Supplementary Information

ReducedPolyoxometalate-EncapsulatedOrgano Cobalt modified phosphate Frameworkfor improving photocatalytic reduction CO2

Yinhua Zhu, Pinfang Yan, Lingtong Xu, Zeyu Du, Hua Mei,* Yan Xu*

College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China

Section 1. Crystal Structure

Fig. S1 The crystal image of Co-PO₄-PW₁₂ under optical microscope.

Fig. S2 SEM image of Co-PO₄-PW₁₂.

Fig. S3 Stick and polyhedral representation of basic unit for Co-PO₄-PW₁₂.

Fig. S4 Size perspective of the assembled structure for Co-PO₄-PW₁₂.

Section 2. Characterizations

2.1 Materials and Physical property studies.

2.2 Preparation of [Co₄(PO₄)(C₇H₈N₄)₆](PW^{VI}₁₀W^V₂O₄₀)

Fig. S5 The PXRD pattern of Co-PO4-PW12.

Fig. S6 PXRD patterns of 10 mg Co-PO₄-PW₁₂ under the conditions of the specified photocatalytic reaction solution (MeCN: TEOA = 4:1 v/v, 50 mL) by soaking the samples for 24 h compared with the simulated curve.

Fig. S7 PXRD of Co-PO4-PW12 after reaction

Fig. S8 The FT-IR pattern of Co-PO₄-PW₁₂.

Fig. S9 The TG curves of Co-PO₄-PW₁₂.

Fig. S10 The XPS spectrum of Co2p peaks for Co-PO4-PW12.

Section 3. The Procedure of the CO₂ Photoreduction

3.1 Electrochemical measurements.

3.2 Photocatalytic CO₂ reduction experiments.

Fig. S11 The photograph of the CO₂ photoreduction devices.

Fig. S12 The recycling experiment.

Fig. S13 The FT-IR pattern before and after the reaction.

Table S1. The comparison for the partially reported materials in the CO₂ photoreduction system.

Section 4. Crystal data

Table S2 Sectional crystal data and structure refinements for Co-PO₄-PW₁₂.

Section 1. Crystal Structure

Fig. S1 The crystal image of Co-PO₄-PW₁₂ under optical microscope.

Fig. S2 SEM image of Co-PO₄-PW₁₂.

Fig. S3 Stick and polyhedral representation of basic unit for Co-PO₄-PW₁₂.

Fig. S4 Size perspective of the assembled structure for Co-PO₄-PW₁₂.

Section 2. Characterizations

 $CoCl_2 \cdot 6H_2O$ (AR, $\geq 99.0\%$) and Na₂HPO₄ (AR, $\geq 99.0\%$) were bought from Sinopharm Chemical Reagent Co., Ltd. [Ru(2,2'-bipyridine)₃]Cl₂·6H₂O (98.0 %) was bought from Aladdin. Triethanolamine (AR, $\geq 78.0\%$) and acetonitrile (AR, $\geq 99.8\%$) were purchased from Shanghai Ling Feng chemical agent Ltd. Nafion solution (5 wt %) was purchased from Sigma-Aldrich. Carbon dioxide (CO₂, 99.999%) gas was supplied by Jiangsu Tianhong Chemical Co.,Ltd, the ¹³CO₂ (99%) was purchased from Guangzhou Puyuan Gas Co., Ltd.

2.1 Materials and Physical property studies.

Powder X-ray diffraction (PXRD) data of **Co-PO4-PW**₁₂ was carried out on Smartlab TM 9KW diffractometer using Cu K α radiation ($\lambda = 1.54056$ nm), and the range was 5 to 50°. FT-IR spectrums were performed on Nicolet 470 FTIR spectrometer with KBr pellets in the 400-4000 cm⁻¹ range. Thermogravimetric (TG) curve was completed on STA449F3 thermogravimetric analyzer in N₂ atmosphere with a heating rate of 10 °C/min. The UV-vis diffuse reflectance spectra were investigated via SHIMADZU UV-2600 spectrophotometer,

and the wavelength was in range of 200-800 nm. The SEM were identified by using a Hitachi TM 3000 scanning electron microscope at an accelerating voltage of 20 kV. Elemental analyses (C, N and H) were determined by a Perkin-Elmer 2400 elemental analyzer.

2.2 Preparation of [Co₄(PO₄)(C₇H₈N₄)₆](PW₁₀W^V₂O₄₀)

1,1'-Methylenebis(1H-imidazole) (Bim) was synthetized according to the known literature method.^[1]

The following substances were dissolved in 8 mL of deionized water: $CoCl_2 \cdot 6H_2O$ (0.05 g, 0.21 mmol), $H_3PW_{12}O_{40} \cdot 18H_2O$ (0.10 g, 0.03 mmol), $C_7H_8N_4$ (Bim ligand) (0.05 g, 0.34 mmol), and Na₂HPO₄ (0.02 g, 0.14 mmol). The slurry was vigorously stirred at 25°C for 30 minutes, and then the pH was raised to 3.5 by adding 1 M hydrochloric acid, followed by 7 days of heating to 140°C. In order to gain purple polyhedral-like crystals, the autoclave was cleaned with deionized water after being cooled to room temperature. Yield: 15.64% (based on $H_3PW_{12}O_{40} \cdot 18H_2O$). Elemental analysis: experimental values: C: 12.60%, H: 1.21%, N: 8.23%; Theoretical values: C: 12.3%, H: 1.17%, N: 8.20%.

[1] X. Wang, M. M. Zhang, X. L. Hao, Y. H. Wang, Y. Wei, F. S. Liang, L. J. Xu, Y. G. Li, *Cryst. Growth Des.*, 2013, **13**, 3454-3462.

PXRD

Fig. S5 The PXRD pattern of Co-PO₄-PW₁₂.

Fig. S6 PXRD patterns of 10 mg Co-PO₄-PW₁₂ under the conditions of the specified photocatalytic reaction solution (MeCN: TEOA = 4:1 v/v, 50 mL) by soaking the samples for 24 h compared with the simulated curve.

Fig. S7 PXRD of Co-PO4-PW12 after reaction

FT-IR

Fig. S8 The FT-IR pattern of Co-PO₄-PW₁₂.

TG

Fig. S9 The TG curve of Co-PO4-PW12.

XPS

Fig. S10 The XPS spectrum of Co2p peaks for Co-PO₄-PW₁₂.

Section 3. The Procedure of the CO₂ Photoreduction

3.1 Electrochemical measurements.

The Mott–Schottky spots were carried out at ambient environment via using the electrochemical workstation (CHI 760e) in a standard three-electrode system: The carbon cloth (CC, 1 cm×1 cm) modified with catalyst samples, carbon rod and Ag/AgCl were used as the working electrode, counter electrode and the reference electrode, respectively. The catalyst of 5 mg was grinded to powder and then dispersed in 1 mL of 0.5% Nafion solvent by ultrasonication to form a homogeneous ink. Subsequently, 200 μ L of the ink were deposited onto the carbon cloth, and dried in room temperature for Mott-Schottky spots measurements. The Mott-Schottky plots were measured over an alternating current (AC) frequency of 1000 Hz, 1500 Hz and 2000 Hz, and three electrodes were immersed in the 0.2 M Na₂SO₄ aqueous solution.

3.2 Photocatalytic CO₂ reduction experiments.

The photocatalytic performance of **Co-PO₄-PW₁₂** was evaluated by applying it to the photocatalytic reduction of CO₂ (CEL-PAEM-D8, AULTT, China). The experiments were carried out in a 100 mL Pyrex flask. A 300 W xenon arc lamp (CEL-PF300-T8, AULTT, China) (photocurrent: 15A) was employed as a visible-light source through a UV-cutoff filter with a

wavelength greater than 420 nm, which was installed 10 cm away from the reaction solution. In the system of CO₂ photocatalytic reduction, we put photocatalyst into a mixed solvent of triethanolamine (TEOA, as a sacrificial base) and acetonitrile (1:4 v/v, 50 mL), and used $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (11.3 mg) as photosensitizer. The products were analyzed by performing gas chromatography (GC7920-TF2Z, AULTT, China). The amount of CO and CH₄ was detected by FID, and the H₂ was analyzed by TCD.

Fig. S11 The photograph of the CO₂ photoreduction devices.

Fig. S12 The recycling experiment.

Fig. S13 The FT-IR pattern before and after the reaction.

Table S1. The comparison for the partially reported materials in CO₂ photoreduction system.

Photocatalysts	Reaction time (h)	product	Yield (µmol g ⁻¹)	References
[C04(PO4)(C7H8N4)6] (PW10W ^V 2O40)	5	СО	68,380	This work
1-DMF	8	СО	448	Dalton Trans., 2019, 48, 8678- 8692.
Co-UiO-67	4	СО	13,170	ACS Appl. Mater. Interfaces, 2020 , 12, 24059- 24065.
$\begin{array}{l} H_{26.5}K_{2.5}Na(H_2O)_{16}[Ni_6(O\\H)(BO_3)_2(dien)_2(B-\\ \alpha\text{-}SiW_{10}O_{37})_2]_2\cdot 24H_2O \end{array}$	1	СО	6988	Inorg. Chem. Front., 2021 , 8, 1303-1311.
$[K(H_2O)_2Fe^{II}_{0.33}Co_{0.67}$ $(H_2O)_2(DAPSC)]_2\{[Fe^{II}_{0.3}$ $_{3}Co_{0.67}(H_2O)(DAPSC)]_2[F$ $e^{II}_{0.33}Co_{0.67}(H_2O)_4]_2[Na_2F$ $e^{III}_4P_4W_{32}O_{120}]\}\cdot 21.5H_2O$	8	СО	55,080	Dalton Trans., 2023 , 52, 9465.
Cu ₃ (BTC) ₂ @TiO ₂	4	CH4	11	<i>Adv. Mater.</i> , 2014 ; 26: 4783– 4788.

TiO2-Mg-CPO-27	10	CH4 CO	40.9 23.5	Appl.Catal. B Environ., 2016 ; 183: 47-52.
MOF-525	6	CH4 CO	37 384	Angew. Chem.
MOF-525-Zn	6	CH4 CO	70 670	<i>Int. Ed.</i> , 2016 ; 55: 14310 –
MOF-525-Co	6	CH4 CO	221 1204	14314.
ZrPP-1-Co	15	CH4 CO	8 210	<i>Adv. Mater.</i> , 2017 , 1704388.
TiO2-Co-ZIF-9	10	CO CH4 H2	88 20 26	J. Mater. Chem. A 2016 ; 4: 15126.
CNNS-UiO-66(Zr)	6	СО	17.4	<i>Adv. Funct.</i> <i>Mater.</i> 2015 ; 25: 5360.
g-C3N4-Co-ZIF-9	2	CO H2	990 157.2	Phys. Chem. Chem. Phys. 2014 ; 16, 14656.
[Ru(bpy)3] Cl2-Co-ZIF-9	0.5	CO H2	20.9 15.0	Angew. Chem., Int Ed 2014 :
[Ru(bpy)3] Cl2-Zn-ZIF-8	0.5	CO H2	1.0 1.2	53, 1034.
[Ru(bpy)3] Cl2-Co-ZIF-67	0.5	CO H2	29600 14800	Phys. Chem. Chem. Phys. 2014 ; 16, 14656.
[Ru(bpy) ₃]Cl ₂ -MOF-253- Ru(5,5'-dcbpy) (CO) ₂ Cl ₂	8	СО Н2 НСОО [_]	548 382.4 1646.4	<i>Chem. Commun.</i> 2015 ; 51, 2645.

Table S2 Sectional crystal data and structure refinements for Co-PO₄-PW₁₂.

Formula	$C_{42}H_{48}Co_4N_{24}O_{44}P_2W_{12}$
Formula weight	4096.90
$T(\mathbf{K})$	296 (2)
Crystal system	Trigonal
Space group	<i>R</i> -3
<i>a</i> (Å)	17.545(2)
<i>b</i> (Å)	17.545(2)

<i>c</i> (Å)	23.684(4)
β (°)	90
$V(\dot{A}^3)$	6313.6(17)
Z	3
$D_{\rm c} ({\rm mg}{\rm m}^{-3})$	3.233
$\mu (\mathrm{mm}^{-1})$	17.223
F (000)	5538
θ range (°)	1.592-27.330
Crystal size (mm ³)	0.20 imes 0.13 imes 0.10
•	$-22 \le h \le 22,$
Limiting indices	$-21 \le k \le 22$,
-	$-30 \le l \le 28$
Reflections collected	16640
<i>R</i> (int)	0.1418
Data / parameters	3006/293
GOF on F^2	1.069
R_1^a ,	$R_1 = 0.0517,$
$wR_2^b [I > 2\sigma(I)]$	$wR_2 = 0.1358$
R_1, wR_2	$R_1 = 0.0706,$
(All data)	$wR_2 = 0.1519$

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|;$ ^b $w \overline{R_2 = \Sigma [w (F_o^2 - F_c^2)^2]} / \Sigma [w (F_o^2)^2]^{1/2}.$