo-first-order rate constants as a function of ligand concentration for the substitution reactions between complex $\mathbf{C} 2$ and nucleophiles in 25 mM Hepes buffer and 50 $\mathrm{mM} \mathrm{NaCl}(\mathrm{pH}=7.2)$ at 310 K .

Nucleophile	$\lambda / \mathbf{n m}$	$10^{3} \mathrm{C}_{\mathrm{L}} / \mathrm{M}$	$\mathbf{k}_{\text {obsd }} / \mathbf{s}^{-1}$
L-Cys	265	1	97.74(5) ${ }^{\text {a }}$
		2	232.70(5)
		3	393.94(5)
		4	460.87(4)
		5	551.49(5)
L-Met	280	1	23.91(5)
		2	43.60(5)
		3	64.05(5)
		4	85.89(4)
		5	112.56(6)
5'-GMP	320	1	6.39(5)
		2	13.66(6)
		3	20.59(6)
		4	25.70(6)
		5	32.88(5)

${ }^{a}$ Number of runs in parenthesis.

Figure S1. Kinetic trace for the reaction of $\mathbf{C} 2$ complex $\left(1 \times 10^{-4} \mathrm{M}\right)$ with $\mathbf{L - M e t}\left(4 \times 10^{-3} \mathrm{M}\right)$ at $\mathrm{pH}=7.2(25 \mathrm{mM}$ Hepes with addition 50 mM NaCl$)$ and 310 K .

Figure S2. Eyring plots for the reaction of $\mathbf{C 1}$ and $\mathbf{C} 2$ with $\mathbf{L}-\mathbf{C y s}$ at $\mathrm{pH}=7.2(25 \mathrm{mM}$ HEPES with addition 50 mM NaCl).

Table S5. Molar fractions ($f, \%$) of differently represented acid-base species of $\mathbf{L}-\mathbf{C y s}$ amino acid at different pH values.

$\mathbf{p H}$	L-Cys $^{+}$	L-Cys $^{\text {(}}$	L-Cys $^{-}$	L-Cys $^{\mathbf{2 -}}$
0.0	99.12	0.88	0.00	0.00
1.0	91.82	8.18	0.00	0.00
2.0	52.88	47.12	0.00	0.00
3.0	10.09	89.91	0.00	0.00
4.0	1.11	98.88	0.01	0.00
5.0	0.11	99.79	0.10	0.00
6.0	0.01	99.00	0.99	0.00
7.0	0.00	90.90	9.09	0.01
7.2	$\mathbf{0 . 0 0}$	$\mathbf{8 6 . 3 1}$	$\mathbf{1 3 . 6 8}$	$\mathbf{0 . 0 1}$
8.0	0.00	49.86	49.86	0.28
9.0	0.00	8.65	86.49	4.86
10.0	0.00	0.64	63.60	35.76
11.0	0.00	0.02	15.10	84.89
12.0	0.00	0.00	1.75	98.25
13.0	0.00	0.00	0.18	99.82
14.0	0.00	0.00	0.02	99.98

Figure S3. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C1-SH-Cys transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Figure S4. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C1-O-Cys ${ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Figure S5. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C1-S-Cys ${ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Figure S6. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-O-Cys transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Figure S7. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-SH-Cys transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Figure S8. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-O-Cys ${ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Figure S9. Intrinsic Reaction Coordinate (IRC) diagrams connecting the C2-S-Cys ${ }^{-}$transition state (TS) with two minima: pre-reaction (PRC) and post-reaction (PoRC) complexes on the singlet potential energy surface obtained with M06-2X functional in conjunction with 6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Table S6. Summed total energies (G (Hartree)) of reaction participants (local minima and maxima) obtained from IRC calculations

Acid-base species	C1 (Total energy, G (Hartree))		
	PRC	TS	PoRC
O-Cys	-2207.523801	-2207.506403	-2207.519360
HS-Cys	-2207.510977	-2207.493530	-2207.501181
O-Cys $^{-}$	-2207.062323	-2207.044306	-2207.058538
S-Cys	-2207.071232	-2207.055804	-2207.080959
Acid-base species	C2 (Total energy, G (Hartree))		
	-2491.181094	-2491.164646	
HS-Cys	-2491.173520	-2491.157053	-2491.182575
O-Cys $^{-}$	-2490.717309	-2490.700565	-2490.165609
S-Cys	-2490.714322	-2490.706464	-2490.733251

Table S7. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for transition states (TS) of $\mathbf{C 1}$ compound

O-Cys					HS-Cys					
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP	

$\mathrm{Pd}-\mathrm{O}_{3}$	0.4613	Pd	0.826	45.174	Pd-O 3	0.4578	Pd	0.803	45.192
Pd- ${ }_{4}{ }^{\prime \prime}$	0.3345	O_{3}	-0.641	8.641	Pd-O ${ }_{4}{ }^{\prime \prime}$	0.2887	O_{3}	-0.647	8.647
Pd- N_{1} "	0.5552	$\mathrm{O}_{4}{ }^{\prime \prime}$	-0.745	8.745	Pd- N_{1} "	0.5581	O_{4} "	-0.723	8.723
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.2160	N_{1} "	-0.479	7.470	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.1922	N_{1} "	-0.476	7.476
		Cl_{1}	-0.805	17.805			Cl_{1}	-0.812	17.812
$\mathrm{Pd}-\mathrm{O}_{\text {Cys }}$	0.1794	$\mathrm{O}_{\text {Cys }}$	-0.768	8.768	$\mathrm{Pd}-\mathrm{S}_{\text {Cys }}$	0.2481	$\mathrm{S}_{\text {Cys }}$	0.029	15.971
NEC	Pd[core] $5 s^{0.25} 4 d^{8.63} 5 p^{0.29} 5 d^{0.01}$				Pd[core] $5 s^{0.25} 4 d^{8.67} 5 p^{0.27} 5 d^{0.01}$				
	O_{3} [core $] 2 s^{1.64} 2 p^{4.97} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{4.98} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{O}_{4 \times}{ }^{[}$[core $] 2 s^{1.63} 2 p^{5.10} 4 p^{0.01}$				$\mathrm{O}_{4}{ }^{\prime}$ [core $] 2 s^{1.66} 2 p^{5.05} 3 p^{0.01} 4 p^{0.01}$				
	N_{1},[core $] 2 s^{1.29} 2 p^{4.15} 3 p^{0.01} 4 p^{0.01}$				N_{1}, $[$ core $] 2 s^{1.29} 2 p^{4.16} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.96} 3 p^{5.85}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.96} 3 p^{5.85}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 2 s^{1.69} 2 p^{5.06} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.68} 3 p^{4.26} 3 d^{0.02}$				
O-Cys					S-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.4539	Pd	0.821	45.179	Pd-O ${ }_{3}$	0.4630	Pd	0.712	45.288
Pd-O4'	0.3539	O_{3}	-0.642	8.643	$\mathrm{Pd}^{\left(\mathrm{O}_{4}{ }^{\prime \prime}\right.}$	0.3522	O_{3}	-0.632	8.632
Pd- N_{1} "	0.5481	$\mathrm{O}_{4}{ }^{\prime \prime}$	-0.749	8.749	$\mathrm{Pd}-\mathrm{N}_{1}{ }^{\prime}$	0.4931	$\mathrm{O}_{4}{ }^{\prime \prime}$	-0.772	7.489
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.2173	N_{1} "	0.472	7.472	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.3341	N_{1} "	-0.489	8.773
		Cl_{1}	-0.817	17.817			Cl_{1}	-0.782	17.782
$\mathrm{Pd}-\mathrm{O}_{\mathrm{Cys}}$	0.1892	$\mathrm{O}_{\mathrm{Cys}}$	-0.749	8.775	$\mathrm{Pd}-\mathrm{S}_{\text {Cys }}$	0.2997	$\mathrm{S}_{\text {Cys }}$	-0.539	16.539
NEC	Pd[core] $5 s^{0.25} 4 d^{8.63} 5 p^{0.29} 5 d^{0.01}$				$\operatorname{Pd}[$ core $] 5 s^{0.264} 4 d^{8.64} 5 p^{0.37} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.64} 2 p^{4.97} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{O}_{4}{ }^{\prime}$ [core $] 2 s^{1.63} 2 p^{5.10} 3 p^{0.01}$				$\mathrm{O}_{4} \cdot[$ [core $] 2 s^{1.62} 2 p^{5.13} 3 p^{0.01} 4 p^{0.01}$				
	N_{1}, $[$ core $] 2 s^{1.29} 2 p^{4.16} 4 p^{0.01}$				N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.17} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[\text { core }] 3 s^{1.96} 3 p^{5.85}$				$\mathrm{Cl}_{1}[\text { core }] 3 s^{1.94} 3 p^{5.84}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 2 s^{1.69} 2 p^{5.06} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.78} 3 p^{4.73} 3 d^{0.01}$				

Table S8. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for transition states (TS) of $\mathbf{C} 2$ compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
${\mathrm{Pd}-\mathrm{O}_{3}}^{0} 0.4225$	Pd	0.587	45.413	$\mathrm{Pd}^{-} \mathrm{O}_{3}$	0.4262	Pd	0.514	45.486	

Pd-S ${ }_{4}{ }^{\prime \prime}$	0.6194	O_{3}	-0.642	8.642	Pd-S ${ }_{4}$ "	0.6053	O_{3}	-0.648	8.648
Pd- ${ }_{1}{ }^{\prime \prime}$	0.5156	S_{4} "	0.267	15.733	$\mathrm{Pd}-\mathrm{N}_{1}$ "	0.5142	S_{4} "	0.257	15.743
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.2808	N_{1} "	-0.476	7.476	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.2640	N_{1} "	-0.480	7.480
		Cl_{1}	-0.768	17.768			Cl_{1}	-0.772	17.772
$\mathrm{Pd}-\mathrm{O}_{\text {Cys }}$	0.1776	$\mathrm{O}_{\text {Cys }}$	-0.794	8.794	Pd-S $\mathrm{C}_{\text {Cys }}$	0.2976	$\mathrm{S}_{\text {Cys }}$	0.055	15.945
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.27} 4 d^{8.76} 5 p^{0.37} 5 d^{0.01}$				Pd[core] $5 s^{0.29} 4 d^{8.79} 5 p^{0.40} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{S}_{4}{ }^{\prime}[$ core $] 3 s^{1.65} 3 p^{4.05} 3 d^{0.02}$				S_{4} "[core] $3 s^{1.65} 3 p^{4.06} 3 d^{0.02}$				
	N_{1}, core $] 2{ }^{1.30} 2 p^{4.15} 3 p^{0.01} 4 p^{0.01}$				N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.15} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.95} 3 p^{5.82}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.94} 3 p^{5.83}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 2 s^{1.70} 2 p^{5.08} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.67} 3 p^{4.24} 3 d^{0.02}$				
O-Cys ${ }^{-}$					S-Cys ${ }^{-}$				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.4216	Pd	0.575	45.425	$\mathrm{Pd}-\mathrm{O}_{3}$	0.4195	Pd	0.436	45.564
Pd-S ${ }_{4}{ }^{\prime \prime}$	0.6257	O_{3}	-0.641	8.641	Pd-S ${ }_{4}$ "	0.6415	O_{3}	-0.639	8.639
Pd- N_{1} "	0.5079	S_{4},	0.280	15.720	$\mathrm{Pd}-\mathrm{N}_{1}$ "	0.4623	S_{4},	0.273	15.727
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.3013	N_{1} "	-0.479	7.479	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.3911	N_{1} "	-0.489	7.489
		Cl_{1}	-0.764	17.764			Cl_{1}	-0.743	17.743
$\mathrm{Pd}-\mathrm{O}_{\text {Cys }}$	0.1800	$\mathrm{O}_{\mathrm{Cys}}$	-0.813	8.813	$\mathrm{Pd}-\mathrm{S}_{\mathrm{Cys}}$	0.3323	$\mathrm{S}_{\text {Cys }}$	-0.526	16.526
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.27} 4 d^{8.76} 5 p^{0.38} 5 d^{0.01}$				Pd[core] $5 s^{0.29} 4 d^{8.79} 5 p^{0.47} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				
	$\mathrm{S}_{4 \times}$ [[core] $3 s^{1.65} 3 p^{4.03} 3 p^{0.01} 3 d^{0.01}$				S_{4} "[$[$ core $] 3 s^{1.64} 3 p^{4.05} 3 d^{0.02}$				
	N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.15} 3 p^{0.01}$				N_{1},[core $] 2 s^{1.30} 2 p^{4.16} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.94} 3 p^{5.82}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.93} 3 p^{5.81}$				
	$\mathrm{O}_{\text {Cys }}[$ core $] 2 s^{1.70} 2 p^{5.09} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.77} 3 p^{4.72} 3 d^{0.01}$				

Figure S10. Optimized geometries of pre-reaction (PRC) complexes between the investigated compounds, $\mathbf{C 1}$ and $\mathbf{C 2}$, and acid-base forms of $\mathbf{L - C y s} / \mathbf{L}-\mathbf{C y s}^{-}$with intramolecular hydrogen bond (interrupted line) obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd theory in the water. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Table S9. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for pre-reaction complexes (PRC) of $\mathbf{C 1}$ compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.4349	Pd	0.742	45.258	Pd-O ${ }_{3}$	0.4400	Pd	0.744	45.256
Pd- $\mathrm{O}_{4 \prime \prime}$	0.3381	O_{3}	-0.648	8.648	Pd-O ${ }_{4}{ }^{\prime \prime}$	0.2928	O_{3}	-0.678	8.678
Pd- N_{1} "	0.5295	O_{4} "	-0.752	8.752	Pd- N_{1} "	0.5267	O_{4} "	-0.718	8.718
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5000	N_{1},	-0.477	7.477	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5204	N_{1},	-0.482	7.482
		Cl_{1}	-0.631	17.631			Cl_{1}	-0.628	17.628
$\mathrm{Pd}-\mathrm{O}_{\text {Cys }}$	0.0319	$\mathrm{O}_{\mathrm{Cys}}$	-0.755	8.755	Pd-S $\mathrm{S}_{\text {cys }}$	0.0390	$\mathrm{S}_{\mathrm{Cys}}$	-0.054	16.054
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.29} 4 d^{8.68} 5 p^{0.27} 5 d^{0.01}$				Pd[core] $5 s^{0.29} 4 d^{8.86} 5 p^{0.27} 5 d^{0.01}$				
	$\mathrm{O}_{3}[$ core $] 2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{4.99} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{O}_{4}{ }^{4}$ [core $] 2 s^{1.64} 2 p^{5.09} 3 p^{0.01}$				$\mathrm{O}_{4}{ }^{\text {, }}$ [core $] 2 s^{1.65} 2 p^{5.05} 3 p^{0.01}$				
	$\mathrm{N}_{1},[$ core $] 2 s^{1.29} 2 p^{4.16} 3 p^{0.01}$				$\mathrm{N}_{1,}$ [$[$ core $] 2 s^{1.29} 2 p^{4.16} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.92} 3 p^{5.71}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.92} 3 p^{5.71}$				
	$\mathrm{O}_{\text {Cys }}[$ core $] 2 s^{1.71} 2 p^{5.03} 3 p^{0.01}$				$\mathrm{S}_{\text {Cys }}[$ core $] 3 s^{1.70} 3 p^{4.32} 3 d^{0.01}$				
O-Cys					S-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
Pd-O ${ }_{3}$	0.4294	Pd	0.738	45.261	Pd- O_{3}	0.4288	Pd	0.733	45.267
Pd- $\mathrm{O}_{4 \prime \prime}$	0.3470	O_{3}	-0.650	8.650	Pd-O ${ }_{4}{ }^{\prime \prime}$	0.3357	O_{3}	-0.648	8.648
$\mathrm{Pd}-\mathrm{N}_{1}{ }^{\prime \prime}$	0.5255	O_{4} "	-0.756	8.756	Pd- N_{1} "	0.5059	O_{4} "	-0.749	8.748
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5068	N_{1},	-0.476	7.476	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5290	N_{1},	-0.496	7.496
		Cl_{1}	-0.626	17.626			Cl_{1}	-0.627	17.627
$\mathrm{Pd}-\mathrm{O}_{\mathrm{Cys}}$	0.0279	$\mathrm{O}_{\text {Cys }}$	-0.770	8.770	$\mathrm{Pd}-\mathrm{S}_{\mathrm{Cys}}$	0.0112	$\mathrm{S}_{\text {Cys }}$	-0.721	16.721
NEC	Pd[core] $5 s^{0.30} 4 d^{8.88} 5 p^{0.27} 5 d^{0.01}$				Pd[core] $5 s^{0.30} 4 d^{8.68} 5 p^{0.27} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01}$				
	O_{4}.[core $] 2 s^{1.64} 2 p^{5.10} 3 p^{0.01}$				$\mathrm{O}_{4} \cdot[$ core $] 2 s^{1.64} 2 p^{5.09} 3 p^{0.01}$				
	N_{1},[core $] 2 s^{1.29} 2 p^{4.16} 3 p^{0.01}$				N_{1}, [core $] 2 s^{1.29} 2 p^{4.17} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.92} 3 p^{5.71}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.91} 3 p^{5.71}$				
	$\mathrm{O}_{\text {Cys }}[$ core $] 2 s^{1.71} 2 p^{5.05} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.82} 3 p^{4.87} 3 d^{0.01}$				

Table S10. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for pre-reaction complexes (PRC) of C2 compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.3731	Pd	0.486	45.514	Pd- O_{3}	0.3831	Pd	0.519	45.481
Pd-S ${ }_{4}{ }^{\prime \prime}$	0.6175	O_{3}	-0.690	8.690	Pd- $\mathrm{S}_{4}{ }^{\prime \prime}$	0.5947	O_{3}	-0.692	8.692
Pd- ${ }_{1}$ "	0.4938	S_{4},	0.216	15.784	Pd-N ${ }_{1}$ "	0.5002	S_{4},	0.252	16.056
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5563	N_{1},	-0.471	7.471	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5405	N_{1},	-0.485	7.484
		Cl_{1}	-0.587	17.587			Cl_{1}	-0.594	17.594
$\mathrm{Pd}^{-\mathrm{O}_{\text {cys }}}$	0.0373	$\mathrm{O}_{\text {Cys }}$	-0.780	8.780	Pd-S $\mathrm{S}_{\text {Cys }}$	0.0416	$\mathrm{S}_{\text {Cys }}$	-0.056	16.056
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.33} 4 d^{8.83} 5 p^{0.34} 5 d^{0.01}$				Pd[core] $5 s^{0.33} 4 d^{88.81} 5 p^{0.33} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.65} 2 p^{5.01} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{5.00} 3 p^{0.01} 4 p^{0.01}$				
	S_{4} [[core] $3 s^{1.71} 3 p^{4.31} 3 d^{0.01}$				S_{4}.[core $] 3 s^{1.65} 3 p^{4.06} 3 d^{0.02}$				
	N_{1}.[$[$ core $] 2 s^{1.30} 2 p^{4.15} 3 p^{0.01}$				N_{1},[[core $] 2 s^{1.30} 2 p^{4.16} 3 p^{0.01} 4 p^{0.01}$				
	Cl_{1} [core] $3 s^{1.90} 3 p^{5.68}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.91} 3 p^{5.68}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 25^{1.71} 2 p^{5.05} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.70} 3 p^{4.32} 3 d^{0.01}$				
O-Cys ${ }^{-}$					S-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.3671	Pd	0.484	45.516	Pd- O_{3}	0.3789	Pd	0.503	45.497
$\mathrm{Pd}-\mathrm{S}_{4}{ }^{\prime \prime}$	0.6284	O_{3}	-0.689	8.689	Pd- $\mathrm{S}_{4}{ }^{\prime \prime}$	0.6007	O_{3}	-0.662	8.661
$\mathrm{Pd}-\mathrm{N}_{1}$ "	0.4917	S_{4},	0.193	15.807	Pd-N ${ }_{1}$ "	0.4864	S_{4},	0.251	15.749
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5489	N_{1},	-0.469	7.469	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.5453	N_{1} "	-0.483	7.483
		Cl_{1}	-0.589	17.589			Cl_{1}	-0.592	17.592
${\mathrm{Pd}-\mathrm{O}_{\text {cys }}}$	0.0354	$\mathrm{O}_{\mathrm{Cys}}$	-0.793	8.793	Pd-S ${ }_{\text {Cys }}$	0.0669	$\mathrm{S}_{\text {Cys }}$	-0.707	16.7070
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.33} 4 d^{8.83} 5 p^{0.34} 5 d^{0.01}$				$\operatorname{Pd}[$ core $] 5 s^{0.33} 4 d^{8.82} 5 p^{0.34} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.65} 2 p^{5.02} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{4.993} p^{0.01}$				
	$\mathrm{S}_{4} \cdot[\text { core }] 3 s^{1.64} 3 p^{4.13} 3 d^{0.02}$				$\mathrm{S}_{4} \cdot[\text { core }] 3 s^{1.66} 3 p^{4.06} 3 d^{0.02}$				
	N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.14} 3 p^{0.01}$				N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.16} 3 p^{0.01}$				
	$\mathrm{Cl}_{1}\left[\right.$ core] $3 s^{1.90} 3 p^{5.68}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.90} 3 p^{5.68}$				
	$\mathrm{O}_{\mathrm{Cys}}[\text { core }] 2 s^{1.71} 2 p^{5.07} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.81} 3 p^{4.87} 3 d^{0.01}$				

Figure S11. Optimized geometries of post-reaction (PoRC) complexes between the investigated compounds, $\mathbf{C 1}$ and $\mathbf{C 2}$, and acid-base forms of $\mathbf{L}-\mathbf{C y s} / \mathbf{L}-\mathbf{C y s}^{-}$with intramolecular hydrogen bond (interrupted line) obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and $\mathrm{H} /$ def2-TZVPD, triple-zeta-valence, basis set for atom Pd theory in the water. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Table S11. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for post-reaction complexes (PoRC) of $\mathbf{C 1}$ compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
Pd-O ${ }_{3}$	0.4347	Pd	0.885	45.115	Pd-O ${ }_{3}$	0.4478	Pd	0.718	45.282
Pd-O ${ }_{4}{ }^{\prime \prime}$	0.3093	O_{3}	-0.652	8.652	$\mathrm{Pd}-\mathrm{O}_{4}{ }^{\prime}$	0.3220	O_{3}	-0.645	8.645
Pd- N_{1} "	0.5424	$\mathrm{O}_{4}{ }^{\prime \prime}$	-0.733	8.733	Pd- N_{1} "	0.5187	$\mathrm{O}_{4}{ }^{\prime \prime}$	-0.784	8.785
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0023	N_{1},	-0.483	7.483	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0076	N_{1},	-0.486	7.486
		Cl_{1}	-0.897	17.897			Cl_{1}	-0.836	17.834
$\mathrm{Pd}-\mathrm{O}_{\mathrm{Cys}}$	0.3345	$\mathrm{O}_{\mathrm{Cys}}$	-0.756	8.756	$\mathrm{Pd}-\mathrm{S}_{\mathrm{Cys}}$	0.5017	$\mathrm{S}_{\text {Cys }}$	0.146	15.854
NEC	Pd[core] $5 s^{0.28} 4 d^{8.62} 5 p^{0.20} 5 d^{0.01}$				$\mathrm{Pd}[$ core $] 5 s^{0.31} 4 d^{8.72} 5 p^{0.245} d^{0.01}$				
	O_{3} [core] $2 s^{1.65} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.64} 2 p^{4.98} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{O}_{4}[$ core $] 2 s^{1.64} 2 p^{5.08} 3 p^{0.01}$				$\mathrm{O}_{4}[$ core $] 2{ }^{1.65} 2 p^{5.11} 3 p^{0.01}$				
	N [core] $2 s^{1.29} 2 p^{4.17} 3 p^{0.01}$				N [core] $2 s^{1.29} 2 p^{4.17} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}[$ core $] 3 \mathrm{~s}^{1.983} p^{5.91}$				$\mathrm{Cl}[$ core $] 3{ }^{1.98} 3 p^{5.86}$				
	O[core] $2 s^{1.68} 2 p^{5.05} 3 p^{0.01}$				S [core] $3 \mathrm{~s}^{1.65} 3 p^{4.17} 3 d^{0.02}$				
O-Cys ${ }^{-}$					S-Cys ${ }^{-}$				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.4296	Pd	0.880	45.120	Pd-O ${ }_{3}$	0.4016	Pd	0.616	45.384
$\mathrm{Pd}-\mathrm{O}_{4}{ }^{\prime \prime}$	0.3126	O_{3}	-0.653	8.653	$\mathrm{Pd}-\mathrm{O}_{4}{ }^{\prime \prime}$	0.3205	O_{3}	-0.662	8.662
$\mathrm{Pd}-\mathrm{N}_{1}$ "	0.5357	O_{4} "	-0.735	8.735	Pd- N_{1} "	0.4167	$\mathrm{O}_{4}{ }^{\prime}$	-0.777	8.777
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0016	N_{1},	-0.484	7.484	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0442	N_{1},	-0.503	7.503
		Cl_{1}	-0.910	17.910			Cl_{1}	-0.923	17.923
$\mathrm{Pd}-\mathrm{O}_{\mathrm{Cys}}$	0.3482	$\mathrm{O}_{\mathrm{Cys}}$	-0.765	8.765	$\mathrm{Pd}-\mathrm{S}_{\mathrm{Cys}}$	0.7147	$\mathrm{S}_{\text {Cys }}$	-0.261	16.261
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.28} 4 d^{8.62} 5 p^{0.20} 5 d^{0.01}$				$\operatorname{Pd}[$ core $] 5 s^{0.32} 4 d^{8.76} 5 p^{0.29} 5 d^{0.01}$				
	$\mathrm{O}_{3}[\text { core }] 2 s^{1.65} 2 p^{4.98} 3 p^{0.01}$				$\mathrm{O}_{3}[\text { core }] 2 s^{1.64} 2 p^{5.00} 3 p^{0.01}$				
	$\mathrm{O}_{4} \cdot[$ core $] 2 s^{1.64} 2 p^{5.08} 3 p^{0.01}$				$\mathrm{O}_{4} \cdot[$ core $] 2 s^{1.64} 2 p^{5.12} 3 p^{0.01}$				
	N_{1}, $[$ core $] 2 s^{1.29} 2 p^{4.17} 3 p^{0.01}$				N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.18} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[\text { core }] 3 s^{1.99} 3 p^{5.92}$				$\mathrm{Cl}_{1}[\text { core }] 3 s^{1.98} 3 p^{5.94}$				
	$\mathrm{O}_{\mathrm{Cys}}[\text { core }] 2 s^{1.69} 2 p^{5.06} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.73} 3 p^{4.50} 3 d^{0.01}$				

Table S12. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for post-reaction complexes (PoRC) of C2 compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
${\mathrm{Pd}-\mathrm{O}_{3}}^{0} 0.3906$	Pd	0.672	45.328	$\mathrm{Pd}^{2} \mathrm{O}_{3}$	0.3837	Pd	0.491	45.509	

Pd-S ${ }_{4}$ "	0.5954	O_{3}	-0.685	8.685	Pd- $\mathrm{S}_{4}{ }^{\prime \prime}$	0.5868	O_{3}	-0.685	8.685
Pd- ${ }_{1}$ "	0.5120	S_{4},	0.244	15.756	Pd-N ${ }_{1}$ "	0.4752	S_{4},	0.243	15.575
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0025	N_{1},	-0.487	7.487	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0400	N_{1},	-0.478	7.478
		Cl_{1}	-0.896	17.896			Cl_{1}	-0.890	17.889
${\mathrm{Pd}-\mathrm{O}_{\text {cys }}}^{\text {d }}$	0.3657	$\mathrm{O}_{\mathrm{Cys}}$	-0.749	8.749	Pd-S $\mathrm{S}_{\text {cys }}$	0.5179	$\mathrm{S}_{\text {Cys }}$	0.197	15.803
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.32} 4 d^{8.74} 5 p^{0.265} d^{0.02}$				Pd[core $] 5 s^{0.34} 4 d^{8.85} 5 p^{0.30} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.65} 2 p^{4.99} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{5.00} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{S}_{4}{ }^{\text {, }}$ core] $] 3 s^{1.66} 3 p^{4.06} 3 d^{0.02}$				S_{4}.[core] $3 s^{1.65} 3 p^{4.08} 3 d^{0.02}$				
	N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.16} 3 p^{0.02}$				N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.15} 3 p^{0.01} 4 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.98} 3 p^{5.91}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.98} 3 p^{5.91}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 22^{1.68} 2 p^{5.05} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.65} 3 p^{4.08} 3 d^{0.02}$				
O-Cys ${ }^{-}$					$\text { S-Cys }{ }^{-}$				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.3870	Pd	0.668	45.332	Pd-O ${ }_{3}$	0.3348	Pd	0.341	45.659
$\mathrm{Pd}-\mathrm{S}_{4}{ }^{\prime}$	0.3870	O_{3}	-0.685	8.685	Pd- $\mathrm{S}_{4}{ }^{\prime \prime}$	0.6038	O_{3}	-0.699	8.700
$\mathrm{Pd}-\mathrm{N}_{1}$ "	0.5044	S_{4},	0.241	0.241	Pd-N ${ }_{1}$ "	0.3939	S_{4},	0.202	15.798
$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0017	N_{1},	-0.488	7.488	$\mathrm{Pd}-\mathrm{Cl}_{1}$	0.0007	N_{1},	-0.508	7.508
		Cl_{1}	-0.908	17.908			Cl_{1}	-0.931	17.931
${\mathrm{Pd}-\mathrm{O}_{\text {Cys }}}^{\text {che }}$	0.3817	$\mathrm{O}_{\text {Cys }}$	-0.758	8.758	Pd-S $\mathrm{S}_{\text {Cys }}$	0.7497	$\mathrm{S}_{\text {Cys }}$	-0.224	16.224
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.32} 4 d^{8.74} 5 p^{0.265} d^{0.01}$				$\operatorname{Pd}[$ core $] 5 s^{0.36} 4 d^{8.92} 5 p^{0.37} 5 d^{0.01}$				
	$\mathrm{O}_{3}[$ core $] 2 s^{1.65} 2 p^{4.99} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{5.03} 3 p^{0.01}$				
	$\mathrm{S}_{4} \cdot[\text { core }] 3 s^{1.66} 3 p^{4.06} 3 d^{0.02}$				$\mathrm{S}_{4} \cdot[\text { core }] 3 s^{1.64} 3 p^{4.12} 3 d^{0.02}$				
	N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.16} 3 p^{0.01}$				N_{1}, $[$ core $] 2 s^{1.30} 2 p^{4.17} 3 p^{0.01}$				
	$\mathrm{Cl}_{1}[$ core $] 3 s^{1.99} 3 p^{5.92}$				$\mathrm{Cl}_{1}[$ core $] 3 s^{1.99} 3 p^{5.94}$				
	$\mathrm{O}_{\mathrm{Cys}}[\text { core }] 2 s^{1.68} 2 p^{5.06} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[\text { core }] 3 s^{1.72} 3 p^{4.48} 3 d^{0.01}$				

C2-O-Cys

C1-SH-Cys

C2-SH-Cys

C1-O-Cys ${ }^{-}$

C1-S-Cys

C2-O-Cys ${ }^{-}$

C2-S-Cys ${ }^{-}$

Figure S12. Optimized geometries of products formed in the reaction between the investigated compounds, $\mathbf{C 1}$ and $\mathbf{C 2}$, and acid-base forms of $\mathbf{L - C y s} / \mathbf{L}-\mathbf{C y s}^{-}$with intramolecular hydrogen bond (interrupted line) obtained with M06-2X functional in conjunction with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Cl}$, and H/def2-TZVPD, triple-zeta-valence, basis set for atom Pd theory in the water. Legend: grey - carbon atom, white - hydrogen atom, red - oxygen atom, blue - nitrogen atom, yellow - sulfur.

Table S13. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for products of $\mathbf{C 1}$ compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
Pd-O ${ }_{3}$	0.4342	Pd	0.883	45.117	$\mathrm{Pd}-\mathrm{O}_{3}$	0.4409	Pd	0.738	45.262
${\mathrm{Pd}-\mathrm{O}_{4}{ }^{\text {, }} \text {, }}^{\text {a }}$	0.3211	O_{3}	-0.647	8.647	Pd-O ${ }_{4}{ }^{\prime \prime}$	0.3296	O_{3}	-0.662	8.662
$\mathrm{Pd}-\mathrm{N}_{1}$,	0.5544	O_{4} "	-0.739	8.739	Pd- $\mathrm{N}_{1}{ }^{\prime \prime}$	0.5303	O_{4},	-0.750	8.750
$\mathrm{Pd}-\mathrm{O}_{\text {Cys }}$	0.3236	N_{1},	-0.479	7.479	Pd-S $\mathrm{S}_{\text {cys }}$	0.4618	N_{1},	-0.476	7.476
		$\mathrm{O}_{\text {Cys }}$	-0.722	8.724			$\mathrm{S}_{\text {Cys }}$	0.131	15.869
NEC	Pd[core] $5 s^{0.28} 4 d^{8.63} 5 p^{0.20} 5 d^{0.01}$				$\operatorname{Pd}[$ core $] 5 s^{0.30} 4 d^{8.71} 5 p^{0.24} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.65} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{4.99} 3 p^{0.01}$				
	O_{4}.[core $] 2 s^{1.65} 2 p^{5.08} 3 p^{0.01}$				O_{4} [$[$ core $] 2 s^{1.65} 2 p^{5.08} 3 p^{0.01}$				
	$\mathrm{N}_{1},[$ core $] 2 s^{1.29} 2 p^{4.17} 3 p^{0.01}$				N_{1}.[$[$ core $] 2 s^{1.29} 2 p^{4.16} 3 p^{0.01}$				
	$\mathrm{O}_{\text {Cys }}[$ core $] 2 s^{1.68} 2 p^{5.03} 3 p^{0.01}$				$\mathrm{S}_{\text {Cys }}[$ core $] 3 s^{1.67} 3 p^{4.17} 3 d^{0.02}$				
O-Cys ${ }^{-}$					S-Cys ${ }^{-}$				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.4325	Pd	0.882	45.188	Pd-O ${ }_{3}$	0.4179	Pd	0.625	45.375
${\mathrm{Pd}-\mathrm{O}_{4}{ }^{\text {, }}}^{\text {P }}$	0.3117	O_{3}	-0.651	8.651	Pd-O ${ }_{4}{ }^{\prime \prime}$	0.3238	O_{3}	-0.656	8.656
$\mathrm{Pd}-\mathrm{N}_{1}$,	0.5403	$\mathrm{O}_{4}{ }^{\prime \prime}$	-0.733	8.733	Pd- N_{1} "	0.4328	O_{4} "	-0.769	8.769
$\mathrm{Pd}-\mathrm{O}_{\text {cys }}$	0.3401	N_{1},	-0.482	7.482	Pd-S $\mathrm{S}_{\text {cys }}$	0.7149	N_{1},	-0.503	7.504
		$\mathrm{O}_{\text {Cys }}$	-0.766	8.766			$\mathrm{S}_{\text {Cys }}$	-0.245	16.245
NEC	Pd[core] $5 s^{0.28} 4 d^{8.62} 5 p^{0.20} 5 d^{0.01}$				$\mathrm{Pd}[$ core $] 5 s^{0.32} 4 d^{8.76} 5 p^{0.28} 5 d^{0.01}$				
	O_{3} [core] $2 s^{1.65} 2 p^{4.98} 3 p^{0.01}$				O_{3} [core $22 s^{1.64} 2 p^{4.99} 3 p^{0.01}$				
	$\mathrm{O}_{4} \cdot[\text { core }] 2 s^{1.64} 2 p^{5.08} 3 p^{0.01}$				$\mathrm{O}_{4} \cdot[\text { core }] 2 s^{1.64} 2 p^{5.11} 3 p^{0.01}$				
	N_{1} [core] $2 s^{1.29} 2 p^{4.17} 3 p^{0.01}$				N_{1},[core] $2 s^{1.30} 2 p^{4.18} 4 s^{0.01} 4 p^{0.01}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 2 s^{1.69} 2 p^{5.06} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.74} 3 p^{4.48} 3 d^{0.01}$				

Table S14. The bond length of the interest, the Wiberg bond indices (WBIs), natural atomic charges (NACs), total natural populations (TNPs, in parentheses), and natural electron (NECs) of selected atoms/ions for products of $\mathbf{C} 2$ compound

O-Cys					HS-Cys				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
$\mathrm{Pd}-\mathrm{O}_{3}$	0.3877	Pd	0.677	45.323	Pd-O ${ }_{3}$	0.3745	Pd	0.454	45.546
$\mathrm{Pd}-\mathrm{S}_{4}{ }^{\text {, }}$	0.5953	O_{3}	-0.658	8.658	Pd-S ${ }_{4}{ }^{\prime \prime}$	0.6359	O_{3}	-0.739	8.645
$\mathrm{Pd}-\mathrm{N}_{1}$ "	0.5215	S_{4},	0.244	15.756	Pd- $\mathrm{N}_{1}{ }^{\prime \prime}$	0.4870	S_{4},	0.216	15.784
$\mathrm{Pd}-\mathrm{O}_{\mathrm{Cys}}$	0.3528	N_{1},	-0.482	7.482	$\mathrm{Pd}-\mathrm{S}_{4}{ }^{\prime \prime}$	0.5193	N_{1},	-0.484	7.484
		$\mathrm{O}_{\text {Cys }}$	-0.748	8.748			$\mathrm{S}_{\text {Cys }}$	0.191	15.809
NEC	$\operatorname{Pd}[$ core $] 5 s^{0.32} 4 d^{8.74} 5 p^{0.265} d^{0.01}$				$\operatorname{Pd}[$ core $] 5 s^{0.35} 4 d^{8.86} 5 p^{0.32} 5 d^{0.02}$				
	$\mathrm{O}_{3}[$ core $] 2 s^{1.65} 2 p^{4.99} 3 p^{0.01}$				O_{3} [core] $2 s^{1.65} 2 p^{5.04} 3 p^{0.03}$				
	S_{4} [[core] $3 s^{1.66} 3 p^{4.06} 3 d^{0.02}$				S_{4} [core] $3 s^{1.64} 3 p^{4.11} 3 d^{0.02}$				
	N_{1},[$[$ core $] 2 s^{1.29} 2 p^{4.17} 3 p^{0.01}$				N_{1}.[$[$ core $] 2 s^{1.30} 2 p^{4.16} 3 p^{0.02}$				
	$\mathrm{O}_{\mathrm{Cys}}[$ core $] 2 s^{1.68} 2 p^{5.05} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.65} 3 p^{4.13} 3 d^{0.02}$				
$\mathrm{O}-\mathrm{Cys}^{-}$					$\mathrm{S}^{-\mathrm{Cys}^{-}}$				
Bond	WBI	Atoms	NAC	TNP	Bond	WBI	Atoms	NAC	TNP
${\mathrm{Pd}-\mathrm{O}_{3}}$	0.3842	Pd	0.670	45.330	${\mathrm{Pd}-\mathrm{O}_{3}}$	0.3446	Pd	0.346	45.654
$\mathrm{Pd}-\mathrm{S}_{4}{ }^{\prime \prime}$	0.5962	O_{3}	-0.656	8.656	Pd-S $4_{4 \prime}$	0.6044	O_{3}	-0.727	8.727
Pd-N ${ }_{1}$ "	0.5116	S_{4},	0.246	15.755	$\mathrm{Pd}-\mathrm{N}_{1}{ }^{\prime \prime}$	0.3955	S_{4},	0.213	15.787
$\mathrm{Pd}-\mathrm{O}_{\text {Cys }}$	0.3726	N_{1} "	-0.486	7.486	$\mathrm{Pd}-\mathrm{S}_{4}$ "	0.7377	N_{1},	-0.511	7.511
		$\mathrm{O}_{\text {Cys }}$	-0.758	8.758			$\mathrm{S}_{\text {Cys }}$	-0.217	16.217
NEC	$\operatorname{Pd}[\text { core }] 5 s^{0.32} 4 d^{8.74} 5 p^{0.26} 5 d^{0.01}$				$\operatorname{Pd}[\text { core }] 5 s^{0.36} 4 d^{8.92} 5 p^{0.36} 5 d^{0.02}$				
	$\mathrm{O}_{3}[\text { core }] 2 s^{1.65} 2 p^{4.99} 3 p^{0.01}$				$\mathrm{O}_{3}[\text { core }] 2 s^{1.65} 2 p^{5.03} 3 p^{0.01}$				
	S_{4} [[core] $3 s^{1.66} 3 p^{4.06} 3 d^{0.02}$				$\mathrm{S}_{4} \cdot[\text { core }] 3 s^{1.64} 3 p^{4.11} 3 d^{0.02}$				
	$\mathrm{N}_{\mathrm{l}^{\prime},[\text { core }]} 2 s^{1.30} 2 p^{4.16} 3 p^{0.02}$				$\mathrm{N}_{\mathrm{l}^{\prime}}[\text { core }] 2 s^{1.30} 2 p^{4.18} 3 p^{0.01}$				
	$\mathrm{O}_{\mathrm{Cys}}[\text { core }] 2 s^{1.68} 2 p^{5.06} 3 p^{0.01}$				$\mathrm{S}_{\mathrm{Cys}}[$ core $] 3 s^{1.72} 3 p^{4.47} 3 d^{0.02}$				

Table S15. Calculated values of kinetic parameters: Gibbs activation energy $\left(\Delta G_{\mathrm{a}}\right)$, reaction rate constants (k), effective values of rate constants ($k^{\text {eff }}$) and the sum of effective values of rate constants ($k^{\text {eff, sum })}\left[\mathrm{M}^{-1} \mathrm{~S}^{-1}\right]$ estimated at 288 K and 298 K .

C1	k_{288}	$k^{\text {eff }} 288$	$k^{\text {eff, sum }} 288$	$\Gamma_{i}(\%)$	k_{298}	$k^{\text {eff }} 298$	$k^{\text {eff, sum }} 298$	$\Gamma_{i}(\%)$
O-Cys	5.60×10^{3}	4.83×10^{3}	4.94×10^{4}	9.8	6.30×10^{3}	5.44×10^{3}	6.13×10^{4}	8.9
HS-Cys	9.30×10^{2}	8.03×10^{2}		1.6	1.20×10^{3}	1.04×10^{3}		1.7
$\mathrm{O}-\mathrm{Cys}$	9.90×10^{3}	1.35×10^{3}		2.7	1.10×10^{4}	1.50×10^{3}		2.5
S-Cys ${ }^{-}$	3.10×10^{5}	4.24×10^{4}		85.8	3.90×10^{5}	5.33×10^{4}		87.0
C2	k_{288}		$k^{\text {eff }} 288$		k_{298}		$k^{\text {eff }} 298$	
O-Cys	8.80×10^{4}	7.60×10^{4}	8.16×10^{4}	93.1	9.70×10^{4}	8.37×10^{4}	9.01×10^{4}	92.9
HS-Cys	1.90×10^{3}	1.64×10^{3}		2.0	2.30×10^{3}	1.99×10^{3}		2.2
O-Cys	3.20×10^{2}	4.38×10^{1}		0.1	4.30×10^{2}	5.88×10^{1}		0.1
S-Cys	2.90×10^{4}	3.97×10^{3}		4.9	3.20×10^{4}	4.38×10^{3}		4.9

Figure S13. Experimental UV-Vis spectra in Hepes buffer (25 mM Hepes and 50 mM NaCl) of $\mathbf{C 1}$ (red line) and the mixture of $\mathbf{C 1}$ and L-Cys in the ratio 1:1 (black line)

Figure S14. Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a 1:1 mixture of $\mathbf{C 1}$ and L-Cys (black line) and simulated spectrum of the C1-S-Cys ${ }^{-}$product (orange line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.

Figure S15. Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a $1: 1$ mixture of $\mathbf{C 1}$ and L-Cys (black line) and simulated spectrum of the C1-O-Cys product (blue line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.

Figure S16. Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a $1: 1$ mixture of $\mathbf{C 1}$ and L-Cys (black line) and simulated spectrum of the $\mathbf{C 1 - O - C y s}{ }^{-}$product (purple line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.

Figure S17. Experimental UV-Vis spectrum in Hepes buffer (25 mM Hepes and 50 mM NaCl) of a 1:1 mixture of $\mathbf{C 1}$ and L-Cys (black line) and simulated spectrum of the C1-HS-Cys product (green line). The HOMO and LUMO orbitals involved in electronic transitions are presented with values of orbital energies (black colour) and energy gap (red colour). The sign "*" and the vertical dashed line represent the oscillator strength value.

[^0]: *Corresponding author's e-mail address: ziko.milanovic@uni.kg.ac.rs

[^1]: ${ }^{a}$ Number of runs in parenthesis

[^2]: ${ }^{a}$ Number of runs in parenthesis.

[^3]: ${ }^{a}$ Number of runs in parenthesis

