Electronic Supplementary Information

Ionic conduction in ammonia functionalised closo-dodecaborates MB₁₂H₁₁NH₃ (M = Li and Na)

Steffen R. H. Jensen^{a,b}, Mathias Jørgensen^b, Thi Phuong Thao Nguyen^a, Greg Nolan^a, Craig E. Buckley^a, Torben R. Jensen^b* and Mark Paskevicius^a*

^a Department of Physics and Astronomy, Institute for Energy Transitions, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

^b Department of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark.

* Corresponding authors

Torben R. Jensen (trj@chem.au.dk) and Mark Paskevicius (mark.paskevicius@gmail.com)

Fig. S1 XRD data for solvated LiB₁₂H₁₁NH₃.MeCN after synthesis (before drying). $\lambda = 0.824958$ Å.

Fig. S2 XRD data for solvated NaB₁₂H₁₁NH₃.4H₂O after synthesis (before drying). $\lambda = 0.824958$ Å.

Fig. S3 Example electrochemical impedance spectroscopy Nyquist plot for $LiB_{12}H_{11}NH_3$ at 110 °C (yellow) and the fit (blue) using a (Q/R + W) equivalent circuit with constant phase element (Q), resistor (R) and Warburg element (W).

Fig. S4 ${}^{11}B{}^{1}H$ NMR spectrum of the NaB₁₂H₁₂ precursor in D₂O.

Fig. S5 Thermogravimetric plots for LiB₁₂H₁₁NH₃·*x*MeCN and NaB₁₂H₁₁NH₃·*x*H₂O heated from RT to 300 °C then cooled to 40 °C and finally re-heated to 600 °C in a 40 mLmin⁻¹ flow of Ar at 10 °C/min.

Fig. S6 TPD plots for (a) $LiB_{12}H_{11}NH_3 \cdot xMeCN$ and (b) $NaB_{12}H_{11}NH_3 \cdot xH_2O$. Temperature program: heating from RT to 220 °C ($\Delta T/\Delta t = 5$ °Cmin⁻¹), isothermally holding at 220 °C for 1 h, cooling to RT, and heating again to 400 °C ($\Delta T/\Delta t = 5$ °Cmin⁻¹). The signals for $NaB_{12}H_{11}NH_3 \cdot xH_2O$ at 35 minutes for m/z = 2 and 17 are likely related to water fractionation in the mass spectrometer.

Fig. S7 XRD patterns of (a) $LiB_{12}H_{11}NH_3$ and (b) $NaB_{12}H_{11}NH_3$ at RT ($\lambda = 1.54060$ Å).

Name	Atom	x	У	Ζ
B1	В	0.083674	1.091983	0.125373
B2	В	0.317307	0.910132	0.035607
B3	В	0.446004	0.899962	0.125812
B4	В	0.219115	1.081069	0.215647
B5	В	0.090674	0.939005	0.071653
B6	В	0.223529	1.069163	0.030440
B7	В	0.438638	1.054724	0.181270
B8	В	0.308428	0.922975	0.221984
B9	В	0.444761	1.050055	0.066006
B10	В	0.088670	0.943867	0.184933
B11	В	0.229939	0.832731	0.131668
B12	В	0.303679	1.160967	0.119196
N13	Ν	-0.097088	1.192367	0.130071
H14	Н	0.363236	0.843547	-0.029550
H15	Н	0.583923	0.823510	0.120187
H16	Н	0.184284	1.143193	0.280134
H17	Н	-0.033967	0.900349	0.030299
H18	Н	0.195675	1.117917	-0.041169
H19	Н	0.561703	1.099626	0.226027
H20	Н	0.340518	0.872810	0.294518
H21	Н	0.578936	1.088863	0.025622
H22	Н	-0.037544	0.902957	0.228729
H23	Н	0.207572	0.711737	0.138838
H24	Н	0.330684	1.272477	0.113484
Na	Na	0.015603	0.878269	0.881189

Table S1 Atomic coordinates for α -NaB₁₂H₁₁NH₃ in *P*2₁2₁2₁ (*a* = 7.1972(3) Å, *b* = 9.9225(4) Å, *c* = 14.5556(5) Å, and *V* = 1038.19 Å³).

Fig. S8 Arrhenius plots for the ionic conductivity of dehydrated (a) LiB₁₂H₁₁NH₃ and (b) NaB₁₂H₁₁NH₃, and hydrated (c) LiB₁₂H₁₁NH₃ and (d) NaB₁₂H₁₁NH₃.