Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting information

Factors Governing Protonation of Keggin-type Polyoxometalates: Influence of Core Structure in Clusters

Hiroshi Sampei^a, Hiromu Akiyama^a, Koki Saegusa^a, Masahiro Yamaguchi^a, Shuhei Ogo^{b,c}, Hiromi Nakai^d, Tadaharu Ueda^{*b,c,e}, and Yasushi Sekine^{*a}

a. Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan, E-mail ysekine@waseda.jp

b. Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku783-8502, Japan

c. Marine Core Research Institute, Kochi University, Nankoku 783-8502, Japan

d. Department of Chemstry and Biochemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555, Japan

e. MEDi center, Kochi University, Kochi 780-0842, Japan

This file includes:

Figs. S1 to S12 Tables S1 to S5

Other Supplementary Materials for this manuscript include the following:

.xyz and .chk files (ZIP)

Figure S1. NBO charge on each adsorption site before protonation in α -PW12.

a) restricted DFT b) unrestricted DFT

The same trend of amount of charge change as Fig. 2 was observed in not only close shell systems but also open shell systems, indicates this trend of change of O_e and O_c occurs regardless of occupation.

Figure S2 4 Box plot of NBO charge change of proton upon protonation in a) β -XMo12 and b) β -XW12. The upper and lower whiskers are set as the maximum and minimum values. The plots outside the whisker are outliers.

Figure S3 Box plot illustrating the relationship between adsorption site and protonation angles, angles between X-O and O-H, in a) α -XMo₁₂ and b) α -XW₁₂. The upper and lower whiskers represent the maximum and minimum values. Outlying points outside the whisker are considered as outliers.

Figure S4 NBO orbitals of a) donor level and b) acceptor level for proton adsorption on O_{12} site in β -AlMo₁₂.

Figure S5 Relationship between stabilization energy and the protonation angles, angles between X-O and O-H, in a) α -XMo₁₂ and b) α -XW₁₂.

 β -BMo₁₂

 β -GaMo₁₂

 β -GaW₁₂

 β -SiMo₁₂

 β -GeMo₁₂

Figure S6 MEP mappings of α - and β - XM₁₂ except for β -PM₁₂.

Figure S7 Correlation between empirical and calculated bond strength values on a) α -XM₁₂ and b) β -XM₁₂.

Figure S8 Correlation between empirical and calculated bond strength values except X=B a) on α -XM₁₂ and b) on β -XM₁₂.

Figure S9 Absolute error of predicted protonation energy in a) α -XMo₁₂, b) α -XW₁₂, c) β -XMo₁₂, and d) β -XW₁₂. The width of axis corresponding to absolute error (from 0.0 to 1.8) is adjusted to the same as the drawn width of $E(H_{ad})$ in Fig. 8 (from -10.6 to -12.4).

Figure S10 Absolute error of predicted HOMO-LUMO gap in a) α -XMo₁₂, b) α -XW₁₂, c) β -XMo₁₂, and d) β -XW₁₂. The width of axis corresponding to absolute error (from 0.0 to 1.25) is adjusted to the same as the drawn width of HOMO-LUMO gap in Fig. 9 (from 3.75 to 5.00).

Figure S11 Regression of NBO charges of XO₄ core structure in a) α -XMo₁₂, b) α -XW₁₂, c) β -XMo₁₂, and d) β -XW₁₂.

We discuss that the valences of POM are derived from charges of XO₄ structure in main text. Moreover, we evaluate the NBO charges of XO₄ structures. The clear relationship between the NBO charges and governing factors for various responses suggests that the governing factors strongly involve degree of electron transfer from core structure to shell structure.

Figure S12 Absolute error of NBO charges of XO4 core structure in a) α -XMo₁₂, b) α -XW₁₂, c) β -XMo₁₂, and d) β -XW₁₂. The width of axis corresponding to absolute error (from 0.0 to 3.00) is adjusted to the same as the drawn width of NBO charge of XO₄ in Fig. S11 (from -3.00 to 0.00).

A)									
X	-	α-isomer (eV)		β-isomer (eV)					
	2	H^{+} on O_{c}	H^{+} on O_{e}	H^{+} on O_{11}	H^{+} on O_{12}	H^{+} on O_{22e}	H^{+} on O_{22c}	H^{+} on O_{23}	H^{+} on O_{33}
В	5	-12.074	-12.134	-12.136	-12.213	-12.212	-11.978	-12.180	-12.144
AI	5	-12.151	-12.186	-12.192	-12.267	-12.219	-12.059	-12.232	-12.157
Ga	5	-12.178	-12.214	-12.217	-12.273	-12.226	-12.073	-12.254	-12.158
Si	4	-11.795	-11.796	-11.798	-11.927	-11.879	-11.679	-11.826	-11.847
Ge	4	-11.824	-11.834	-11.833	-11.947	-11.891	-11.708	-11.859	-11.857
Р	3	-11.471	-11.423	-11.501	-11.598	-11.532	-11.340	-11.544	-11.545
As	3	-11.500	-11.465	-11.487	-11.615	-11.546	-11.370	-11.489	-11.556
S	2	-11.185	-11.128	-11.211	-11.293	-11.206	-11.034	-11.238	-11.256
B)									
V	z	α-isomer (eV)		β-isomer (eV)					
X		H^{+} on O_{c}	H^{+} on O_{e}	H^{+} on O_{11}	H^{+} on O_{12}	H^{+} on O_{22e}	H^{+} on O_{22c}	H^{+} on O_{23}	H^{+} on O_{33}
В	5	-11.961	-11.972	-11.958	-12.009	-12.039	-11.726	-11.955	-11.961
AI	5	-12.017	-12.056	-12.043	-12.088	-12.097	-11.832	-12.051	-12.026
Ga	5	-12.034	-12.095	-12.073	-12.102	-12.111	-11.852	-12.089	-12.037
Si	4	-11.650	-11.664	-11.649	-11.708	-11.680	-11.431	-11.635	-11.675
Ge	4	-11.671	-11.675	-11.679	-11.740	-11.726	-11.470	-11.685	-11.698
Р	3	-11.303	-11.284	-11.302	-11.360	-11.320	-11.068	-11.288	-11.335
As	3	-11.357	-11.354	-11.317	-11.389	-11.349	-11.110	-11.324	-11.359
S	2	-10.979	-10.957	-10.969	-11.038	-10.991	-10.742	-10.987	-11.017

Table S1. Adsorption energies of each adsorption site A) M=Mo, B) M=W.

×	z -	a-isc	omer	β-isomer	
^		M=Mo	M=M	M=Mo	M=M
В	5	O _e	O _e	O _{22e}	O ₂₃
AI	5	O _e	O _e	O _{22e}	O ₂₃
Ga	5	O _e	O _e	O _{22e}	O ₂₃
Si	4	O _e	O _e	O _{22e}	O _{22e}
Ge	4	O _e	O _e	O _{22e}	O _{22e}
Р	3	O _e	O _e	O _{22e}	O ₁₂
As	3	O _e	O _e	O _{22e}	O ₁₂
S	2	O _e	O _e	O _{22e}	O ₁₂

Table S2. Most favorable proton adsorption site using M06/Lanl2DZ level.

Composition	Experimental value / eV	Calculated value / eV	Reported value / eV	reference
$\alpha\text{-}PW_{12}$	3.5	4.7	2.7	[Gao 2015] [Hiskia 2001]
$\alpha\text{-}SiW_{12}$	4.4	4.3	2.8	[Hiskia 2001]
α -PMo ₁₂	3.9	4.8	-	[Hiskia 2001]

Table S3. HOMO-LUMO gap comparison of some Keggin POM.

The reported values were referred to [López 2006].

Composition	α-isomer / eV	β-isomer / eV
BMo ₁₂	3.91	3.80
AIMo ₁₂	4.59	4.51
GaMo ₁₂	4.61	4.53
SiMo ₁₂	4.40	4.32
GeMo ₁₂	4.43	4.36
PMo ₁₂	4.26	4.16
AsMo ₁₂	4.28	4.20
SMo ₁₂	4.15	4.02
BW ₁₂	4.30	4.07
AIW ₁₂	4.89	4.65
GaW ₁₂	4.88	4.66
SiW ₁₂	4.79	4.51
GeW ₁₂	4.78	4.54
PW ₁₂	4.70	4.45
AsW ₁₂	4.68	4.44
SW ₁₂	4.64	4.39

Table S4. List of calculated HOMO-LUMO gaps

			3O33M3 deg)	8.277 1.940 2.584 1.727 2.812 2.134 2.134 2.134 2.134 2.134 2.134 2.134	8.502 1.877 2.429 1.928 2.961 2.308 2.308 3.077
M3-O3) (Å)	1.709 1.710 1.711 1.710 1.700 1.690 1.691	1.727 1.728 1.728 1.779 1.779 1.7710 1.710 1.711	bO ₂₃ M ₃ M deg) (6	19.451 14 16.739 15 16.614 15 21.405 15 20.093 15 28.093 15 24.723 15 11.473 15	21.892 14 19.440 15 19.145 15 23.771 15 23.000 15 23.000 15 28.298 15 28.298 15 28.2949 15
As-O33) d(A	1.925 1.925 1.937 1.937 1.944 1.944 1.933 1.941	1.917 1.931 1.934 1.928 1.9388 1.93888 1.93888 1.9388 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.93888 1.938888 1.93888 1.93888 1.938888 1.93888 1.9388888 1.93888 1.9388888 1.93888 1.938888888 1.938888888 1.938888888 1.938888888 1.938888888 1.93	2O22cM2 M deg) (s	52.543 11 56.639 11 56.639 11 57.909 12 57.909 12 58.831 12 50.074 12 51.198 12 51.198 12	54,948 11 58,559 11 59,559 11 59,569 11 59,581 12 30,842 12 31,518
A3-O23) d(h (Å)	948 971 971 971 971 971 945 945 943		eOzzeMz M. deg) (8.203 15 5.143 15 9.804 15 9.893 15 8.983 15 8.983 16 7.524 16	9.770 15 7.663 15 7.448 15 1.401 15 (0.756 16 4.141 16 8.573 16
M2-O23) d(A	1.943 1.968 1.968 1.950 1.957 1.957 1.953 1.953 1.944	1.935 1 1.948 1 1.948 1 1.948 1 1.942 1 1.947 1 1.938 1 1.938 1 1.938 1 1.938 1	HO ₁₂ M2 M3 deg) (12.890 11 45.695 11 46.173 11 46.173 11 46.173 11 46.025 11 46.569 11 46.569 11 47.801 12 47.663 12 47.663 12	13.453 11 16.123 11 16.649 11 16.475 12 17.315 12 17.315 12 17.315 12 17.315 12 18.280 12 18.280 12 18.714 12
M2-O21) d(h (Å)		1.728 1.729 1.729 1.729 1.729 1.719 1.719 1.710 1.710 1.711	HO11M1 M deg) (19.105 14 17.125 14 16.917 14 19.969 14 17.102 14 17.102 14 25.654 14 31.441 14	21.312 19.394 14 23.886 14 23.244 23.244 28.447 28.447 28.447 28.245 28.447 28.256 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 28.447 27.226 27.227 27.226 27.2277 27.27777777777
12-O228) d(1 (Å)	1.959 1.922 1.957 1.956 1.966 1.943 1.951 1.936	1.936 1.936 1.948 1.952 1.944 1.933 1.933 1.933 1.932 1.932	aM3O33 M deg) (00.241 11 00.784 11 00.784 11 01.465 11 01.733 12 01.733 12 01.733 12 01.733 12 01.733 12 01.733 12 02.868 12 03.072 12 04.107 13	00.818 11 11.631 11 01.878 11 02.319 12 02.582 12 03.340 12 03.563 12 04,580 13
M2-O226) d(N	1.917 1.945 1.951 1.932 1.936 1.936 1.926	1,910 1,929 1,929 1,924 1,924 1,924 1,921 1,921 1,921) ₃ M ₃ O ₂₃ O (deg) (7.905 10 7.905 10 7.939 10 9.614 10 9.624 10 9.624 10 01.431 10 01.363 10 01.363 10 03.379 10	99.083 10 99.005 10 99.000 10 90.728 10 00.728 10 00.715 10 02.355 10 02.326 10 03.989 10
(M2-O12) d(h (Å)	1.932 1.951 1.954 1.943 1.943 1.940 1.948 1.948 1.937	1.921 1.935 1.938 1.938 1.932 1.937 1.937 1.934	β-isome D ₂₁ M ₂ O ₂₃ C (deg)	98.976 98.814 98.822 98.822 100.610 100.634 100.634 100.322164 11 102.164 11 102.164 11 102.164 11 102.164 11 100.195 11	100.316 100.316 100.262 101.743 101.728 101.728 101.728 103.190 10.04.740 10.04.740 10.04.740 10.04.740 10.04.740 10.04.740 10.04.740 10.04.740 10.04.740 10.04.740 10.000 10.04.740 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000000
M1-O12) d	1.934 1.954 1.957 1.945 1.945 1.949 1.949	1.925 1.938 1.940 1.935 1.939 1.939 1.939)₂M₂O₂∞ ((deg)	39.341 39.740 39.785 00.975 01.189 01.189 02.644 02.644 02.644 145	39.988 01.019 01.383 01.973 01.973 02.185 03.215 03.568 03.568 03.568 03.568 03.568 03.568 03.568 03.568 03.568 04.937
M01) d(ttMzO228 C	7.495 7.483 7.351 9.478 9.478 9.358 1.159 11.195 12.651	9.256 9.212 9.216 0.585 0.608 11.806 11.787 11.787 12.802 2.2802 1
A1-O11) d(I	950 950 951 955 955 955 955 955 955 955 955 955		2iMzO12 O2 deg) (0.474 9 0.7367 9 0.2883 9 0.2883 9 0.2883 9 0.2883 10 0.3864 10 0.3864 10 0.3864 10 0.3864 10	11.645 9. 22.335 9. 22.556 9. 33.042 10 44.095 10 5.629 10 5.629 10
(A) d(h	2.401 2.282 2.263 2.372 2.331 2.458 2.338 2.536	2.413 1 2.291 1 2.291 1 2.269 1 2.289 1 2.340 1 2.472 1 2.499 1 2.548 1 2.548 1	11M1O12 0 (deg) (9.943 10 00.545 10 00.779 10 01.778 10 01.778 10 02.940 10 02.940 10	00.683 10 01.624 10 01.925 10 02.575 10 02.575 10 03.355 10 03.586 10 03.714 10
(A) d(1.535 1.785 1.785 1.664 1.664 1.754 1.571 1.686 1.506	1.534 1.772 1.825 1.825 1.660 1.747 1.569 1.569 1.569	(deg)	97.942 9 97.778 1 97.778 1 99.646 1 99.581 1 01.339 1 01.337 1 01.337 1 03.045 1	39.353 39.195 39.132 39.132 00.799 00.784 10 02.287 10 02.287 10 03.836 10 03.836 10
(OhurM) di (A)	2.396 2.2281 2.2261 2.380 2.337 2.411 2.549	2.414 2.296 2.275 2.393 2.393 2.350 2.350 2.483 2.483 2.560	Ohd XOhd C (deg)	109.265 (109.265 (109.480 (109.549 (109.335 (109.335 (109.335 (109.321 (109.321 (109.269 (119.269)))))))))))))))))))))))))))))))))))	(109.187 (109.140 (109.140 (109.276 (109.196 (109.181 (109.181 (109.132 (109.132) (109
d(X-O _{hu}) c	1.539 1.783 1.783 1.837 1.663 1.753 1.568 1.685 1.504	1.534 1.770 1.822 1.657 1.744 1.565 1.665 1.680 1.501	On XOnd (deg)	109.677 109.463 109.393 109.608 109.591 109.700 109.673 109.733	109.754 109.801 109.831 109.665 109.745 109.708 109.708 109.808
(M-O ₁) (Å)	1.710 1.712 1.712 1.700 1.700 1.690 1.691 1.682	1.7.27 1.7.29 1.7.18 1.7.19 1.7.19 1.7.11 1.7.110 1.7.04	0,×O, (deg)	109.471 109.471 109.471 109.471 109.471 109.471 109.471 109.471	109.471 109.471 109.471 109.471 109.471 109.471 109.471
d(M-O₀) c (Å)	1.927 1.949 1.953 1.938 1.946 1.934 1.942 1.933	1.918 1.937 1.942 1.929 1.934 1.934 1.934	O _t MO _c (deg)	99.614 100.519 100.664 101.770 101.770 102.702 102.908 104.173 104.173	100.612 101.685 101.685 101.685 102.204 102.500 103.496 103.496 104.636 1
d(M-O _e) (Å)	1.945 1.966 1.972 1.951 1.959 1.943 1.943 1.943	1.934 1.952 1.957 1.941 1.946 1.937 1.943 1.936	a-isomer MO _c M (deg)	148.251 151.854 152.374 151.632 152.786 152.083 152.083 153.399	148.513 151.991 152.578 152.965 152.985 152.985 152.397 153.556 153.556
(M) (A)	2.402 2.278 2.257 2.374 2.330 2.464 2.403 2.540	2.419 2.293 2.270 2.387 2.343 2.414 2.414 2.554	OMO _e (deg)	98.098 98.047 98.076 99.753 99.753 101.505 101.448 103.423	99.216 99.137 99.127 100.863 100.901 102.414 102.413 104.002
(A)	1.532 1.779 1.834 1.660 1.750 1.750 1.568 1.568 1.503	1.528 1.767 1.767 1.821 1.656 1.564 1.679 1.502	MO _e M (deg)	120.201 117.039 116.794 122.278 121.138 121.146 125.685 131.584	122,160 119,107 118,825 123,923 123,060 128,698 127,265 133,002
Model (BMo AMo SiMo GeMo PMo AsMo SMo	BW AW SW SW AsW SW	Model	BMo AIMo SiMo PMo AsMo SMo	BW AW SW SW AsW SW SW

Table S5. Structural properties of α - and β -XM12 prior to proton adsorption

Composition	$\log(\frac{[\mathrm{HXM}_{12}]}{[\mathrm{XM}_{12}][\mathrm{H}^+]})$	$\log(\frac{\left[\alpha\text{-HXM}_{12}\right]}{\left[\alpha\text{-XM}_{12}\right][\text{H}^+]})$	$\label{eq:dG} \begin{array}{l} \Delta G \mbox{ from } \alpha\mbox{-}PM_{12} \\ \mbox{(experimental)} \ / \ eV \end{array}$	$\begin{array}{l} \Delta G \mbox{ from } \alpha\mbox{-}PM_{12} \\ \mbox{(calculated)} \mbox{ / } eV \end{array}$	reference
β-PW ₁₂	1.176	1.398	0.013	-0.057	[Ueda 2017]
SMo ₁₂	5.6	12.7	0.420	0.286	[Himeno 2005]
GeMo ₁₂	21.1	12.7	-0.497	-0.363	[Himeno 2005]
GeW ₁₂	14.2	5.6	-0.509	-0.372	[Himeno 2005]
BW_{12}	22.3	5.6	-0.988	-0.669	[Himeno 2005]

 Table S6. Comparison of differential energies of protonation between experimental and calculated values.

The protonation energies were compared by differences from that of α -PM₁₂ since equation (1) does not include the interaction between a proton and the solvent, acetonitrile, and does not calculate correct absolute protonation energies. Considering stability and abundance of each isomer, Gibbs energies of α -isomers were used in the cases of no mention of isomer in a reference. These comparisons showed that the Gibbs energies of experiment and calculation are almost confident. References in this SI

[Gao 2015] L.-H. Gao, J.-F. Zhang, H.-L. Wang, X.-Y. Lin, J.-M. Qi, K.-Z. Wang, *Electrochim. Acta* 2015, **166**, 215–222.

[Hiskia 2001] A. Hiskia, A. Mylonas and E. Papaconstantinou, Chem. Soc. Rev. 2001, 30, 62-69.

[López 2006] X. López, J. A. Fernández and J. M. Poblet, Dalton Trans. 2006, 1162–1167.

[Shahrnoy 2018] A. A. Shahrnoy, A. R. Mahjoub, A. Morsali, M. Dusek and V. Eigner, *Ultrasonics Sonochemistry* 2018, **40**, 174–183.

[Ueda 2017] T. Ueda, K. Kodani, H. Ota, M. Shiro, S.-X. Guo, J. F. Boas, A. M. Bond, *Inorg. Chem.* 2017, **56**, 7, 3990–4001.

[Himeno 2005] S. Himeno, M. Takamoto, R. Santo, A. Ichimura, *Bull. Chem. Soc. Jpn.* 2005, 78, 95–100.