#### Electronic Supplementary Information for

## Plastic Phase Transitions in Tris(hydroxymethyl)aminomethane Perchlorate

Feng Zhou, Yan-Ran Weng, Yu Shi, Yun-Hui Yu, Dan Lu, Yong Yu, Jia-Zi She, and Yong Ai\*

Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China

#### Experimental

**Materials.** Perchloric acid and Tris(hydroxymethyl)aminomethane were purchased from Aladdin and used as received. Methyl alcohol was purchased from Merck and used as the solvent.Crystallography.

**Crystal growth.** A stoichiometric mixture of tris(hydroxymethyl)aminomethane and perchloric acid was allowed to slowly evaporate for crystal growth. Colorless block-shaped crystals were obtained after one week at ambient conditions.

Single-crystal diffraction. The variable temperature single crystal X-ray diffraction (XRD) data was carried out by using a Rigaku Oxford diffractometer with Cu*Ka* radiation ( $\lambda = 0.71073$  Å). The direct method was used to solve the crystal structure and the SHELXTL-2014 program package was used to correct it by the full-matrix least-squares method. For all non-hydrogen atoms, their anisotropy is refined. All hydrogen atoms are generated geometrically and at the same time in proper positions. CCDC 2321879 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif, by emailing

data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

**Powder X-ray diffraction (PXRD).** Variable-temperature powder X-ray diffraction measurements were performed on a Rigaku D/MAX 2000 PC X-ray diffractometer. The measurement condition is in a  $2\theta$  range of 5°-50°, the step size is 0.02°, and the corresponding PXRD pattern is obtained.

**Differential scanning calorimetry (DSC)** The DSC measurement is performed by using a PerkinElmer Diamond DSC instrument. Added the power sample to an alumina crucible and cover it. Then the powder sample was studied in by heating and cooling with a rate of 5 K  $\cdot$  min<sup>-1</sup> at nitrogen atmosphere.

**Hirshfeld surface analysis** The Hirshfeld surfaces and their associated 2D-fingerprint plots was conducted using the Crystal Explorer software, utilizing CIF format structure files as input.<sup>1,2</sup> The morphology of these surfaces is contingent on the interactions both between molecules within the crystal and between atoms within the molecule. All Hirshfeld surfaces were generated at a standard high surface resolution. The intensity of molecular interactions is visually represented on the Hirshfeld surface through a color scheme comprising red, blue, and white regions. Specifically, white regions correspond precisely to van der Waals contact distances, blue regions indicate longer contacts, and red regions signify closer contacts.

The normalized contact distance, denoted as  $d_{\text{norm}}$ , is derived from the parameters de, di, and the van der Waals (vdW) radii of the two atoms, one external ( $r_e^{\text{vdW}}$ ) and one internal ( $r_i^{\text{vdW}}$ ) to the surface. Mathematically,  $d_{\text{norm}}$  is defined as:

$$d_{\text{norm}} = \frac{\frac{d_i - r^{vdW}}{r^{vdW}}}{r^{vdW}} + \frac{\frac{d_e - r}{r^{vdW}}}{r^{vdW}}$$

The  $d_{\text{norm}}$  value is a valuable metric for identifying close intermolecular interactions. A smaller  $d_{\text{norm}}$  value indicates stronger intermolecular interactions within the system.

**Dielectric properties measurements.** The complex dielectric permittivity curves were measured on an automatic impedance Tonghui 2828 analyzer. Dielectric studies were performed on pressed-powder pellets samples, and conductive silver glue was deposited on the surface of electrode to simulate parallel plate capacitors.



Figure S1. Crystal picture of Tris-HClO<sub>4</sub>.



Figure S2. The final Rietveld refinement plot of Tris-HClO<sub>4</sub> structure at 403K in HTP.
: experimental pattern (red line), calculated pattern (blue line), difference profile (yellow line) and background profile (green dot).



**Figure S3.** The simulated high-temperature structure of Tris-HClO<sub>4</sub> at 403 K. Through the Pawley refinements of the PXRD data, we obtained the cubic point group m-3m, among which the most possible space group is Pm-3m.



Figure S4. Thermogravimetric analysis curves of Tris-HClO<sub>4.</sub>

# Summary of crystal data

| Compound                              | Tris-HClO <sub>4</sub>                             |
|---------------------------------------|----------------------------------------------------|
| Temperature                           | 300 K                                              |
| Formula                               | C <sub>4</sub> H <sub>12</sub> ClNO <sub>7</sub>   |
| weight                                | 221.6                                              |
| Crystal system                        | trigonal                                           |
| Space group                           | <i>R</i> -3                                        |
| <i>a</i> (Å)                          | 8.0483(2)                                          |
| <i>b</i> (Å)                          | 8.0483(2)                                          |
| <i>c</i> (Å)                          | 23.8037(5)                                         |
| α (°)                                 | 90                                                 |
| β (°)                                 | 90                                                 |
| γ (°)                                 | 120                                                |
| Volume /Å <sup>3</sup>                | 1335.31(7)                                         |
| Ζ                                     | 6                                                  |
| Density/g cm <sup>-3</sup>            | 1.653                                              |
| µ/mm⁻¹                                | 4.003                                              |
| F(000)                                | 696.0                                              |
| Crystal size/mm <sup>3</sup>          | 0.3 	imes 0.2 	imes 0.1                            |
| Radiation                             | Cu Ka ( $\lambda = 1.54184$ )                      |
| $2\theta$ range for data collection/° | 11.152 to 148.66                                   |
| Index ranges                          | $-9 \le h \le 9, -9 \le k \le 9, -28 \le l \le 28$ |
| Reflections collected                 | 1186                                               |
| Independent reflections               | 584 [Rint = 0.0105, Rsigma = 0.0085]               |
| Data/restraints/parameters            | 584/0/43                                           |

| $R_1$  | 0.0547 |
|--------|--------|
| $wR_2$ | 0.1439 |
| GOF    | 1.065  |

Table S2. Bond lengths [Å] and angles [°] for Tris-HClO<sub>4</sub>.

| Temperature            | 300 K     |                                           |            |  |  |
|------------------------|-----------|-------------------------------------------|------------|--|--|
| Atoms                  | Distances | Atoms                                     | Angles     |  |  |
| C101-O4                | 1.409(3)  | O4-Cl01-O4 <sup>1</sup>                   | 110.35(17) |  |  |
| Cl01-O4 <sup>1</sup>   | 1.409(3)  | O4 <sup>1</sup> -Cl01-O4 <sup>2</sup>     | 110.35(17) |  |  |
| Cl01-O4 <sup>2</sup>   | 1.409(3)  | O4-Cl01-O4 <sup>2</sup>                   | 110.35(17) |  |  |
| C101-O5                | 1.399(5)  | O5-Cl01-O4 <sup>2</sup>                   | 108.57(17) |  |  |
| O002-C005              | 1.427(3)  | O5-Cl01-O4                                | 108.58(17) |  |  |
| N1-C004                | 1.510(5)  | O5-Cl01-O41                               | 108.57(17) |  |  |
| C004-C005 <sup>1</sup> | 1.528(3)  | N1-C004-C005                              | 108.01(17) |  |  |
| C004-C005 <sup>2</sup> | 1.528(3)  | N1-C004-C005 <sup>2</sup>                 | 108.01(17) |  |  |
| C004-C005              | 1.528(3)  | N1-C004-C0051                             | 108.01(17) |  |  |
|                        |           | C005 <sup>2</sup> -C004-C005 <sup>1</sup> | 110.90(16) |  |  |
|                        |           | C005 <sup>1</sup> -C004-C005              | 110.90(16) |  |  |
|                        |           | C005 <sup>2</sup> -C004-C005              | 110.90(16) |  |  |
|                        |           | O002-C005-C004                            | 111.8(2)   |  |  |

Symmetry codes: <sup>1</sup>1+Y-X,1-X,+Z; <sup>2</sup>1-Y,+X-Y,+Z.

| D  | Н   | А               | d( <i>D</i> -H)/Å | d(H-A)/Å | d(D-A)/Å | <i>D</i> -H- <i>A</i> /° |
|----|-----|-----------------|-------------------|----------|----------|--------------------------|
| N1 | H1A | O1 <sup>1</sup> | 0.89              | 2.02     | 2.893    | 166.9                    |
| N1 | H1B | O1 <sup>2</sup> | 0.89              | 2.02     | 2.893    | 166.9                    |
| N1 | H1C | O1 <sup>3</sup> | 0.89              | 2.02     | 2.893    | 166.9                    |

Table S3. Hydrogen Bonds for Tris-HClO<sub>4</sub>.

Symmetry codes: (i) 2/3-Y+X ,1/3+X,4/3-Z , (ii) 2/3-X,1/3-Y,4/3-Z; (iii) 2/3+Y,1/3-X+Y,4/3-Z.

### REFERENCES

- 1. Collins, A., Wilson, C. C. & Gilmore, C. J., Comparing entire crystal structures using cluster analysis and fingerprint plots. *Cryst. Eng. Comm.* **2009**, *12* (3), 801-809.
- Spackman, P. R. *et al.* CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. *J. Appl. Crystallogr.* 2021, *54* (3), 1006-1011.